首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The occurrence of Heterobasidion annosum in stumps and growing trees was investigated on 15 forest sites in southern Finland where the previous tree stand had been Norway spruce (Picea abies) infected by H. annosum, and the present stand was either Scots pine (Pinus sylvestris), lodgepole pine (Pinus contorta), Siberian larch (Larix siberica), silver birch (Betula pendula) or Norway spruce 8–53 years old. Out of 712 spruce stumps investigated of the previous tree stand, 26.3% were infected by the S group and 0.3% by the P group of H. annosum. The fungus was alive and the fruit bodies were active even in stumps cut 46 years ago. In the subsequent stand, the proportion of trees with root rot increased in spruce stands and decreased in stands of other tree species. On average, one S type genet spreading from an old spruce stump had infected 3.0 trees in the following spruce stand, 0.5 trees in lodgepole pine, 0.3 trees in Siberian larch, 0.05 trees in Scots pine and 0.03 trees in silver birch stand. Although silver birch generally was highly resistant to the S type of H. annosum, infected trees were found on one site that was planted with birch of a very northern provenance.  相似文献   

2.
One‐year‐old container‐grown seedlings were planted in spring on clear cut areas: the Norway spruce (Picea abies) on a moist upland site (Myrtillus‐type) and Scots pine (Pinus sylvestris) on a dryish upland site (Vaccinium‐type). While still in the nursery, half of the seedlings of each species had been inoculated during the previous summer, with a uninucleate Rhizoctonia sp., a root dieback fungus. At outplanting all the seedlings appeared healthy and had a normal apical bud, although the height of the inoculated seedlings was less than that of the uninoculated control seedlings. At the end of the first growing season after planting, the mortality of inoculated Scots pine and Norway spruce seedlings was 25 and 69%, respectively. After two growing seasons the mortality of inoculated seedlings had increased to 38% for Scots pine and 93% for Norway spruce. The mortality of control seedlings after two growing seasons in the forest was 2% for Scots pine and 13% for Norway spruce. After outplanting the annual growth of inoculated seedlings was poor compared with the growth of control seedlings. These results show that, although Rhizoctonia‐affected seedlings are alive and green in the nursery, the disease subsequently affects both their survival and growth in the forest.  相似文献   

3.
Conidia of Gremmeniella abietina infected and caused disease symptoms in annual shoots of both Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings. In Norway spruce shoots the infection remained largely latent, with only a few seedlings showing symptoms. Mycelial growth inside the shoots was faster in Scots pine than in Norway spruce and was favoured by low temperature in both hosts. The shoots of Norway spruce seedlings had higher endophyte populations than those of Scots pine, and the populations were decreased by low temperatures. Reductions in the normal epiphytic or endophytic flora by acid mist treatments seemed to favour the development of G. abietina.  相似文献   

4.
For estimating the amount of carbon (C) in dead wood, conversion factors from raw volume per decay class to dry weight were developed using three different classification systems for the species Norway spruce (Picea abies L. Karst), Scots pine (Pinus sylvestris L.) and birch (Betula pendula Roth and B. pubescens Ehrh) in Sweden. Also the C concentration in dead wood (dry weight) was studied. About 2500 discs were collected from logs in managed forests located on 289 temporary National Forest Inventory (NFI) sample plots and in 11 strips located in preserved forests. The conversion factors were based on an extensive data compilation with a wide representation of different site-, stand-, species- and dead wood properties and were assumed to represent the population of fallen dead wood in Sweden. The density decreased significantly by decay class and the range in density for decay classes was widest for the NFI decay classification system, suggesting this to be the most suitable. The C concentration in dead wood biomass increased with increasing decay class and in average Norway spruce (P. abies) showed a lower C concentration than Scots pine (P. sylvestris). The average dead wood C store of Swedish forests was estimated to 0.85 Mg C/ha.  相似文献   

5.
The superoxide dismutase (SOD EC 1.15.1.1) activity in Scots pine (Pinus sylvestris) and Norway spruce (Picea abies L. Karst.) needles in urban and rural trees of northern Finnish populations was studied. Enzyme activity was higher in pine than in spruce needles. Two pine clones from eastern Finland and Lapland revealed great differences in specific SOD enzyme activity.  相似文献   

6.
Tree-level and stand-level forest growth simulators and their combination were evaluated using data from a large network of permanent sample plots of the National Forest Inventory covering the whole of Southern Finland. The simulators were built up with the SIMO framework. The evaluation was carried out both at the stand-level and separately for Scots pine (Pinus sylvestris), Norway spruce (Picea abies), silver birch (Betula pendula) and white birch (Betula pubescens) strata within the plots. Effects of different factors, e.g. age, soil type, stand density and geographical location on the results were also analysed.  相似文献   

