首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary There is a lack of information on the combined effects of preceding crop, reduced tillage (especially no-tillage) and the time of herbicide application on the development of weed populations and the efficiency of weed control in winter wheat in humid temperate climates. An experiment was conducted with a crop rotation (winter wheat – oilseed rape – winter wheat – maize) on a sandy loam and a loamy silt soil in the Swiss midlands to investigate the impact of different preceding crops and pre- and post-emergence control of weeds in conventional tillage (CT; mouldboard plough), minimum tillage (MT; chisel plough) and no-tillage (NT; no soil disturbance systems). When winter wheat was grown after maize and winter wheat was grown after oilseed rape, the ranking order of weed density in treatments without herbicide application was NT < MT < CT and CT < MT < NT respectively. Analysis of variance and canonical discriminant analysis showed that Epilobium spp., Sonchus arvensis , Myosotis arvensis and volunteer crops were more abundant in NT than in MT and CT. The efficiency of post-emergence weed control was generally better than that of pre-emergence weed control, regardless of tillage intensity.  相似文献   

2.
为了探讨不同茬口对土壤肥力及后茬油菜产量的影响,以休闲田为对照,研究了西北黄土区冬油菜、马铃薯、玉米、冬小麦、春小麦、蚕豆等6种主要农作物茬口土壤耕作层肥力效应及其对后茬白菜型冬油菜产量和农艺性状的影响,结果表明:(1)不同作物茬口土壤养分含量总体表现为越冬作物>休闲田>春播作物,除固氮作物蚕豆茬口碱解氮含量较高外,冬油菜茬口土壤营养各项指标、土壤微生物种群结构及土壤物理性状均显著优于其它作物茬口,其有机质、全氮、全磷、全钾、碱解氮、速效磷、速效钾含量分别比休闲田增加32.6%、12.1%,5.9%、7.2%、11.6%、99.8%、44.2%,其次为蚕豆、冬小麦茬口和休闲田,玉米和春小麦茬口肥力状况较差;与休闲田相比,冬油菜、冬小麦和蚕豆茬口耕层(0~20 cm)土壤容重分别降低10.14%、5.80%和5.80%,而冬油菜茬口土壤总孔隙度、毛管孔隙度和田间持水量分别提高7.33%、4.12%和5.65%,马铃薯、玉米、春小麦茬口均有不同程度下降,冬小麦与蚕豆茬口无明显差异;(2)前茬对白菜型冬油菜农艺性状的影响主要表现在株高、根量、全株角果数、角果粒数及千粒重等指标,其中蚕豆茬口白菜型冬油菜比休闲田增产4.50%,冬小麦茬口与休闲田相当,而马铃薯、玉米、春小麦、冬油菜茬口分别较休闲田减产11.05%、15.04%、16.27%、21.14%。白菜型冬油菜的最佳前茬是豆类作物,休闲田和冬小麦茬口次之,但白菜型冬油菜连作可能会产生自毒作用或病害加重,从而造成显著减产。  相似文献   

3.
The basic mechanism of soil inversion tillage for control of annual weeds is based on the vertical translocation of weed seeds from the soil surface to deeper soil layers. Buried weed seeds either remain dormant in the soil seedbank and are exposed to biological and chemical decay mechanisms, or they germinate but the seedlings cannot reach the soil surface (fatal germination). However, depending on the seed biology of the respective target species, frequent inversion tillage can lead to a build-up of the soil seedbank. For soil seedbank depletion based on available knowledge of the biology of Alopecurus myosuroides seeds, soil inversion tillage is suggested to be reduced to every third or fourth year with reduced or even no-tillage (direct seeding) in between (rotational inversion tillage systems). Including spring crops in the crop rotation could further help dampening the population growth and hence the seed return into the seedbank. This study investigated the effect of rotational inversion tillage in combination with reduced tillage or direct seeding on the soil seedbank and population development of A. myosuroides. In a long-term field trial, set up in 2012, these tillage strategies were compared with continuous inversion tillage in a 3-year crop rotation with two consecutive years of winter wheat (Triticum aestivum) followed by spring barley (Hordeum vulgare). The results showed a significant decline in the soil seedbank following the spring crop, irrespective of the tillage system. The continuous inversion tillage system and inversion tillage before spring cropping with reduced tillage (shallow tillage with a disc harrow) before winter wheat both led to accumulation of seeds in the soil seedbank. In contrast, inversion tillage before spring cropping with direct seeding of winter wheat depleted the soil seedbank significantly after only one crop rotation. Although only covering one intensively studied field site, these findings highlight the need for diversified cropping systems and indicate potential avenues for reducing soil tillage while controlling economically important weeds.  相似文献   

