首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought stress may affect sucrose accumulation of sugar beet by restricting leaf development and storage root growth. The objective of this study was to identify changes occurring in the storage root of Beta beets in growth characteristics and ions and compatible solutes accumulation under drought with regard to sucrose accumulation. Two pot experiments were conducted: (1) sugar beet well supplied with water (100 % water capacity), under continuous moderate (50 %) and severe drought stress (30 %), (2) sugar beet and fodder beet well supplied with water (100 %) and under continuous severe drought stress (30 %). Under drought stress, the ratio of storage root to leaf dry matter of sugar beet decreased indicating a different partitioning of the assimilates. The sucrose concentration of the storage root was reduced. In the root, the number of cambium rings was only slightly affected, although drought stress was implemented already 6 weeks after sowing. In contrast, the distance between adjacent rings and the cell size was considerably restricted, which points to a reduced expansion of existing sink tissues. The daily rate of sucrose accumulation in the root showed a maximum between 16 and 20 weeks after sowing in well‐watered plants, but it was considerably reduced under drought stress. The concentration of compatible solutes (K, Na, amino acids, glycine betaine, glucose and fructose) decreased during growth, while it was enhanced because of drought. However, when sucrose concentration was added, a constant sum of all examined solutes was found throughout the vegetation period. It was similar in sugar beet and in fodder beet despite different concentrations of single solutes, and the total sum was not affected by water supply. A close negative relationship between the concentration of compatible solutes and sucrose occurred. It is therefore concluded that the accumulation of compatible solutes in the storage root of Beta beets under drought might be a physiological constraint limiting sucrose accumulation.  相似文献   

2.
Improvements in drought tolerance of crop plants require research focused on physiological processes. In 2002 and 2003 pot experiments with sugar beet were conducted in a greenhouse. Two (2002) or three (2003) different genotypes were subjected to three watering regimes (100, 50 and 20% of water holding capacity). Gas exchange, chlorophyll fluorescence and water-use efficiency (WUE) as parameters of possible relevance for drought stress tolerance in sugar beet were investigated. It was studied whether 13C discrimination (Δ) is suitable as an indirect measure for WUE of sugar beet.DM yield, photosynthesis rate, transpiration rate and stomatal conductance decreased with increasing severity of drought stress. In contrast, internal CO2 partial pressure remained relatively stable and effective quantum yield of photosynthesis was reduced only under severe drought, which points at non-stomatal inhibition of photosynthesis. Different sugar beet genotypes showed significant differences in DM yield, but interactions between genotype and water supply did not occur, indicating that genotypic differences in drought tolerance did not exist. In accordance with that, drought-sensitivity of gas exchange and chlorophyll fluorescence was the same in different genotypes. Δ was higher in the leaves than in the taproot. Reductions in Δ in drought-stressed plants corresponded to about 24% higher WUE. Differentiating between plant organs, only leaf Δ was negatively correlated with WUEL whereas taproot Δ and WUET were unrelated. Δ was therefore proven to be a sensitive indicator for water availability during the growing period. However, similar as other parameters relevant for drought stress tolerance it requires investigations in broader genetic material of sugar beet to detect genotypic differences.  相似文献   

3.
Depending on genotype, sugar beet can differ considerably in yield and quality characteristics. These are additionally modified by environmental conditions with drought stress recently gaining in importance, restricting growth and altering the chemical composition of the beet. The occurrence and development of these genotypic differences during the vegetation period and their possible interaction with environmental conditions were investigated. In 2002 and 2003, four sugar beet genotypes differing in yield and quality and putative different with regard to drought tolerance were tested in field trials, partly under irrigated conditions, in a total of 10 environments with consecutive harvests starting in early summer. In 2 years of stress and non-stress conditions they exhibited significant differences for taproot and leaf dry matter and the concentration of sucrose, K, Na and α-amino nitrogen in the taproot. These differences existed already in mid-June and virtually did not change any more from this time on. Accordingly, interactions between genotype and harvest date did not occur. For sugar beet, genotype by environment interactions generally do not exist. Water supply, as an important single determinant of the effect of the environment, was studied separately analysing data from selected locations. Under drought conditions, withholding irrigation reduced leaf and taproot growth and root-to-leaf ratio, decreased the percentage of sucrose in dry matter and resulted in an accumulation of α-amino N. Interactions between genotype and water supply did not occur for any of the parameters under study. A genotype-specific high α-amino N content, which might be of advantage for osmoregulation, did not improve the adaptation to drought. Differences in leaf maintenance or taproot-to-leaf ratio during drought also did not affect yield response. Due to the lack of interaction between genotype and harvest date as well as between genotype and irrigation it is concluded that harvest date or climatic factors of the growing region do not have to be taken into consideration when choosing a variety.  相似文献   