7.
8.
Three different methods were evaluated for analysing wood formation of Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) in Finland. During two growing seasons, wood formation dynamics were determined both by wounding the cambium with a needle followed by localisation of the wound-associated tissue modification after the growing season (pinning), and by extracting small increment cores during the growing season (microcoring). Stem radius was additionally monitored with band dendrometers. For Norway spruce, pinning and microcoring yielded similar dates for the onset of wood formation. The timing of wood production during the growing season was also similar for pinning and microcoring. For Scots pine, the onset of wood formation was recorded from microcores almost 2 weeks later than from pinning samples. In Scots pine, microcore measurements also produced somewhat later cessation dates for tracheid formation than the pinning samples. For both tree species, the total number of tracheids formed during the growing season was, however, about the same for pinning and microcoring. Dendrometer results clearly differed from those of pinning and microcoring. In particular, the dendrometers showed an increase of stem radius considerably earlier in spring, when the other methods did not detect wood formation. Thus, pinning and microcoring currently represent the most reliable techniques for detailed monitoring of wood formation.  相似文献   

9.
JOHANSSON  M .-B. 《Forestry》1995,68(1):49-62
Needle litter from 14 stands of Scots pine (Pinus silvestris,L.), 13 stands of Norway spruce (Picea abies (L.) Karst.) andleaf litter from three stands of white birch (Betula pubescensEhrh.) were analysed for chemical composition. The concentrationsof the elements N, P, K, Ca, Mg and Mn as well as solid organiccomponents (lignin, cellulose and hemicelluloses) and solubleswere determined. When the average chemical compositions werecompared the Scots pine needle litter was clearly the most nutrient-poorlitter type. Of the solid organic-chemical components the ligninfraction dominated in the spruce and birch litter whereas thecellulose dominated in the pine needle litter. When Norway spruce and Scots pine were growing in adjacent standson soils with the same bedrock origin the spruce litter hadsignificantly higher concentrations of nutrients (N, P, K, Ca,Mg, Mn) than the pine needle litter. At sites where Norway spruceand white birch were growing in adjacent stands, the birch leaflitter had generally higher concentrations of nutrients. However, significant or nearly significant differences were onlyobtained for Mg (P = 0.002), K (P = 0.056) and N (P = 0.087),probably due to the few replicates of stands compared. Concerningorganic chemical components, the spruce needle litter had significantlyhigher concentrations of lignin and mannan than all the otherlitters and lower levels of ethanol-soluble substances, celluloseand galactan than the pine needle litter. Further, it had lowerconcentrations of water solubles, rhamnan and xylan than thebirch litter. No relationships were established between the nutrient statusof the conifer litters and the site index H100 (the dominantheight of the trees at a reference age of 100 years) of thestands. Concentrations of solid carbohydrates in the litterswere, however, positively correlated with site index (P <0.001). Further, the concentration of nitrogen in the pine needlelitter was negatively correlated with the latitude of the sites(P < 0.01). The influence of litter chemistry on the decompositionof litter and nutrient cycling of forests is discussed.  相似文献   

10.
Snow-packing, a combination of ice, hoarfrost and snow on trees, and the subsequent tree damage by snow, were estimated on Norway spruce (Picea abies), Scots pine (Pinus sylvestris), and pubescent birch (Betula pubescens) in the winter of 1993-94 in southern Lapland, northern Finland, near the local alpine timberline around 400 m a.s.l. Snow-packing on each fully sized tree increased from a few hundred kilograms at 150–250 m a.s.l. to a maximum of 3290 kg at 300–350 m a.s.l. At 300 m a.s.l., snow-packing per metre of stem increased from 30 to 50 kg on trees < 5 m in height up to 180–200 kg on 20-m trees. There was 300 000-480 000 kg/ha of snow accumulated on tree crowns. No stem breakage by snow-packing occurred at or below 250 m a.s.l., whereas at 290–350 m a.s.l., 0-46%, 39-100%, and 0–33% of the spruce, pine and birch trees, respectively, had broken tops. Birch appeared to be the most resistant and pine the most susceptible to snow breakage.  相似文献   

11.