4.
The development of integrated weed management strategies requires knowledge of mechanisms that influence compositional changes in weed flora. A 9-year study was initiated in 1988 at Delhi, Canada, on a loamy sand soil to evaluate the effect of tillage systems [conventional (CT) and no-till (NT)] and cover crops (only in NT) on weed density, species composition and associations, and crop yield in a winter wheat ( Triticum aestivum L.)/bean/winter wheat rotation. Three bean types: soyabean ( Glycine max L. Merr.), white bean ( Phaseolus vulgaris L.) and kidney bean ( P . vulgaris L.) were included. The NT system included variations: rye ( Secale cereale L.) or maize ( Zea mays L.) cover crop, volunteer wheat disked after harvest and wheat stubble. Data were collected in 1994, 1995 and 1996. Tillage systems, cover crops and crop type had differential effects on weed densities, species composition and associations. Weed densities were not affected by tillage or cover crops in wheat but, in the beans, densities were greater in the CT than in the NT systems. Various associations of weed species with tillage system, cover crop and crop type were observed. Crop yields were not affected by tillage type or cover crop, except that soyabean yields were highest in plots with cover crops.  相似文献   

5.
以整个黄土高原地区为研究区域,建立作物的气候变化适应度模型,通过数理统计和地理空间分析方法,分析了自1960—2011年来,区域冬、春小麦对水分、温度、光照的适应度时空变化特征,并进行了适应度分区。结果表明:区域冬小麦全生育期的综合适应度达到了较强适应水平,有减小趋势;除返青—拔节期在中度适应水平外,其他生育期均为较强适应水平。春小麦全生育期的综合适应达到较强适应水平,有升高趋势;灌浆—成熟期最大,达到了较强适应水平;播种—出苗期最小,只达到中度适应水平。区域综合适应度由西北向东南呈增加趋势且与水分适应度分布的相关性最大,与温度适应度的相关性相对较小,与日照适应度的空间分布呈负相关;其倾向率在西部、西北和东北地区呈增加趋势;在南部和东南部呈减少趋势。冬小麦在返青—拔节期,春小麦在播种—出苗期需要加强人工管理,以增强其适应度;且气候变化对北部的春麦种植较为有利,而对南部的冬麦种植不利。  相似文献   

6.
在宁南旱平地进行了夏闲期深松、免耕及传统翻耕(对照)对土壤水分及后作冬小麦水分利用效率影响的研究结果表明,夏闲期深松和传统翻耕能有效地蓄雨保墒,提高旱平地冬小麦播前的土壤贮水量,深松和翻耕土壤蓄墒率极显著高于免耕处理,深松处理较翻耕高0.79%;夏闲期末深松处理0~200 cm土壤贮水量(310.78 mm)分别较免耕、传统翻耕高8.23 mm、1.61 mm.深松和免耕较传统翻耕显著改善了冬小麦苗期的土壤水分状况,对越冬期0~60 cm耕层土壤水分状况的改善有利于冬小麦的越冬.苗期0~200 cm土壤贮水量深松、免耕分别较传统翻耕(351.05 mm)高35.9 mm、28.8mm,不同的耕作处理对后作冬小麦苗期的土壤水分影响差异主要在80 cm以上土层.冬小麦返青期降雨主要使0~80 cm土层土壤贮水量有所增加,处理间的差异减小.夏闲期深松处理能有效地增加对降雨的蓄保能力,提高旱地冬小麦播前及整个生长阶段0~200 cm的土壤贮水量.不同耕作方式的冬小麦产量以夏闲期翻耕处理最高(3 475.9 kg/hm2),与深松处理(3 322.0 kg/hm2)无显著差异,免耕显著低于其它2种耕作处理;水分利用效率以翻耕最高[14.12 kg/(hm2·mm)],深松次之[13.62 kg/(hm2·mm)],免耕处理显著低于前二者[10.64 kg/(hm2·mm)].  相似文献   