4.
Mid‐season drought is a factor frequently limiting crop production in the moist to dry savannah zones of the tropical and subtropical regions of the world. Ten cowpea genotypes were subjected to a cycle of drought at flowering followed by re‐watering to study variation in drought performance and recovery. Drought caused a reduction in leaf assimilation rate, transpiration rate and stomatal conductance with genotypic variances of 75.4, 57.9, and 83.3 %, respectively. Only genotypic variance in stomatal conductance increased appreciably under drought. Reductions in leaf water potential as a consequence of drought positively correlated with a decline in assimilation rate, which was associated with stomatal closure. One week after re‐watering, the three gas exchange parameters of stressed plants recovered fully and attained values 10–30 % higher than the well‐watered plants with increased genotypic variability. Reductions in the total dry matter during the drought interval varied from 11 to 50 % among genotypes, but were of minor importance for the total dry matter at maturity. After stress, the gain in dry matter varied considerably among the stressed genotypes, with stressed plants showing higher gain than the unstressed plants during this interval. This was associated with increased availability of assimilates due to enhanced green leaf area duration after stress release. Variability in drought recovery among genotypes was found, and appears to be more important for final yield than responses during drought.  相似文献   

5.
甜菜MYB转录因子生信分析及种子萌发期差异表达   总被引:4,自引:4,他引:0  
本研究旨在了解干旱环境下甜菜MYB基因家族的表达模式。主要研究方法为对利用15%PEG模拟的干旱胁迫处理试验组和蒸馏水对照组萌发期甜菜的转录组进行了高通量测序。结果表明,共获得79个MYB转录因子,其中42个在干旱胁迫下差异表达,氨基酸序列分析表明,甜菜萌发期 MYB 转录因子含有 8个保守元件,8个保守元件的结构域所含有的氨基酸位点数量不一致,推测与相应的DNA分子进行结合和行使功能有关。本研究通过对萌发期甜菜应答干旱胁迫的MYB 基因分析,为甜菜抗干旱胁迫育种提供基因资源和理论基础。  相似文献   

6.
To improve the storability of sugar beets, this study aimed at determining reasons for genotypic variability in sugar losses and invert sugar accumulation during storage, and at identifying indirect criteria to select for varieties with low storage losses prior to storage. In 2011 and 2012, 18 genotypes, and in 2012 and 2013, six genotypes cultivated at two locations were stored for 8 and 12 weeks at 8°C under controlled conditions. The same 18 genotypes were grown under stress conditions in Spain in 2012/2013. Sugar losses were closely correlated with the invert sugar accumulation after storage. Genotypic differences in storage losses were primarily caused by differences in the level of infestation with microorganisms. The invert sugar accumulation was lower for genotypes with high marc concentration before storage, pointing to a non‐specific resistance. Additionally, the sugar concentration in dry matter before storage, and the invert sugar concentration after cultivation under stress conditions correlated with the invert sugar concentration after storage. These parameters are therefore suggested as criteria to select for improved storability of sugar beet genotypes.  相似文献   

7.
Plants respond to drought with a restriction of leaf and root growth. The study aimed at analysing the morphological and functional adaptation mechanisms of Beta and Cichorium storage root and leaf forms to limited water supply. Two pot experiments were conducted: (i) with sugar beet, swiss chard, root and leaf chicory at 100 %, 50 % and 30 % water supply, (ii) with sugar beet, fodder beet and swiss chard at 100 % and 30 % water supply. The results indicate that there is no general response mechanism of root and leaf forms to better sustain drought stress. Sugar beet adapted to limited water supply with a marked decrease in the storage root to leaf ratio, indicating in particular a restriction of the predominant sink, while maintaining a very low transpiration coefficient. In contrast, swiss chard, root and leaf chicory kept their storage root to leaf ratio almost constant while adapting the transpiration coefficient. Sucrose storage was inversely related to the accumulation of solutes in the storage root of sugar beet and fodder beet. There is some evidence that the formation of a storage root in sugar beet and root chicory is inhibited by the inability of the plants to establish new sink capacities under drought conditions.  相似文献   

