首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
为探索精确预报未来短期ET0的方法,比较了4种基于气温预报ET0预报模型,即Hargreaves-Samani(HS)、Thornthwaite(TH)、简化的Penman-Monteith(PT)及McCloud(MC)模型。收集了西藏林芝站2001年1月1日至2013年12月31日的实测逐日气象数据和2012年6月6日至2013年12月31日逐日对未来7d的气象预报数据,在气温预报精度评价的基础上,采用4种基于温度的参考腾发量计算模型直接进行ET0预报,然后采用率定后的模型进行ET0预报,最后与实测气象数据和FAO-56PM公式计算的ET0值进行比较。结果表明,未率定的4种模型预报误差均较大,其中PT公式精度稍高。经率定后,4种公式的预报精度都有所提高,平均准确率为70%,MAE值HS模型最小,平均为0.57mm/d,其他3个模型为1.27~1.50mm/d;RMSE都在2.0mm/d左右;r值总体仍不高,TH模型平均仅有0.19,其他3种模型在0.6左右。综合来看,PT模型的预报效果稳定性优于其他3个模型。对于林芝地区附近的灌区,无论有无气象观测数据供模型率定,建议采用PT模型进行ET0预报。  相似文献   

2.
基于天气预报的参照作物腾发量中短期预报模型研究   总被引:2,自引:0,他引:2  
以新乡市1970—2011年逐日实测气象资料代入FAO 56 Penman-Monteith(PM)方法算得的ET0作为基准值,对HG、P-T、M-K、M-C模型进行参数修正,将新乡市2012—2014年冬小麦生育期间预见期为1、3、5、7、10d的天气预报数据代入修正后的模型进行ET01~10 d的中短期预报,并以2012—2014年冬小麦生育期间逐日实测气象资料由PM公式算得的ET0为基准值,对天气预报的精度及ET0的预报精度进行评价。结果表明:经过参数修正后HG、P-T、M-K、M-C模型的精度均有提高;最高气温、最低气温、风速、日照时数的预报精度均随预见期的增加呈逐渐下降趋势,最低气温预报的精度稍高于最高气温;不同预见期的ET0预报模型中,P-T模型预报的ET0平均准确率在众模型中较高(95.06%),其次为HG-M模型(94.66%)、PMT1模型(94.34%)、M-K模型(93.89%),且P-T、HGM两种模型计算程序较简单,因此优选P-T、HG-M模型进行ET0的中短期预报。  相似文献   

3.
基于气温预报和HS公式的参考作物腾发量预报   总被引:4,自引:0,他引:4  
为探索精确预报未来短期参考作物腾发量ET0的方法,提出基于气温预报和HargreavesSamani(HS)公式进行ET0预报.收集了南京站2001—2011年逐日气象观测数据和2011年预见期为4 d的逐日天气预报数据,采用FAO-56Penman-Monteith公式计算逐日ET0,用2001—2010年计算的ET0率定HS公式参数;用率定后的公式和2011年的天气预报气温数据进行未来4 d的ET0预报;比较2011年ET0的计算值与预报值、气温观测值与预报值以评价ET0预报精度及误差原因.结果表明:最低气温预报准确率达81.9%,最高气温预报准确率为80.1%;经过参数校正后,HS公式精度较高.ET0预报准确率为85.7%,平均绝对误差为1.01 mm/d,均方根误差为1.42 mm/d,相关系数为0.74;各项预报误差随着预见期的增大而增大.产生误差的主要原因为气温预报误差和HS公式未考虑平均风速和相对湿度的影响.总体而言,基于气温预报和HS公式的ET0预报方法精度较高,可为灌溉预报及决策提供较为准确的ET0预报数据.  相似文献   