7.
秸秆还田对旱作冬小麦后茬土壤水分的影响及其APSIM模拟   总被引:2,自引:0,他引:2  
模型作为一种作物生长机理模型,可敏感捕捉气候变化、土壤水分变化引致的系统组分响应,适用于降水不确定性地区的农业系统生产预测。为确定APSIM模型对秸秆还田等水土保持耕作拦截夏季降水的模拟功能,在甘肃黄土高原开展了秸秆还田处理,对冬小麦收获后休闲期土壤水分的影响及其APSIM模拟。结果表明:自然降水条件下,免耕+秸秆还田(S)处理下土壤水分蒸发量较休闲裸地(F)、耕作+覆草(TS)及传统耕作(T)降低16.7%~23.9%,裸地休闲或耕作会造成土壤水分流失,秸秆还田的保水作用明显,APSIM模拟可代表71%~92%的土壤水分变化;在人工模拟降水(66 mm·h-1)情况下,土壤蒸发在2 t·hm-2(SS)、4 t·hm-2(LS)秸秆还田量下比裸露休闲地(F)分别降低了27.8%和49.4%,APSIM模拟值解释了96%~99%的土壤水分变化。表明本土化的APSIM模型可以描述研究区土壤水分变化,适用于农业系统研究。  相似文献   

8.
不同保护性耕作下冬小麦田杂草滋生情况调查研究   总被引:7,自引:0,他引:7  
采用随机调查的方法,对不同保护性耕作处理下冬小麦田间杂草的种类和数量进行调查研究,发现不同的耕作处理对杂草种类和数量的消长有很大的影响.传统耕作、免耕、秸秆深松覆盖、高留茬深松覆盖四种处理,以免耕条件下杂草的种类和数量最多,秸秆深松覆盖、高留茬深松覆盖是控制冬小麦田间杂革滋生的一种有效措施.不同保护性耕作处理使冬小麦田间杂草种类与各杂草相对丰度均发生变化,各处理间Shannon多样性指教(H')和Mamclef物种丰富度指数(D)均存在差异,其原因可能是由于不同保护性耕作处理造成各处理间生态环境、土壤养分和土壤水分的不同,各种杂草的生长因而受其不同影响所致.  相似文献   

9.
Weed seeds in long-term dryland tillage and cropping system plots   总被引:2,自引:0,他引:2  
Unger  Miller  & Jones 《Weed Research》1999,39(3):213-223
Successful crop production depends on effective weed control. Weed seedbanks were determined after 12 years of dryland cropping with winter wheat and grain sorghum under different tillage methods (no- and stubble mulch) and cropping sequences. Seeds of 12 species were detected. Amaranthus retroflexus was most abundant, but seed numbers were similar under all conditions. Portulaca oleracea , Panicum capillare , Setaria viridis and Sorghum halepense seed numbers differed because of some factors, with those for P. oleracea being greatest. For others, seed numbers were low (≤0.11 kg−1 soil), except for Digitaria sanguinalis with 7.8 kg−1 soil and Bromus japonicus with 1.3 kg−1 soil. Most seeds were near the surface with both tillage methods, with enough present under most conditions to cause a problem if proper control measures were not used, especially with continuous cropping. When a weed problem occurs under conditions as in this study, the results indicate that it could be reduced by growing winter and summer crops in rotation, which permits controlling weeds with tillage and/or herbicides when a crop is not growing. Other possibilities for controlling weeds under conditions as in this study are to alternate between dicotyledonous and monocotyledonous crops, which would permit use of a wider range of herbicides, and to use selective in-crop herbicides.  相似文献   

