首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A feeding experiment was conducted to evaluate the effect of rotifers (Brachionus plicatilis) and Artemia sp. enriched differently on early growth, survival and lipid class composition of Atlantic cod larvae (Gadus morhua). Rotifers enrichments tested were: (1) AlgaMac 2000®, (2) AquaGrow® Advantage and (3) a combination of Pavlova sp. paste and AlgaMac 2000®. The same treatments were tested with Artemia as well as a combination of DC DHA Selco® and AlgaMac 2000® as a fourth treatment. After rotifer feeding, the larvae from treatment 3 [1.50 ± 0.11 mg dry weight (dw)] were significantly heavier than larvae from treatment 2 (1.03 ± 0.04 mg dw). After feeding Artemia, the larvae from treatment 1 were significantly heavier (12.06 ± 2.54 mg dw) than those from treatments 3 (6.5 ± 0.73 mg dw) and 4 (5.31 ± 1.01 mg dw). Treatment 3 resulted in the best survival through the 59 days of larviculture. After rotifer feeding, high larval concentrations of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), arachidonic acid (AA) and ω6 docosapentaenoic acid (ω6DPA) could be linked to better larval growth and survival while after feeding Artemia, high larval DHA/EPA ratios (~3) and high DPA/AA ratios (>1) could be linked to better survival.  相似文献   

2.
We evaluated the effect of differently enriched rotifers on the early growth, survival and lipid composition of Atlantic cod larvae (Gadus morhua). The enrichments tested were: (i) AlgaMac 2000®; (ii) AquaGrow® Advantage; and (iii) a combination of Pavlova sp. paste and AlgaMac 2000®. Larvae from treatment 3 [1.50 ± 0.11 mg dry weight (dw) and 7.10 ± 0.14 dw specific growth rate (SGR)] were heavier (P = 0.006) and grew faster (P = 0.004) than larvae from treatment 2 (1.03 ± 0.04 mg dw and 6.29 ± 0.04 dw SGR). No significant differences were found in the final weight and SGR among larvae from treatment 1 (1.21 ± 0.07 mg dw and 6.58 ± 0.20 dw SGR) and larvae from treatments 2 and 3. The treatment 3 also resulted in the best survival at the end of the experimental period, estimated to be 3 on a scale from 1 to 5, whereas the survival estimates for the two other groups were 1–2. Larvae from the treatment 3 reached 37 days posthatch with levels of ω6DPA 32‐fold higher than newly hatched larvae. Differences in the larval enrichment of ω6DPA may explain the differences in growth and survival of the Atlantic cod larvae.  相似文献   

3.
ABSTRACT

The proximate content, fatty acids composition, and nutritional quality index (NQI) of Macrobrachium nipponense at three habitats in the Anzali wetland in Iran were investigated as a potential source for human consumption. The highest amounts of protein, lipid, ash, and energy contents in muscle of M. nipponense were showed in autumn (non-reproductive season) (p < 0.05). The main monounsaturated fatty acids (MUFA) were oleic acid (C18:1 n9 C, C18:1 ω9 T) and palmitoleic acid (C16:1). Moreover, the main polyunsaturated fatty acids (PUFA) were docosahexaenoic acid (DHA, C22:6 n3), eicosapentaenoic acid (EPA, C20:5n3), arachidonic acid (ARA, C20:4 n6), linoleic acid (LA, C18:2 ω6), and α-linolenic acid (ALA, C18:3 n3). The predominant individual saturated fatty acid (SFA) was palmitic acid (0.07–13.4%), while oleic acid (14.7–26.3%), EPA (3.5–12.7%) and linoleic acid (0.04–14.9%) represented the most abundant individual MUFA and PUFA in M. nipponense. The highest mean value of EPA+DHA (14.0), n3/n6 (1.02), ΣMUFA/ΣSFA (1.05), ΣPUFA/ΣSFA (1.04), and EPA/DHA (3.8) ratios in M. nipponense was in autumn. The range of atherogenicity index (AI) and thrombogenicity index (TI) was much lower, from 0.42 to 0.6 and from 0.33 to 0.57, respectively, in terms of season. The results obtained in the present study show that M. nipponense is an excellent nutritional food source in the Anzali wetland.  相似文献   