8.
To study the effects of different levels of drought stress on root yield and some morpho-physiological traits of sugar beet genotypes, a study was conducted in the research farm of Islamic Azad University of Birjand, Iran in 2013 as strip-split plot experiments based on randomized complete block design. Different levels of drought stress were considered as vertical factor in three levels including normal irrigation, moderate stress, and severe stress. Horizontal factor was assigned to five varieties of sugar beet. Drought stress had a significant effect on root dry weight, total dry weight, root yield, and leaf temperature at 1% probability level and on leaf dry weight, crown dry weight, and harvest index at 5% probability level. Drought stress had an adverse effect on root yield of investigated genotypes of sugar beet. Under normal conditions, the mean of root yield was higher than middle and severe drought stress. Different investigated genotypes of sugar beet responded to drought stress based on their yield potential. The highest positive correlation of root yield was observed with root dry weight (r=0.977**). Stepwise regression analysis and path coefficient analysis showed that root dry weight and petiole dry weight are the most important traits that can affect root yield of sugar beet under drought stress and can used as selection criteria in investigated cultivars of sugar beet. Finally, 7221 genotypes can be considered as tolerant genotypes in the next studies. In comparison, Jolgeh cultivar (as susceptible control) yielded well in areas with normal irrigation, but under moderate and severely stresses its root yield was reduced.  相似文献   

9.
变水处理条件下小麦幼苗的甜菜碱代谢与抗旱性的关系   总被引:16,自引:1,他引:15  
景蕊莲  昌小平 《作物学报》1999,25(4):494-498
在缓慢土壤水分胁迫一复水的变水处理条件下,小麦幼苗地上部分相对含水量在80%~70%时,甜菜碱含量及甜菜碱醛脱氢酶活性最高,相对含水量大于80%或小于70%,甜菜碱的含量和甜菜碱醛脱氢酶活性都降低,并且两者变化是“同步”的。水分胁迫时,小麦幼苗迅速积累甜菜碱,抗旱型小麦增加6~8倍,水分敏感型增加4倍。积累甜菜碱与  相似文献   

10.
尹希龙  石杨  李王胜  兴旺 《作物杂志》2022,38(6):152-40
干旱胁迫是抑制甜菜生长发育和影响产量的重要非生物因素。以耐旱型甜菜种质依安一号(V1)和干旱敏感型种质92011/1-6/1(V2)为试验材料,探讨不同耐旱品种甜菜幼苗光合生理对干旱胁迫的响应。研究了干旱胁迫对甜菜幼苗生长发育、总叶绿素含量和表观光合指标的影响。结果表明,干旱胁迫下2种甜菜幼苗的茎粗、根长、株高、叶鲜重、根鲜重、叶干重和根干重均呈下降趋势,V1下降幅度不明显且各指标降低幅度均小于V2;干旱胁迫降低了2种甜菜幼苗的叶绿素含量,叶绿素含量在第7天降到最低,且V1的含量明显高于V2;干旱胁迫使甜菜幼苗的净光合速率、蒸腾速率、叶片气孔导度和胞间CO2浓度显著下降,V1受到的影响比V2要小。不同耐旱性甜菜品种对干旱胁迫的响应机制存在一定差异,可以进一步分析其抗旱能力,为甜菜的育种、抗逆栽培和稳产提供理论依据。  相似文献   