10.
Soil weed seed bank is an important factor determining above-ground floristic composition and weed density in agricultural systems. The quantitative and qualitative measures of weed seed bank can help growers to predict the extent to which they are facing weed problems. Along with tillage, crop residues can affect the fate of weeds in the upcoming crops. To investigate such effects, we compared the effects of tillage systems [conventional tillage (CT), reduced tillage (RT), and no tillage (NT)], wheat residue retention, and nitrogen (N) rates (0, 69, 138, and 207 kg N ha−1) on depth-related characteristics of the weed seed bank under a sweet corn-wheat sequence during 2014–2015 growing seasons in Shiraz, Iran. Soil bank was not affected by tillage systems but tended to be slightly higher under RT. The highest (898 seeds m−2) and lowest (322 seeds m−2) weed population at 0–10 cm depth were found when 138 kg N ha−1 in 2015 and 207 kg N ha−1 in 2014 were applied. Species richness and diversity were higher under NT and RT practices at the top layer, but CT system was more diversified at deeper depths. They were higher when crop residues were retained as well. Barnyard grass (Echinochloa crus-galli [L.] Beauv), common lambsquarter (Chenopodium album L.), common purslane (Portulaca oleracea L.), field bindweed (Convolvulus arvensis L.), flixweed (Descoreinia sofia [L.] Webb. & Berth.), henbit (Lamium amplexicaule L.), pigweeds (Amaranthus spp.), and stinking goosefoot (Chenopodium vulvaria L.) were the most common weeds found in all tillage systems and soil depths. Grasses were relatively lower than broadleaves regardless of treatments. Weed seed bank was mostly affected by weather conditions than treatments in this short-term experiment.  相似文献   

11.
Summary The effectiveness of crop competition for better weed control and reducing herbicide rates was determined for Avena ludoviciana and Phalaris paradoxa . Four experiments, previously broadcast with seeds of the two weeds in separate plots, were sown with three wheat densities, and emerged weeds were treated with four herbicide doses (0–100% of recommended rate). The measured crop and weed traits were first analysed across experiments for treatment effects. Grain yield and weed seed production data were then analysed using cubic smoothing splines to model the response surfaces. Although herbicide rate for both weeds and crop density for P. paradoxa had significant linear effects on yield, there was a significant non-linearity of the response surface. Similarly, herbicide rate and crop density had significant linear effects on weed seed production, and there was significant non-linearity of the response surface that differed for the weed species. Maximum crop yield and reduction in seed production of P. paradoxa was achieved with approximately 80 wheat plants m−2 and weeds treated with 100% herbicide rate. For A. ludoviciana , this was 130 wheat plants m−2 applied with 75% herbicide rate. Alternatively, these benefits were achieved by increasing crop density to 150 plants m−2 applied with 50% herbicide rate. At high crop density, application of the 100% herbicide rate tended to reduce yield, particularly with the A. ludoviciana herbicide, and this impacted adversely on the suppression of weed seed production. Thus, more competitive wheat crops have the potential for improving weed control and reducing herbicide rates.  相似文献   

12.
Naturally occurring fallow weeds are an alternative strategy for reducing nitrogen (N) loss from annual cropping systems by scavenging inorganic N from the soil. Soil tillage is a major factor affecting the growth of weed populations. This study was carried out to determine the effect of a no‐tillage (NT) system on the N scavenging capacity of fallow weeds in a double‐season rice cropping system. A fixed field experiment was carried out at the Experimental Farm of Hunan Agricultural University, Hunan Province, China, from 2008 to 2011. The results indicated that NT had 80% greater aboveground biomass of fallow weeds than conventional tillage (CT). There was no significant difference in N concentration in fallow weeds between NT and CT. N uptake by fallow weeds was 82% higher under NT than under CT. The stem density of fallow weeds was 50% higher under NT than under CT. The difference in the single‐stem biomass of fallow weeds was not significant between NT and CT. These results suggest that the N scavenging capacity of fallow weeds in the double‐rice cropping system can be increased by increasing the stem density and aboveground biomass through the adoption of NT farming. Our study identifies a potential new ecosystem service provided by NT farming.  相似文献   

13.
R H LI    & S QIANG 《Weed Research》2009,49(4):417-427
The diversity and composition of floating weed seed communities were surveyed in 27 sites across the main rice-growing regions in China with the aim of better understanding weed seed dispersal via irrigation water. Seed of 74 species, belonging to 20 families, were identified from floating matter on the water surface in lowland rice fields. Thirty-five species from three families: Poaceae (15), Asteraceae (11), and Polygonaceae (9), accounted for 47% of all species identified. Species with seed maturing in the summer accounted for 64% of the weed seed and their mean relative abundance was 0.74. Species richness, Shannon–Wiener index and Pielou evenness index were significantly different among the floating weed seed communities. The diversity of weed seed communities in the Yangtze river valley was higher than that in other sites, and some sites were dominated by only a few weed species, such as Beckmannia syzigachne , Alopecurus aequalis , A. japonicus , and Polypogon fugax. At all sites, the dominant weed seeds reflected the dominant weed species in the previous crop. The 27 sample sites of weed seed communities can be clustered into two groups on the basis of previous crop, either lowland rice or sites with previous crops of winter fallow, winter wheat or oilseed rape. Canonical correspondence analysis (CCA) revealed that irrigation frequency, previous crop, and latitude, but not soil type or longitude, significantly affected species composition. The numbers of floating weed seed species were high in lowland rice fields; composition was affected by previous crops and irrigation frequency. Filtering irrigation water and collecting and removing floating weed seeds from the water surface could be integrated into weed management practices to control weeds in lowland rice fields.  相似文献   