4.
The fatty acid composition of rotifer phospholipids is largely dependent on that of their food, indicating that the ingested lipids are hydrolysed in the gut, resorbed, metabolized and incorporated into body phospholipids. It is stable and does not change considerably after 1 or 2 days of starvation.Considerable differences were found in the fatty acid composition of rotifers fed baker's yeast (Saccharomyces cerevisiae), Chlorella or Isochrysis. Rotifers fed on baker's yeast for several generations contained considerable amounts of PUFA (1.6% of 22:6 ω3) although this yeast contains mainly 16:1 and 18:1 acids and is completely devoid of 16:3, C:20 and C:22 unsaturated and saturated fatty acids. This observation suggests that fatty acid synthesis and elongation had occurred. De novo synthesis of PUFA was further suggested by experiments in which 1-14C acetate was incorporated into radioactive acids and was verified by chemical degradation. Upon decarboxylation, approximately 10% of the total radioactivity in the PUFA was recovered as 14CO2, indicating that all the uneven C-atoms must contain 14C. Oxidative cleavage of all of the double bonds of PUFA yielded 14C-labelled propionic and hexanoic acid from the methyl end of the molecule. However, the rate of synthesis of these acids is rather low. Hence, in order to supply large amounts of PUFA to marine fish larvae, rotifers must be fed on PUFA-rich food.  相似文献   

5.
Considerable progress has been achieved in the intensive culture of Atlantic cod (Gadus morhua). However, there is little information concerning optimum live-feed enrichments for cod larvae, since many of the techniques used during the larviculture have been borrowed from other fish species and adapted for the production of Atlantic cod. The present study compared four different protocols for the enrichment of Artemia to be used as live feed for cod larvae. The protocols tested were: (1) AlgaMac 2000, (2) AquaGrow Advantage, (3) Pavlova sp. + AlgaMac 2000, and (4) DC DHA Selco + AlgaMac 2000. Larvae were fed differently enriched Artemia between 37 and 59 days post hatch. At the end of the experiment, larvae from treatment 1 [specific growth rate (SGR) = 10.4 ± 0.4% day−1] grew faster than larvae from treatments 3 (SGR = 6.9 ± 0.2% day−1) and 4 (SGR = 4.9 ± 0.4% day−1, P < 0.0001). However, treatments 3 and 4 resulted in better larval survival at the end of the experimental period, estimated to be 3 on a scale from 1 to 5, whereas the survival estimates for the two other groups were 2. The treatments affected the fatty-acid composition of Artemia and of cod larvae. Larvae from treatment 1 had a higher percentage of AA (20:4ω6, P < 0.0001) and ω6DPA (22:5ω6, P < 0.0001) than the other larvae. Levels of DHA (22:6ω3) were similar in larvae from treatments 1 and 4, and higher than in the other larvae (P < 0.0001). Our results suggest that Artemia containing a DHA/EPA/AA ratio of 7/2/1 result in good larval performance. Joseph A. Brown—Deceased September 2005.  相似文献   