11.
Sugar beet (Beta vulgaris L.) yield and quality are determined by genotype and environment. This study aimed at analysing the relative importance of the environment for yield and quality of sugar beet genotypes and at assessing parameters which could give essential improvement for beet quality if included as additional selection criteria. For that purpose, root yield and quality (sugar, K, Na, amino N, total soluble N, betaine, glutamine, invert sugar, raffinose) of 9 sugar beet genotypes were investigated in 52 environments (25 sites in 2003 and 27 sites in 2004) in randomised field trials across Europe.The environment accounted for about 80% of the total variance for all parameters. Effects of the tested genotypes were larger for the content of betaine (8.5%) and sugar (7.6%) than for other parameters (1–5%). With the exception of invert sugar and amino N, the genotype by environment interaction was about 3% and thereby lower than the main effect of genotypes. Interactions resulted in an increase of the differences between genotypes which can be used to select genotypes in the most discriminating environments. The response of genotypes in sugar content was contrasting to other parameters and points to a physiological limit for sugar storage at about 20%. As no crossover interaction occurred for root yield or any quality parameter, there seemed to be no specific suitability of the tested genotypes to certain environmental stress conditions. This is probably due to the fact that the harvested beetroot is a vegetative storage organ and has no growth stages susceptible to unfavourable environmental conditions such as flowering and grain filling which are important for final yield in cereals. Invert sugar showed the largest relative differences between genotypes which were strongly enhanced in southern and some south-eastern European environments. Because of its importance during processing, considering invert sugar in breeding could improve technical quality for processing considerably for those extreme environments.  相似文献   

12.
Sugar beet progeny lines screened for both high water use efficiency and high sugar yield under drought stress conditions in the field were assessed for the rate of seed germination and early seedling growth in water deficit stress, induced by mannitol solutions. Seeds of nine different sugar beet progeny lines were grown in three experimental conditions using filter paper, perlite and water agar as substrate. Three levels of 0.0, 0.2 and 0.3 m mannitol concentrations were applied in each experiment. A factorial design was used with three replications. Germination percentage was determined in all experiments. Seedling growth parameters such as cotyledon fresh weight, cotyledon dry weight, root fresh weight, root dry weight (RDW) and root length (RL) were measured experimentally. Abnormality was only recorded in the filter paper experiment. The results showed that drought stress could be simulated by mannitol solution and significant differences were found between stress levels for seedling characteristics. Distinct genetic variances were found among progeny lines with respect to germination and early seedling growth characteristics, except for cotyledons and RDW. Seedling growth and germination rates severely declined at the highest concentration of mannitol. The rate of abnormality was increased progressively at the germination stage with an increase in mannitol concentration but it was more pronounced in the drought‐susceptible progeny lines. The highest values of relative germination % and relative growth % of RL were obtained for the most tolerant line. In conclusion, seedling characteristics, in addition to other physiological components involved in the seed germination process under specific stress conditions, may be considered for breeding purposes.  相似文献   

13.
本研究主要从旱涝、盐碱、高低温以及土壤重金属污染4方面综述了非生物胁迫对甜菜生长发育、生理生化及分子水平的影响。研究发现甜菜在非生物胁迫下净光合速率下降,渗透调节物质浓度改变,活性氧代谢物质含量产生变化,生长发育受到影响;甜菜抗水分胁迫基因包括PSC5PSCR2-cysprxNADKcprx1AVP1Bv-txas等,MYB转录因子和NAC转录因子也在非生物胁迫中起重要作用;甜菜M14品系具有抗旱、耐盐等优良特性。WRKY家族转录因子、BvM14-TpxBvM14-CCoAOMT等基因、过氧化酶BvpAPX及各类盐应答蛋白质在抵抗盐胁迫中起促进作用;甜菜抗高低温研究较少,研究表明低温胁迫产生了甜菜抽薹基因的差异表达,甜菜SbSEC14基因在逆境条件下起到信号传导的功能;甜菜抗重金属胁迫研究进展近些年发展迅速,BvGSBvMTP11BvHIPP24BvGST基因陆续被克隆。本研究提出今后应进一步加强甜菜抗非生物胁迫机制及应用的挖掘与创新;充分挖掘野生种中DREB基因,通过转基因技术培育抗逆性强的甜菜品种(系);在单一逆境研究基础上,进一步开展多逆境条件下的抗逆研究;在生产上应用外源调控物、抗氧化剂、硅等抵御非生物胁迫对甜菜的生长发育影响。  相似文献   