4.
基于气温预报和神经网络的参考作物腾发量预报   总被引:2,自引:0,他引:2  
采用反向传播人工神经网络(BP-ANN)逼近气象因子-参考作物腾发量ET0函数关系,以天气预报中的最高和最低气温为输入进行短期ET0预报。收集了南京站实测的2010年7月1日至2013年7月7日逐日气象数据和2012年7月1日至2013年6月30日逐日对未来7d的气象预报数据,以最高、最低气温及相应的日序数为3个输入因子,ET0为输出建立一个包含一个隐含层的3层BP网络,以2010年7月1日至2012年6月30日实测气象数据及通过FAO-56PM公式计算的ET0进行网络,以2012年7月1日至2013年6月30日实测气象数据及通过FAO-56PM公式计算的ET0进行网络验证。将2012年7月1日至2013年6月30日逐日对未来7d的气象预报中的最高、最低气温输入训练及验证后的网络,得到2012年7月1日至2013年6月30日逐日对未来7d的ET0预报值,并与FAO-56PM公式计算的ET0值进行比较以验证预报精度。结果表明,预见期1~7d内,预报的ET0和计算的ET0变化趋势基本一致,预报精度随着预见期的增加而降低;平均准确率(±1.5mm/d以内)达88.08%,相关系数为0.77,均方根误差为1.28mm/d,显示出了较高的预报精度。在局部时间段内出现的ET0,PM和预报ET0的较大差别的原因是该时段内的ET0更多地受到除了日最高和最低气温之外的其他因素的影响。提出的方法 ET0预报,随着气象预报准确度的提高,可实现较为精确的ET0预报。  相似文献   

5.
基于气温预报和HS公式的不同生育期参考作物腾发量预报   总被引:2,自引:0,他引:2  
根据南京站2001-2011年实测气象数据,以Penman-Monteith(PM)公式计算得到的参考作物腾发量ET0值作为基准值,对仅需要气温数据计算参考作物腾发量的Hargreaves-Samani(HS)公式进行参数率定,采用率定后的HS公式依据2012年6月-2015年6月气温预报数据对南京水稻、冬小麦不同生育期未来1~7d的ET0进行预报,并与基于实测气象数据的PM法计算的ET0值进行比较,评价HS法的ET0预报精度。结果表明:最低、最高气温实测值与预报值相关系数分别为0.97和0.93,最低气温预报精度略高于最高气温;预见期1~7d内,水稻、冬小麦不同生育期ET0预报值与PM法计算值变化趋势基本一致,整个生育期内冬小麦ET0预报值与PM法计算值吻合程度更好,水稻、冬小麦相关系数分别达0.60、0.80左右;水稻各生育期平均准确率为66.0%~97.5%,平均绝对误差为0.65~1.22mm/d,均方根误差为0.76~1.42mm/d,冬小麦各生育期平均准确率为75.4%~99.5%,平均绝对误差为0.33~1.06mm/d,均方根误差为0.43~1.23mm/d;作物生育期各阶段对气温预报误差越敏感,ET0预报精度越低,随着生育期的推进,水稻对气温预报误差的敏感程度逐渐减小,相应的ET0预报精度逐渐增加,而冬小麦反之;但整体上预见期1~7d的气温预报及ET0预报精度达到可利用程度,可为快速灌溉预报及灌溉决策提供数据支撑。  相似文献   

6.
为探索精确预报未来短期参考作物腾发量(ET0)的方法,提出基于天气预报和Penman-Monteith(PM)公式进行ET0预报。收集了南京2012年5月24-2013年1月31日逐日对未来7d的气象预报数据,在气温预报的基础上,将风力等级和天气类型转换成平均风速和日照时数后,采用简化的PM公式进行逐日ET0预报,并与用实测气象数据和PM公式计算的ET0值进行比较。结果表明,预见期1~7d内,ET0预报值与计算值的变化趋势基本一致,率定期和验证期准确率分别达66.3%和94.0%,均方根误差分别为1.51mm/d和0.93mm/d,但相关系数仅为0.55和0.44。误差的原因在于风力预报和天气类型预报准确度较低。提出的方法具有一定物理基础和数据较为容易获取的优点,为较准确地预报ET0进行了有益的探索。  相似文献   

7.
基于Web的江苏省逐日参考作物腾发量预报系统   总被引:1,自引:0,他引:1  
为促进短期参考作物腾发量(ET0)预报在实时灌溉决策的应用,开发了一个基于Web的江苏省逐日ET0预报系统。系统采用服务器脚本语言PHP和快速的关系数据库管理系统My SQL来简单和有效地获取国家气象台发布的天气预报数据,然后导入系统数据库并通过率定的Hargreaves-Samani公式来预报未来15 d江苏省23个气象站点的参考作物腾发量ET0值。用户可直接登录网址免费查询江苏省各个气象站点未来15 d的ET0预报值。系统采用B/S网络结构,使用率定的HS公式来计算预报ET0值,具有页面简洁、预报精确度高的特点。ET0预报可用于各种作物需水量预报,为灌溉决策提供科学依据。  相似文献   