6.
Barramundi (Lates calcarifer), a catadromous teleost of commercial interest, perform well when fed a wide range of dietary oils. However, the range of alternative oils now being explored is typically rich in saturated and monounsaturated fatty acids (SFA and MUFA). In this study, the response of juvenile barramundi (47.0 g per fish initial weight) fed isolipidic and isoenergetic diets with 82 g kg?1 added oil was tested. The experimental test diets had a 2 : 1 or 1 : 2 ratio of SFA to MUFA (SFA‐D and MUFA‐D, respectively) compared to a control diet (CTRL‐D) fed for 8 weeks. The diets containing mostly olive oil (dietary MUFA‐D) and mostly refined palm oil (dietary SFA‐D) did not impact the growth performance or feed utilization parameters of the barramundi. The in vivo beta‐oxidation activity was consistent with the dietary fatty acid composition, with the most dominant FA being heavily beta‐oxidized. Together, the in vivo whole‐body mass balance of fatty acids showed that n‐3 long‐chain polyunsaturated fatty acids (LC‐PUFA) were most efficiently utilized in the SFA‐D‐ and MUFA‐D‐fed fish. This study provides evidence that additional dietary MUFA and SFA are suitable lipid classes for juvenile barramundi and they are both equally efficient at sparing LC‐PUFA from an oxidative fate.  相似文献   

7.
黄颡鱼早期发育阶段受精卵和鱼体脂肪酸组成变化   总被引:11,自引:2,他引:9       下载免费PDF全文
研究了黄颡鱼受精卵孵化期间和仔鱼发育阶段脂肪含量和脂肪酸的组成变化规律.采用常规化学分析方法和气相色谱法对黄颡鱼从鱼卵受精开始至仔鱼孵化后未投饵的7 d内的脂肪含量和脂肪酸组成进行测定.结果表明,受精卵在整个孵化期间脂肪含量有下降趋势.受精卵中不饱和脂肪酸含量大于饱和脂肪酸含量.受精卵在整个孵化期间各种脂肪酸含量无明显变化.仔鱼孵化后,鱼体总脂肪含量急剧下降,总脂含量从0日龄的4.57%降低到7日龄的0.75%.仔鱼在饥饿期间鱼体脂肪酸组成发生明显变化,单不饱和脂肪酸含量下降最为明显,尤其是C18:1.仔鱼在饥饿期间,脂肪酸按n-9>n-6>n-3顺序被先后利用,黄颡鱼仔鱼发育阶段主要以单不饱和脂肪酸作为能量代谢基质,而C20:4n6(AA)和C22:6n3(DHA)优先于C20:5n3(EPA)被保存下来.  相似文献   

8.
ABSTRACT

Fish oil was extracted and simultaneously collected into six fractions based on molecular weight and the chain length of triglycerides in terms of fatty acid constituents without splitting of the triglycerides, using supercritical carbon dioxide (SC-CO2) at optimized conditions of 40 MPa, 65°C, and a flow rate 3 mL min?1. In each type of fractionation, the first fraction (F1) was rich in saturated fatty acids (SFA; 52.57 to 61.26%), followed by monounsaturated fatty acids (MUFA; 22.17 to 23.22%) and polyunsaturated fatty acids (PUFA; (0.54 to 20.37%); the sixth fraction (F6) was rich in PUFA (48.93%), followed by MUFA (33.59%) and SFA (13.61%). It was obvious that short-chain fatty acids were extracted at an earlier fraction; therefore, the latter fractions were dominant in long-chain fatty acids, especially MUFA and PUFA. Thus, omega-3 fish oil (last three fractions) was successfully separated to be used as a value-added health product.  相似文献   

9.
The composition of tail muscle fatty acids from wild and cultured bluefin tuna reared on a diet based on herring and sardine, along with the plasma lipid profile of the farmed individuals, was determined. The total lipid content of farmed bluefin in this study was 0.922 g/100 g or 3.49 g of saturated fatty acids (SAFA), 4.48 g of monounsaturated fatty acids (MUFA), 2.58 g polyunsaturated fatty acids (PUFA) n‐3 and 0.37 g of PUFA n‐6 fatty acids; for wild specimens, it was 0.920 g/100 g, or 2.85 g of SAFA, 4.82 g of MUFA, 2.78 g PUFA n‐3 and 0.27 g of PUFA n‐6 fatty acids. The major fatty acids in this study were 16:0; 16:1, n‐7; 18:1, n‐9 and DHA 22:6, n‐3 acids. The sum of these major components accounted for more than 57% and 80% of the total fatty acids in all the samples of farmed and wild tuna respectively. No significant differences in the proximate composition were demonstrated between farmed and wild samples, except for the energy value, in favour of the farmed tuna. Statistically, glucose tends to increase together with cholesterol (CHOL) and plasma triglyceride, as for these pairs, it showed positive correlation coefficients and P>0.05. Some measured tuna metabolites demonstrated strong mutual correlations, especially GLU, CHOL and TRIG, which are crucial factors in the lipid profile of animals.  相似文献   