New silvicultural regimes with high within-stand competition require new functions for estimation of standing stock and growth of biomass components, since the allometry of trees is changed by light competition. This paper presents functions for estimation of the aboveground biomass dry weights for stem wood, stem bark, branches and leaves of young (diameter at breast height <10 cm) Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and birch (Betula pendula Roth. and Betula pubescens Ehrh.) trees growing in dense mixed stands. The functions were derived from a sample consisting of 84 Scots pine, 43 Norway spruce and 66 birch trees from six stands in northern Sweden with high stand densities (>10000 st ha-1). The logarithmically transformed power function displayed a good ability to stabilize the variance of dry weights and showed a good fit to the material (0.37< R 2 <0.99). A comparison with the most commonly used biomass functions in Sweden today showed that they overestimated the weight of stem wood and branches, while the weight of foliage was underestimated. The nature of these discrepancies suggested that the precision of biomass estimations might also be improved for young trees at wider spacing.  相似文献   

12.
This study aims to derive allometric functions to estimate the above- and belowground biomass components of the most important tree species in Latvia. The study material included a total of 81 Norway spruce (Picea abies [L.] Karst), 102 Scots pine (Pinus sylvestris L.), 105 birch spp. (mainly silver birch (Betula pendula Roth)) and 84 European aspen (Populus tremula L.) trees sampled in 124 forest stands. The suitability of three mathematical models for the prediction of total aboveground biomass, stem biomass, total live and dead branch biomass, belowground biomass and small root biomass was evaluated. Our analysis revealed that the use of the Intergovernmental Panel on Climate Change mean default values for the root-to-shoot ratio recommended for temperate and boreal ecological zones leads to the overestimation of root biomass of young trees, especially Scots pine and Norway spruce. Our findings indicate that biomass functions recommended for other Baltic Sea countries are not appropriate for the assessment of the biomass stock in Latvia’s forests because these lead to biased estimates. The biomass functions derived in our study are recommended for reporting the biomass stock in Latvia.  相似文献   

13.
Summary This study compared the susceptibility of five UK‐grown conifer species to colonization by sapstain fungi in two trials carried out in consecutive years. The conifers consisted of Sitka spruce (Picea sitchensis), Japanese larch (Larix kaempferi), Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and lodgepole pine (Pinus contorta). Freshly cut 1‐m logs were exposed to the available inoculum of sapstain fungi from April to August in a woodland environment in the south east of England. Logs of each species were removed after 1‐, 2‐ and 4‐month exposure and sampled destructively to assess the amount of sapstain. In the second trial, per cent moisture content and concentrations of nitrogen, carbohydrate and phenolic compounds in the sapwood were also measured at the start and end of the trial. After 2 months, only the sapwood of both pine species had significant levels of sapstain; mean values of 37% and 19% for lodgepole pine (year 1 and year 2 respectively) and 12% and 1% for Scots pine. After 4 months, the levels of sapstain in both pine species exceeded 60% in both years. By contrast, very little sapstain developed in the other conifer species with maximum mean values of 10% for Norway spruce, 3.5% for larch and less than 1% for Sitka spruce. Overall, the moisture content of the logs decreased progressively in all species over the length of the trial. However, pine logs tended to retain higher levels of moisture throughout the trial compared with spruce or larch. The relatively higher moisture content of pine sapwood may be closer to the optimal moisture content that sapstain fungi require for infection and colonization, thereby contributing to the increased susceptibility of pine compared with the other conifer species. The pine logs also suffered from some colonization by bark beetles (Ips sexdentatus), which increased the inoculum potential and the opportunity for colonization by sapstain fungi. In addition, particular phenolic compounds in conifer sapwood may play a role in determining the resistance of some species to sapstain. Notably the most resistant species, Sitka spruce, was the only softwood that still retained detectable levels of phenolics in the sapwood to the end of the trial.  相似文献   

14.
Abstract

Untreated Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) samples were exposed above ground in a durability test for 6 years. The samples consisted of three pieces of wood, 22×95×500 mm, screwed together; two pieces lengthwise with a third piece overlapping. Weight was measured, to calculate moisture content (MC), and samples checked regularly for cracks and fungal growth. Parameters investigated were heartwood/sapwood (pine), annual ring orientation (spruce), stand site, annual ring width and density. Stand site, annual ring width and density had no influence on MC or fungal growth for either pine or spruce. Spruce samples with vertical annual rings had fewer cracks than samples with horizontal annual rings. Pine sapwood samples had a high MC and a large amount of rot fungi, while heartwood had a lower MC and no rot. Most spruce samples were similar to pine heartwood, except from a few samples that had high MC and fungal growth. Those were all sawn from the outer part of the log. Therefore, it can be stated that spruce sawn from the inner part has almost the same properties as pine heartwood, while spruce from the outer part of the log has similar properties to pine sapwood.  相似文献   