14.
There is much data on the impact of weather variables on the growth of sugar beet from studies conducted under controlled conditions or single field experiments, but these data are of only limited validity for other sites or larger areas. The aim of the present study was to quantify the influence of weather conditions on the growth of sugar beet for the further development of simulation models, based on data representative of sugar beet cultivation in Germany. For this purpose, 27 field trials were conducted in 2000–2001 in commercial fields with variable climatic and soil conditions. From the end of May until the end of the season, beets were harvested manually every 4 weeks, the dry matter yield of leaves and taproot was determined and their growth rates were calculated. Temperature, solar radiation, rainfall and humidity were recorded daily for each site and the potential evapotranspiration and climatic water balance were estimated. The soil water content to a depth of 0.9 m was determined at every harvest date.Several functions were developed to describe the growth of sugar beet as affected by the given meteorological variables. From sowing to the end of June, the dry matter accumulation of both leaves and taproot was strongly enhanced by increasing temperature and during this period leaf dry matter increased linearly with thermal time. After reaching 700 °C d, the taproot dry matter accumulated exponentially with thermal time. The optimum mean daily air temperature for taproot growth was approximately 18 °C. Higher temperature occurring in July and August decreased final taproot yield, but by the end of the season, growth was independent of temperature. High solar radiation advanced growth during the first 65 days after sowing and again in October.Neither the water input by rainfall and irrigation nor the climatic water balance adequately described the growth of the leaves or taproot, but it was shown that the increase in taproot dry matter during July and August depended on the amount of available water in the soil. The maximum sugar yield that can theoretically be achieved in Germany and comparable agroclimatic regions was calculated as 24 t ha−1. The present data reliable for a large agroclimatic region in Europe are of significant value as input for simulation models.  相似文献   

15.
对336份甜菜种质资源苗期的15个表型和生理生化指标进行测定,并通过隶属函数、主成分分析、聚类分析和相关性分析方法对甜菜种质资源耐旱性进行综合评价。结果表明,干旱胁迫后叶干重、株高、根长、叶鲜重、根鲜重、根干重、叶片饱和鲜重和叶片相对含水量等指标均显著降低,根冠比、可溶性糖、可溶性蛋白和脯氨酸含量等4个指标均显著高于对照。主成分分析将15个单一指标转化为6个综合指标,可代表原始数据信息的75.95%。聚类分析将336份甜菜种质资源分为5个类群,其中耐旱性强种质16份,耐旱性较强种质49份,耐旱性中等种质109份,耐旱性较弱种质79份,耐旱性弱种质83份。相关性分析结果显示,胚轴直径、株高、根长、叶鲜重、根鲜重、根干重、叶干重、叶片饱和鲜重、叶片相对含水量和根冠比与D值呈显著相关性。  相似文献   

16.
探讨不同程度干旱胁迫对甜菜苗期生长状况的影响,旨在为耐旱甜菜种质选育与抗逆性研究提供理论依据。本研究以两种耐旱型BGRC16137(V1)、依安一号(V2)和两种干旱敏感型92011/1-6/1(V3)、7412/823-3(V4)的甜菜种质为材料,采用PEG模拟干旱,以差异显著性检验和逐步回归分析的方法来衡量干旱胁迫对甜菜的影响。随着干旱胁迫程度的增加,4个甜菜种质的幼苗地上部指标、地下部指标与叶片相对含水量都有显著的降低,根冠比逐渐升高。在各种浓度的干旱胁迫下,耐旱型V1、V2种质的叶鲜重、叶干重、叶饱和鲜重、根长和根鲜重的下降程度都低于旱敏感型V3、V4种质。重度干旱胁迫下,旱敏感型V3、V4种质的叶片相对含水量分别比对照组下降37.33%、43.90%,而耐旱型V1、V2种质仅下降14.94%、20.45%。结果表明耐旱型甜菜种质通过增加叶鲜重、叶干重、叶饱和鲜重、根长、根鲜重和叶片相对含水量来适应干旱胁迫。  相似文献   

17.
为明确甜菜过氧化物酶cprx1基因在抗旱节水中的功能,利用甜菜品种HI0466(抗旱性较强)、农大甜研4号(抗旱性较弱)为材料,通过已克隆的甜菜cprx1基因序列设计引物,利用半定量RT-PCR方法,对甜菜幼苗根系、叶片中cprx1基因在正常供水及PEG6000模拟水分胁迫1d、3d、5d及复水1d、2d时的表达模式进行分析。结果显示,2个甜菜品种幼苗根、叶中cprx1基因在正常供水情况下均有一定量的表达;在水分胁迫1d均诱导上调表达;水分胁迫至第3天HI0466根、叶中表达量显著增强,而农大甜研4号根、叶中该基因表达受到抑制;胁迫至第5天HI0466根、叶中该基因仍有微量表达,而农大甜研4号根、叶内该基因表达接近停止;复水2d后表达量均恢复至胁迫前水平。  相似文献   