10.
The desaturation of [1-14C]18:3n-3 to 20:5n-3 and 22:6n-3 is enhanced in an essential fatty acid deficient cell line (EPC-EFAD) in comparison with the parent cell line (EPC) from carp. In the present study, the effects of competing, unlabeled C18 polyunsaturated fatty acids (PUFA), linoleic (18:2n-6), -linolenic (18:3n-3), -linolenic (18:3n-6) and stearidonic (18:4n-3) acids, on the metabolism of [1-14C]18:3n-3 were investigated in EPC-EFAD cells in comparison with EPC cells. The incorporation of [1-14C]18:3n-3 in both cell lines was significantly reduced by competing C18 PUFA, with the rank order being 18:4n-3>18:3n-3 = 18:2n-6>18:3n-6. In the absence of competing PUFA, radioactivity from [1-14C]18:3n-3 in EPC cells was predominantly recovered in phosphatidylethanolamine followed by phosphatidylcholine. This pattern was unaffected by competing n-6PUFA, but n-3PUFA reversed this pattern as did essential fatty acid deficiency in the presence of all competing PUFA. The altered lipid class distribution was most pronounced in cells supplemented with 18:4n-3. Competing C18 PUFA significantly decreased the proportions of radioactivity recovered in 22:6n-3, pentaene and tetraene products, with the proportions of radioactivity recovered in 18:3n-3 and 20:3n-3 increased, in both cell lines. However, the inhibitory effect of competing C18 PUFA on the desaturation of [1-14C]18:3n-3 was significantly greater in EPC-EFAD cells. The magnitude of the inhibitory effects of C18 PUFA on [1-14C]18:3n-3 desaturation was dependent upon the specific fatty acid with the rank order being 18:4n-3>18:3n-3>18:2n-6, with 18:3n-6 having little inhibitory effect on the metabolism of [1-14C]18:3n-3 in EPC cells. The differential effects of the C18 PUFA on [1-14C]18:3n-3 metabolism were consistent with mass competition in combination with increased desaturation activity in EPC-EFAD cells and the known substrate fatty acid specificities of desaturase enzymes. However, the mechanism underpinning the greater efficacy with which the unlabeled C18PUFA competed with [1-14C]18:3n-3 in the desaturation pathway in EPC-EFAD cells was unclear.  相似文献   

11.
The role of dietary ratios of docosahexaenoic acid (DHA, 22:6n−3), eicosapentaenoic acid (EPA, 20:5n−3) and arachidonic acid (AA, 20:4n−6) on early growth, survival, lipid composition, and pigmentation of yellowtail flounder was studied. Rotifers were enriched with lipid emulsions containing high DHA (43.3% of total fatty acids), DHA+EPA (37.4% and 14.2%, respectively), DHA+AA (36.0% and 8.9%), or a control emulsion containing only olive oil (no DHA, EPA, or AA). Larvae were fed differently enriched rotifers for 4 weeks post-hatch. At week 4, yellowtail larvae fed the high DHA diet were significantly larger (9.7±0.2 mm, P<0.05) and had higher survival (22.1±0.4%), while larvae fed the control diet were significantly smaller (7.3±0.2 mm, P<0.05) and showed lower survival (5.2±1.9%). Larval lipid class and fatty acid profiles differed significantly among treatments with larvae fed high polyunsaturated fatty acid (PUFA) diets having higher relative amounts of triacylglycerols (18–21% of total lipid) than larvae in the control diet (11%). Larval fatty acids reflected dietary levels of DHA, EPA and AA while larvae fed the control diet had reduced amounts of monounsaturated fatty acids (MUFA) and increased levels of PUFA relative to dietary levels. A strong relationship was observed between the DHA/EPA ratio in the diet and larval size (r2=0.75, P=0.005) and survival (r2=0.86, P=0.001). Following metamorphosis, the incidence of malpigmentation was higher in the DHA+AA diet (92%) than in all other treatments (50%). Results suggest that yellowtail larvae require a high level of dietary DHA for maximal growth and survival while diets containing elevated AA exert negative effects on larval pigmentation.  相似文献   