15.
Two greenhouse experiments were conducted to study intraspecific variation in growth of the root rot fungus Heterobasidion annosum in living host sapwood. In experiment 1, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings were inoculated with H. annosum isolates, 14 each of the S-and P-intersterility groups, collected from various parts of Sweden. In pine, the P-group isolates were more virulent than the S-group isolates both in terms of infection frequency, induced mortality rate (p < 0.05), and fungal growth in sapwood (p < 0.05). In spruce, the P-group isolates were also more virulent on average, but the difference was not statistically significant. Both S and P isolates had a higher infection frequency and a significantly longer sapwood growth on spruce than on pine. The P-group caused higher mortality on pine than on spruce. The length of the lesion in the inner bark was strongly correlated with fungal growth in spruce, but not in pine where the lesions were short or absent. In experiment 2, ten Norway spruce clones were inoculated with 18 S-isolates, originating from nine live-decayed trees and from nine spore-infected stumps in a single Norway spruce stand. The objective was to test whether any selection for growth rate in sapwood was detectable among individuals of H. annosum originating either from stumps or trees. The results gave no support for such selection since no difference in sapwood growth between the two groups of isolates was found.  相似文献   

16.
Correlations between root growth capacity (RGC), at the time of planting, and field performance were studied for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings. Before planting a gradient in seedling viability was generated through exposure to low root temperatures and different winter storage regimes. The hypothesis that high RGC values would improve field performance was to some extent verified for pine seedlings while no correlations could be registered for spruce. Reasons for these results are discussed.  相似文献   

17.
Models for predicting tree height were constructed for Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and pubescent birch (Betula pubescens). The data consisted of two separate sets of permanent sample plots forming a representative sample of drained peatland stands in the whole country. A logarithmic height-diameter curve with one nonlinear parameter specific to each tree species was applied. It was assumed that the intercept and slope of the curve would vary randomly from stand to stand. Stand characteristics were used to predict the mean intercept and slope. A nonhomogeneous variance of the residual error was modelled as a function of tree diameter. A mixed linear model technique was applied to fit the models. The diameter of the tree of the median basal area, stand basal area, geographical location of the stand, and site quality were used as fixed independent variables in explaining the variation in the intercept. The diameter of the tree of the median basal area and the stand basal area were used in explaining the variation in the slope.  相似文献   

18.
Abstract

In this study, two different methods were used to produce thermally modified wood. One was carried out in a typical kiln drying chamber using superheated steam (SS) and the other used pressurized steam in an autoclave cylinder (PS). Overall, both processes followed the same principles and the wood was not treated with any chemicals. Two wood species were studied, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Treatments in the autoclave were carried out under pressure using temperatures of 160°C, 170°C and 180°C. Temperatures of 190°C and 212°C were used in treatments in the chamber at normal air pressure. The colour was measured using L*C*H colour space. Results for both species showed that similar L* (lightness) can be reached at lower (20–30°C) temperatures using PS compared with SS treatment. The hue angle of PS-treated wood was smaller than that of SS-treated wood. No significant difference in C* (chroma) was detected. The difference in E value between PS- and SS-treated wood was smaller for Norway spruce than for Scots pine. The residual moisture content was about 10% higher in wood treated by the PS process compared with the SS process.  相似文献   

19.

The aim of this study was to assess the risk of snow damage to trees in unmanaged and managed stands of Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and birch (Betula spp.) over a rotation. The risk assessment was based on the prediction of critical snow loads in interaction with the windspeed at which trees can be expected to break or be uprooted, and on the frequency of long-term extremes of precipitation and of suitable temperature conditions for the accumulation of snow on the tree crowns. The Scots pine stands were found to be more susceptible to snow damage than the others, and an unmanaged stand of Scots pine to be more susceptible to break and uproot than a managed one. Correspondingly, an unmanaged stand of Norway spruce was more susceptible to stem breakage than a managed one, but less susceptible to uprooting. Neither unmanaged nor managed birch stands were likely to suffer any kind of snow damage. The susceptibility of unmanaged stands is caused by low tapering of the trees. Based on the frequency of long-term extremes in precipitation at the temperatures needed for snow accumulation on tree crowns, critical snow loads of 10-19, 20-29 and 30-39 kg m-2 occurred 19.3, 3.3 and 1.3 times in a decade in southern Finland. Critical snow loads of 10-19, 20-29, 30-39 and 60-69 kg m-2 occurred in northern Finland 17.0, 6.3, 1.7 and 0.3 times in a decade.  相似文献   

20.
A study of the structure of wood cells by x-ray diffraction   总被引:4,自引:1,他引:3  
Summary An x-ray diffraction method was used to determine the values of the mean microfibrillar helical angles and to estimate quantitatively the amount of crystalline cellulose in the various cell wall layers of wood fibers. To interprete the intensity variation along the diffraction arcs a new curve fitting method based on Gaussian pairs was developed. As an application results are given for Scots pine (Pinus sylvestris) and Norway spruce (Picea abies).the authors acknowledge the financial support by the National Research Council for Science, Finland  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号