8.
为了提出适合我国三江平原的高精度ET0预报方法,基于该区6个气象站点的天气预报数据和实测气象数据,以FAO56-Penman-Monteith(FAO56-PM)公式计算值为基准,比较Hargreaves-Samani(HS)、Thornthwaite(TH)和Blaney-Criddle(BC)3个ET0预报模型的效果,对最优模型进行敏感性分析。结果表明:3个模型1~7 d预见期平均绝对误差均值分别为0.66、0.65、0.65 mm/d,均方根误差分别为0.93、0.96、0.95 mm/d,相关系数分别为0.857、0.828、0.840。1~5 d预见期最优预报模型为HS模型,6~7 d为TH模型。总体上预报精度由高到低为HS、TH、BC模型,建议采用HS模型在三江平原开展ET0预报,HS模型预报对最高温预报的敏感性大于最低温。其预报值在夏季受温度预报误差影响最大,冬季最小,4季整体误差较小。研究可为灌溉预报提供较准确的数据基础。  相似文献   

9.
基于MEA-BPNN的西北旱区参考作物蒸散量预报模型   总被引:2,自引:0,他引:2  
为有效提高西北旱区参考作物蒸散量(Reference crop evapotranspiration,ET0)预报精度,在西北旱区选择5个代表性气象站点,构建10种基于思维进化算法(Mind evolutionary algorithm,MEA)优化的误差反向传波神经网络(Back propagation neural network,BPNN)ET0预报模型,并将其与Hargreaves-Samani模型、Irmak模型和48-PM模型等3种在西北旱区ET0计算精度较高的模型进行比较。结果表明:在不同输入的情况下MEA-BPNN模型模拟精度具有相对较高水平,其中MEA-BPNN1(输入最高气温Tmax、最低气温Tmin、相对湿度RH、日照时数n和距地面2 m高处的风速u2)、MEA-BPNN2(输入Tmax、Tmin、n和u2)及MEA-BPNN3(输入Tmax、Tmin、RH和u2)模型的R2、NSE均大于0.96,RMSE、MAE也分别小于0.34、0.25 mm/d,以上3种MEA-BPNN模型的整体评价指标(Global performance indicator,GPI)排名分别为1、2、3;MEA-BPNN7(输入Tmax、Tmin和u2)的R2、NSE分别为0.966 2、0.962 2,RMSE、MAE分别为0.361 0、0.276 1 mm/d,模拟精度较高;MEA-BPNN模型可移植性的分析表明:MEA-BPNN模型在西北旱区具有较强的泛化能力,基于不同站点数据构建的预报模型也有较高精度;在相同输入情况下MEA-BPNN模型模拟精度均高于Hargreaves-Samani模型、Irmak模型和48-PM模型。因此,在气象资料缺乏情景下MEA-BPNN模型可作为西北旱区ET0计算的推荐模型,可为实时精准灌溉预报的实现提供科学依据。  相似文献   

10.
为了促进江西省灌区技术现代化及灌溉用水管理现代化的发展,为实时灌溉决策提供较为精确和及时的作物需水量预报数据支持,开发了江西省逐日水稻需水量预报与网络发布系统。系统通过关系型数据管理系统MySQL来获取水稻需水量预报模型计算所需的参数及基本信息,分别使用率定了的Hargreaves-Samani(HS)模型、Blaney-Criddle(BC)模型、McCloud(MC)模型和作物系数来预测江西省未来7天26个气象站点的作物腾发量ETc值。用户可登陆网址查询任意站点、任意水稻生长阶段、任意模型预报的ETc数值,页面简洁,易于操作。总体而言,率定后的4种模型均具有较高的预报精度,可用于全省的水稻需水量预报,为灌溉决策和节约灌溉用水提供科学依据。  相似文献   

11.
以浙江低山丘陵区永康灌溉试验站为背景,运用Penman-Monteith公式计算分析了永康长系列参考作物腾发量ET0及其变化规律,建立了ET0实时预报模型,并分析了参数A0取值方法对预报精度的影响。采用双作物系数法确定了滴灌葡萄逐日作物系数,建立了滴灌葡萄蒸发蒸腾量实时预报模型。运用实测的土壤含水率资料,根据水量平衡原理分析计算葡萄实际蒸发蒸腾量,与模型的预报值比较表明所建立的模型及其参数合理。  相似文献   