14.
The effects of cover crops on weeds and the underlying mechanisms of competition, physical control and allelopathy are not fully understood. Current knowledge reveals great potential for using cover crops as a preventive method in integrated weed management. Cover crops are able to suppress 70–95% of weeds and volunteer crops in the fall‐to‐spring period between two main crops. In addition, cover crop residues can reduce weed emergence during early development of the following cash crop by presenting a physical barrier and releasing allelopathic compounds into the soil solution. Therefore, cover crops can partly replace the weed suppressive function of stubble‐tillage operations and non‐selective chemical weed control in the fall‐to‐spring season. This review describes methods to quantify the competitive and allelopathic effects of cover crops. Insight obtained through such analysis is useful for mixing competitive and allelopathic cover crop species with maximal total weed suppression ability. It seems that cover crops produce and release more allelochemicals when plants are exposed to stress or physical damage. Avena strigose, for example, showed stronger weed suppression under dry conditions than during a moist autumn. These findings raise the question of whether allelopathy can be induced artificially. © 2019 Society of Chemical Industry  相似文献   

15.
保护性耕作对黄土高原春玉米田土壤理化特性的影响   总被引:5,自引:1,他引:4  
为了探索黄土高原春玉米区保护性耕作农田土壤理化特性变化,测定分析了保护性耕作处理第二年春玉米生长不同时期农田土壤容重、水分和养分变化.结果表明,保护性耕作处理在玉米生长前期0~10 cm土壤容重呈下降趋势且小于传统耕作,但后期增加幅度较大;与传统耕作相比保护性耕作能显著增加玉米生长前期表层0~60 cm和后期100~200 cm土壤含水量 ,有较好保水、蓄水作用;保护性耕作下表层0~20 cm土壤养分指标除全磷外,均表现为稳定升高趋势,且能有效提高土壤全钾和速效钾含量;土壤有机质、全氮、速效氮、速效磷含量低于传统耕作,但变异系数较小.  相似文献   

16.
The present study clarified the effects of winter barley as a cover crop on the weed vegetation, expressed as a multiplied dominance ratio (MDR), and emergence of summer annual weeds in a no-tillage soybean system. A 3 year field study with treatments consisting of six systems was conducted: no-tillage single cropping, no-tillage cropping following winter barley and tillage single cropping, respectively with and without herbicide application. The MDR of perennial weeds increased annually in the no-tillage fields in spring, but summer annual weeds were abundant in all fields, including the no-tillage fields in summer. Grasses, for example Digitaria ciliaris (Retz.) Koeler, were especially abundant in the no-tillage fields. The MDR of summer annual weeds, especially grasses in the barley and soybean fields, were much lower than for the no-tillage single soybean fields. Densities of D. ciliaris and Echinochloa crus-galli (L.) Beauv. var. crus-galli in the no-tillage single soybean fields were much greater than in the tilled fields, with few exceptions. In contrast, broad-leaved weeds emerged more in tilled fields than in the no-tillage fields. Winter barley suppressed emergence of summer annual weeds, especially during the first 3 years. The MDR for grasses in summer showed a good correlation with the frequency of emergence for grasses every year. These results showed that the increase in the volume of grasses in summer resulted mainly from an increase in the frequency of emergence, and that the suppression of grasses by winter barley resulted mainly from suppression of the emergence frequency. Soybean yields were higher in the barley and soybean fields for the first 2 years.  相似文献   