12.
The possibility of increasing n‐3 and n‐6 long‐chain polyunsaturated fatty acids (PUFA) content in microalgal mixtures used to feed Tapes philippinarum larvae was explored by lowering culture temperature from 26 to 14 °C. Although fatty acid composition of different microalgal species has a genetic basis, the algal cultures grown at 14 °C significantly increased the content of long‐chain n‐3 PUFA in Isocrysis galbana and in Thalassiosira pseudonana, while in Tetraselmis tetrathelo, the PUFA increase only involved shorter chain PUFA, namely 16:4n‐3 and 18:4n‐3. However, larvae fed on the PUFA enriched microalgal mixture did not show improvements in growth and survival performances with respect to the control group fed the microalgal mixture grown at 26 °C. From a biochemical perspective, two key aspects emerged from the results: (i) clam larvae have adequate biotransformation and selection skills to adjust fatty acid profile to their requirements as they can even modulate the incorporation of essential long‐chain PUFA as 20:5n‐3 and 22:6n‐3 when the dietary supply exceeds the physiological requirements; (ii) bivalve can biosynthesize non‐methylene‐interrupted dienoic (NMID) fatty acids as confirmed by the constancy of relative proportion with larvae growth in spite of the NMID fatty acid absence in the diet.  相似文献   

13.
Proliferation of an essential fatty acid deficient cell line from carp (EPC-EFAD; epithelioma papillosum carp-essential fatty acid deficient) is stimulated by supplementing the cells with C20, but not C18 polyunsaturated fatty acids (PUFA). It is hypothesized that the differential ability of the PUFA to stimulate proliferation of the EPC-EFAD cells may be related to the extent of the cells' ability to desaturate and elongate C18 PUFA. In the present study, the metabolism of 14C-labeled C18 and C20 PUFA was investigated in EPC-EFAD cells in comparison with normal EPC cells. The incorporation of all the PUFA was significantly greater in EPC-EFAD cells but the rank order, 20:5n-3 > 18:3n-3 = 18:2n-6 >20:4n-6 was the same in both cell lines. The proportion of radioactivity from all labeled PUFA recovered in phosphatidylethanolamine and total polar lipids was significantly lower in EPC-EFAD cells compared to EPC cells, whereas the proportion of radioactivity recovered in all the other phospholipid classes and total neutral lipid was greater in EPC-EFAD cells. Both cell lines desaturated[1-14C]18:3n-3 and [1-14C]20:5n-3 to a greater extent than the corresponding (n-6) substrates but the desaturation of all the 14 C-labeled PUFA was significantly greater in EPC-EFAD cells compared to EPC cells. The results showed that, although essential fatty acid deficiency had several significant effects on PUFA metabolism in EPC cells, the fatty acid desaturation/elongation pathway was not impaired in EPC-EFAD cells and so they can desaturate 18:3n-3 to 20:5n-3 and 22:6n-3, and 18:2n-6 to 20:4n-6. However, 20:4n-3 and 20:3n-6, and not 20:4n-6 and 20:5n-3, were the predominant C20 PUFA produced by the elongation and desaturation of [1-14C]18:3n-3 and [1-14C]18:2n-6, respectively. Therefore, the previously reported inability of 18:3n-3 and 18:2n-6, compared to 20:5n-3 and 20:4n-6, to stimulate proliferation of the cells is apparently not due to a general deficiency in the fatty acid desaturation pathway in EPC-EFAD cells but may be related to potential differences in eicosanoid profiles in cells supplemented with C18 PUFA compared to C20 PUFA.  相似文献   