12.
基于数值天气预报后处理的参考作物蒸散量预报改进   总被引:2,自引:0,他引:2  
针对基于数值天气预报(Numerical weather prediction,NWP)对参考作物蒸散量(Reference crop evapotranspiration,ET0)进行预报通常需要数据偏差校正的问题,基于LightGBM机器学习方法和我国西北地区9个气象站点数据提出一种对第二代全球集合预报系统(Global ensemble forecast system,GEFSv2)预报气象因子进行偏差校正的方法(M3)。该方法使用太阳辐射、最高和最低气温、相对湿度和风速集合分别对每个气象因子进行重预报,再计算ET0。使用等距离累积分布函数(EDCDFm,M1)和单气象因子输入的LightGBM法(M2)对模型精度进行评估。结果表明,GEFSv2的预报因子与相应的观测气象因子之间存在不匹配问题,其不匹配程度因气象因子不同而不同,太阳辐射的匹配度较高,相对湿度的匹配度较低。M3模型有助于缓解数据不匹配问题。M1、M2和M3方法在9站点预报ET0的平均均方根误差(RMSE)分别介于0.66~0.93mm/d、0.57~0.83mm/d和0.53~0.79mm/d,平均绝对误差(MAE)分别介于0.44~0.61mm/d、0.38~0.56mm/d和0.35~0.53mm/d,决定系数(R2)分别介于0.82~0.91、0.84~0.93和0.86~0.94。3种方法均在夏季误差最大,1~16d平均RMSE分别为1.21、1.18、1.04mm/d。各预报因子中太阳辐射对ET0预报误差影响最大,其后依次是风速、最高气温、相对湿度和最低气温。在后处理过程中,NWP的最高气温预报值对其他因子预报精度的贡献最大、对相对湿度预报精度的贡献最小。建议在进行NWP偏差校正时,应考虑数据不匹配问题,通过多因子校正来弥补预报精度的不足。  相似文献   

13.
为探究不同数值模拟模型在川中丘陵区的适应能力,提高川中丘陵区气象资料缺失下的参考作物蒸散量(ET0)预报精度。选取7个代表性站点1961-2016年逐日气象资料,分别建立基于M5回归树(M5-RT)、双隐含层优化的反向传播神经网络(H-BPNN)和交叉验证优化的广义回归神经网络(CV-GRNN)的ET0预报模型。并选取3个在川中丘陵区具有较高精度的经验模型与其进行对比,在日尺度上评估模型的预报精度,利用可移植性分析评价3种模型在川中丘陵区的泛化能力。结果表明:①基于温度、风速和大气顶层辐射输入的M5-RT2、CV-GRNN2和H-BPNN2模型都具有较高的模拟精度,其R\+2分别为0.987、0.967和0.988,NSE分别为0.987、0.937和0.988;②日尺度误差分析表明,4类输入项组合下,M5-RT模型最优,H-BPNN模型次之,CV-GRNN模型最差,但3种模型的均方根误差均小于0.5 mm/d、平均相对误差均小于13.59%,优于Jensen-Haise、Hargreaves-Li和Irmak-Allen模型,M5-RT2(输入大气顶层辐射、最高/低温度和风速)、M5-RT3(输入最高/低温度和风速)和M5-RT4(输入大气顶层辐射和风速)在川中丘陵区内具有广泛的适应性,均可作为气象数据缺失下川中丘陵区ET0预报的推荐模型;③可移植性分析发现,训练、预测站点交叉组合下,3种模型的预报精度都有降低,但M5-RT泛化能力最强,模拟输出稳定,H-BPNN和CV-GRNN在ET0大于6 mm/d时出现明显截断误差,预测值普遍偏小,同时CV-GRNN模拟结果于标准值的趋势线斜率较小,模拟数值整体偏小。基于M5回归树的ET0预报模型在川中丘陵区具有较高精度,模拟结果稳定,可作为推荐的ET0简化模拟模型。  相似文献   

14.
基于公共天气预报的参考作物腾发量预报   总被引:1,自引:0,他引:1  
针对Penman Monteith公式的应用局限性,以公共天气预报可测因子及历史气象数据计算ET0为基准,对广州站2017-01-01-2019-03-31预报气象信息风力状况进行量化后,以2017,2018年气象预报信息为输入因子、ET0为输出因子,分别建立基于回归型支持向量机(SVR)预报模型与BP神经网络预报模型,选择性能较优预报模型对2019年ET0进行预报,并与计算值进行对比分析.结果表明:回归型支持向量机参考作物腾发量预报模型测试集确定性系数为0.896、均方误差为0.206,BP神经网络参考作物腾发量预报模型测试集确定性系数为0.851、均方误差为0.305,SVR参考作物腾发量预报模型均方误差及决定系数要明显优于BP神经网络;基于SVR模型的预报值与PM公式计算值相关系数为0.761,没有明显差异,表现出显著的相关性以及整体吻合度,可为灌溉预报及决策提供较为准确的ET0预报数据.  相似文献   