17.
In Germany, sugar beet is often rotated with 2 years of cereal. Extensive fallow periods between cereal harvest and autumn primary tillage allow for a weed flora to develop. Broad‐leaved weeds could potentially be alternate hosts for the common nematode Heterodera schachtii, one of the most important pests of sugar beet. Between 2009 and 2012, annual weeds developing in cereal stubble fields during July to mid‐October in the season prior to sugar beet were surveyed, including known hosts of H. schachtii. Yearly weather patterns and agronomic practices possibly impacted weed species composition and weed population densities. During September, Chenopodium album, Cirsium arvense, Convolvulus arvensis, Mercurialis annua, Polygonum spp., Solanum nigrum and Sonchus spp. occurred at the highest frequencies. Weed hosts of H. schachtii were present, but densities, frequencies and uniformity were limited. In 2010 and 2011, staining for nematodes in roots revealed juvenile penetration of some weeds but few adult stages. No indication of nematode reproduction of H. schachtii was found on these weed hosts. A fairly stable weed flora was detected on stubble fields that could provide some carry over for weed species. An elevated risk for nematode population density build‐up on these weeds was not found and management of these weeds at the observed densities during the stubble period for nematological reasons appeared unnecessary.  相似文献   

18.
以常规耕作处理作对照,研究了免耕覆盖下春小麦灌浆期间干物质积累分配特性和产量变化,结果表明,高、低秸秆覆盖量下春小麦灌浆期间干物质积累量比常规耕作分别高16.1%、9.8%,免耕秸秆覆盖为春小麦籽粒和产量形成提供了更充足的物质来源;与常规耕作比,免耕覆盖处理的春小麦在花后21-28 d时干物质积累量有个快速增加阶段;在干物质的运转分配中,免耕覆盖对春小麦灌浆期积累的干物质在各个器官间的分配比例影响较小。相对于常规耕作而言,免耕秸秆覆盖处理提高了春小麦产量,其产量的增加主要依赖于花前光合产物的积累,对花后光合产物调用较少。低覆盖量下春小麦较常规耕作增产11.68%,高量覆盖较常规增产18.52%。  相似文献   

19.
In the conservation agricultural systems practised in Australia, cultivation is not commonly utilised for the purpose of weed control. However, occasional use of tillage (strategic tillage) is implemented every few years for soil amelioration, to address constraints such as acidity, water repellence or soil compaction. Depending on the tillage method, the soil amelioration process buries or disturbs the topsoil. The act of amelioration also changes the soil physical and chemical properties and affects crop growth. While these strategic tillage practices are not usually applied for weed control, they are likely to have an impact on weed seedbank burial, which will in turn affect seed dormancy and seedbank depletion. Strategic tillage impacts on seed burial and soil characteristics will also affect weed emergence, plant survival, competitive ability of weeds against the crop and efficiency of soil applied pre-emergent herbicides. If growers understand the impacts of soil amelioration on weed demography, they can more effectively plan management strategies to apply following the strategic tillage practice. Weed seed burial resulting from a full soil inversion is understood, but for many soil tillage implements, more data is needed on the extent of soil mixing, burial of topsoil and the weed seedbank, physical control of existing weeds and stimulation of emergence following the tillage event. Within the agronomic system, there is no research on optimal timing for a tillage event within the year. There are multiple studies to indicate that strategic tillage can reduce weed density, but in most studies, the weed density increases in subsequent years. This indicates that more research is required on the interaction of amelioration and weed ecology, and optimal weed management strategies following a strategic tillage event to maintain weeds at low densities. However, this review also highlights that, where the impacts of soil amelioration are understood, existing data on weed ecology can be applied to potentially determine impacts of amelioration on weed growth.  相似文献   

20.
In practical farming, early and shallow stubble tillage is carried out post‐harvest to stimulate germination of freshly ripened crop and weed seeds, to kill the resulting seedlings and hence to reduce the input into the soil seedbank. Additionally, it aims at reducing perennial weeds by mechanical damage. In this paper, field experiments and laboratory studies are presented which show that stubble tillage can reduce perennial weeds. However, it had a variable effect on annual weeds. After 5 years of experimentation, no effect of stubble tillage was seen on the aboveground vegetation. In contrast, the soil seedbank of the control was roughly doubled where the stubble had been left uncultivated until autumn ploughing. These results indicate that practical experience which assumes that stubble tillage reduces annual weed populations may be correct, despite the fact that in other published studies stubble tillage exerted no control on annual weeds or had a variable effect. This will have practical application in organic arable production systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号