18.
Improved adaptation of potato to limited water availability is needed for stable yields under drought. The maintenance of the cell water status and protection of cellular components against dehydration are important for drought tolerance, and the N status of plants affects the regulation of various respective metabolic processes. A 2‐year pot trial with 17 potato cultivars was conducted under a rain‐out shelter including two water regimes and two N‐levels to investigate genotypic differences concerning osmotic adjustment (OA) and relevant biochemical traits in relation to nitrogen (N) supply. Drought stress resulted in a rapid decrease in the leaf osmotic potential. The N, protein and proline contents increased under drought, while the N protein/NKjeldahl ratio decreased. Initially, total soluble sugars increased at both N‐levels but dropped back to the control level at high N‐availability under prolonged drought while remaining high in N‐deficient plants. Results indicate that potatoes have only a limited capacity of active OA and that increasing sugar and proline concentrations are rather associated with the protection of cellular components. High N supply promoted the N protein/NKjeldahl ratio at short‐term drought and enhanced proline accumulation. Significant genotypic differences were observed for all investigated traits.  相似文献   

19.
甜菜幼苗对干旱胁迫的适应机制   总被引:3,自引:3,他引:0  
为了研究甜菜幼苗在干旱逆境耐受过程中的应答机制,本研究以‘780016B/12优’为目的材料,通过设置不同浓度(3%、6%,9%以及15%)的PEG6000干旱胁迫来处理甜菜幼苗,并进行恢复生长,来衡量不同干旱胁迫处理间甜菜的相关生理生化指标和目的基因的表达量变化。研究结果表明,逆境胁迫24 h后,随着干旱强度的增加,甜菜幼苗植株的皱缩和萎蔫程度也逐渐严重,并伴随着叶片相对含水量(3.48%~15.86%)以及叶绿素含量(5.60~13.06)的下降;而体内的丙二醛和脯氨酸却大量累积,其中以15% PEG增加的尤为明显,分别高达48.23 μmol/L和201.37 μmol/L左右。逆境恢复后,3% PEG处理的甜菜幼苗的相对含水量(96.94%)、丙二醛含量(17.22 μmol/L)以及植株形态基本恢复到了正常水平;而高浓度PEG胁迫复性后,9% PEG处理的植株的相对含水量虽然恢复了8.48%左右,但丙二醛含量仍旧相对含量高达36.46 μmol/L;而脯氨酸在各组处理中,一直维持在较高水平。qPCR分析表明,干旱胁迫诱导BvGS基因受到了不同程度的诱导表达,分别是处理前的3.85、4.45、5.81、8.20倍左右,即使恢复生长,植株中该基因的表达量虽然有所下降,但仍旧维持在较高水平。因此,可以推测,甜菜幼苗通过调整细胞水势、氧化还原水平、光合作用以及渗透代谢平衡来适应干旱胁迫所带来的失水和质膜过氧化等不良反应,并有可能通过谷胱甘肽的合成来解毒由干旱逆境所带来的氧化伤害。  相似文献   

20.
滴灌甜菜对块根膨大期水分亏缺的补偿性响应   总被引:1,自引:0,他引:1  
李阳阳  费聪  崔静  王开勇  马富裕  樊华 《作物学报》2016,42(11):1727-1732
为探讨滴灌甜菜块根膨大期干旱胁迫及复水的生长补偿效应,设置70%(T1)、50%(T2)和30%(T3)田间持水量,调查块根膨大期缺水对滴灌甜菜产量、农艺性状以及理化指标的影响。结果表明,当土壤为30%田间持水量时,甜菜产量比70%和50%田间持水量分别提高51.7%和17.6%,产糖量分别提高48.7%和7.7%。与70%田间持水量相比,50%和30%田间持水量条件下,块根膨大期甜菜电导率、脯氨酸以及过氧化物酶活性均在复水1 d时显著增加。主成分分析表明,细胞膜透性、抗氧化酶活性、渗透调节物质以及农艺特性共同调控块根膨大期甜菜抵御干旱胁迫,其中块根可溶性糖含量不能作为甜菜抗旱性鉴定的指标。因此,滴灌甜菜块根膨大期,当土壤含水量下降至田间持水量的30%时及时补充灌溉,不但不影响甜菜生长,还有利于增加块根含糖量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号