15.
豫北地区参考作物需水量的随机模拟   总被引:1,自引:0,他引:1  
河南省新乡市1971~2000年共30年的逐旬气象资料,用Penman-Monteith方法计算了逐旬的ET0,并采用时间序列方法,对该地区的ET0进行了分析和模拟,结果表明豫北地区的逐旬ET0变化趋势并不显著,周期性可用Fourier级数加以描述,对随机的变化可建立AR(1)模型。所建立的随机模型能很好的模拟出历年逐旬ET0的变化动向,同时随机模型的建立也为以后该地区实时灌溉预报和农田用水提供依据。  相似文献   

16.
基于ELM的西北旱区参考作物蒸散量预报模型   总被引:1,自引:0,他引:1  
为实现气象资料缺失情况下ET0的精确预报,选取中国西北旱区4个代表性站点的气象资料,建立15种基于极限学习机(ELM)的ET0预报模型,并通过与其他ET0计算模型对比和可移植性分析探究ELM在西北旱区的适用性.结果表明:基于温度和风速的ELM7预报精度较高(整体评价指标GPI排名第4);基于温度和辐射的ELM5预报精度(GPI排名第6)明显高于Iramk模型和Jensen-Haise模型;仅基于温度的ELM9预报精度(GPI排名第8)高于Hargreaves-Samani模型.通过模型可移植性分析发现,ELM7在西北旱区内各训练站点和预测站点组合下预报精度良好.因此,可将ELM5(输入温度和辐射)、ELM7(输入温度和风速)和ELM9(输入温度)作为西北旱区较少气象参数输入情况下精确预报ET0的推荐模型.  相似文献   

17.
为了了解沈阳地区潮棕壤土条件下玉米田不同控制性交替灌溉制度下的土壤蒸发变化规律,对土壤蒸发进行预报,采用Micro-lysimeters(MLS)对不同灌溉处理下的土壤蒸发量进行了测定,并建立了以气象因子、土壤含水率和叶面积指数为自变量的土壤蒸发的预报模型.结果表明,在本试验的条件下,各处理的相对土壤蒸发率(E/ET0)与表层土壤含水率(θ)的关系均呈指数函数形式,决定系数在0.72以上.各处理的E/ET0与LAI之间亦呈很好的指数函数关系,决定系数均在0.79以上.说明在缺少土壤蒸发资料的情况下,可以通过ET0与θ及叶面积指数LAI来预报土壤蒸发.  相似文献   

18.
准确估算参考作物蒸散量(ET0 )对于区域水资源管理和灌溉决策有着重要意义. Hargreaves-Samani模型(HS)是目前公认结构最简单且精度较高的ET0估算模型.为了进一步提高HS模型预测精度,采用蜂群理论和广西盆地20个气象站(1961—2019年)数据对HS模型全局校准,使用1961—2000年数据对HS...  相似文献   

19.
【目的】提高机器学习模型模拟参考作物蒸散量在江西省适应性和精度。【方法】基于江西南昌等15个气象站2001—2015年日值气象数据(最高气温、最低气温、地表辐射、大气顶层辐射、相对湿度和2 m高风速),以FAO-56Penman-Monteith(P-M)公式的计算结果作为对照,建立了计算ET0的高斯过程回归(GPR)、极限梯度提升(XGBoost)和梯度提升决策树(CatBoost)模型,并分别与经验模型进行比较。【结果】各气象参数对机器学习模型模拟ET0的精度影响由大到小依次为:Rs、Tmax和Tmin、RH、U2,且采用Tmax、Tmin、Rs和RH气象参数组合的机器学习模型(RMSE0.2mm/d)模拟ET0精度高。此外,3种机器学习模型在有限的气象数据时具有较好的适用性,且优于传统经验模型,其中GPR和CatBoost模型的预测精度高,但GPR模型稳定性最好。【结论】考虑到所研究模型调参的复杂性、预测精度和稳定性,GPR模型可作为江西地区参考作物蒸散量模拟的推荐方法。  相似文献   

20.
以气象数据为自变量,Penman Monteith方程计算值ET_0为应变量,分别建立了多元回归模型和自适应神经模糊推理系统(ANFIS)模型,对ET_0预测结果对比分析,ANFIS预测ET_0结果相对于多元线性回归具有精度高(1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号