14.
Twelve algal strains representing the classes Cyanophyceae, Prymnesiophyceae, Bacillariophyceae, Rhodophyceae, Cryptophyceae, Chlorophyceae, Xantophyceae and Eustigmatophyceae were selected mainly from the culture collection of the Norwegian Institute for Water Research (NIVA). The algae were grown as continuous cultures in a 1.8 l. reactor, internally illuminated with an 11 W fluorescent tube. The retention time was adjusted in the range 2–4 days to fit the growth rate of the algae. The growth responses and fatty acid composition were analysed. The maximum production rate was obtained with Pseudokirchneriella subcapitata (0.63 g 1−1 day−1) and the lowest with Porphyridium cruentum 0.13 g 1−1 day−1. Arachidonic acid (AA) and eicosapentaenoic acid (EPA) were the dominating polyunsaturated fatty acids (PUFAs) in P. cruentum, while only EPA accumulated in Phaeodactylum tricornutum. Docosahexaenoic acid (DHA) was the major PUFA in Isochrysis galbana, while Pavlova sp. had both EPA and DHA. This is the first report on the fatty acid profiles of Nannochloropsis oceanica, Chroococcus sp., Synechococcus sp. and Tribonema sp.  相似文献   

15.
The composition of protein, carbohydrate, lipid and fatty acids of the gonad of wild female broodstock of black‐lip pearl oyster, Pinctada margaritifera, was compared with oysters fed on a ternary combination of microalgae in hatchery. Artificial feeding was found to be as good as natural feeding in terms of number and size of released eggs. Lipid, protein and carbohydrate reserves of unfed oysters were found to be insufficient to complete oogenesis. The proportions of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) of the neutral and polar lipids extracted from female gonads were not influenced by variations in the fatty acid composition of the natural food and ternary combination of microalgae in hatchery. T‐Iso, Chaetoceros calcitrans and Chaetoceros muelleri were able to provide sufficient 22:6n‐3 (DHA) and 20:5n‐3 (EPA), two of the most important essential fatty acids required for gametogenesis. The n‐3/n‐6 and 22:5n‐3/20:4n‐3 ratios were consistently higher in the neutral lipids than in the polar lipids. Conversely, the ratio of 20:4n‐3/20:5n‐3, 22:6n‐3/20:5n‐3 and PUFA/SFA was higher in the polar lipids.  相似文献   

16.
The aim of the present study was to determine the effects of natural antioxidant extract isolated from the shells of giant red shrimp (Aristaeomorpha foliacea) on the changes in fatty acid profile of anchovy (Engraulis encrasicolus) during refrigerated storage (2.7°C). Total antioxidant activity of shell extract was determined as 45.84%, total phenolic compound as 17.87 mg/100 g shell, and total carotenoid content in shell as 20.31 mg/100 g shell. Total saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), and polyunsaturated fatty acid (PUFA) contents in the control group and the group with 0.1% shell extract addition were found to be affected by the duration of storage (p < 0.05). A percentage increase was determined in MUFA content, while decreases were observed in PUFA content. No statistically significant change was detected in SFA, MUFA, and PUFA contents of groups with added butylated hydroxytoluene (BHT) and 0.5% of shell extract (p > 0.05). It was concluded that the extract isolated from shrimp shells could be used during the cold storage of fish fillets instead of synthetic antioxidants.  相似文献   

17.
This study compared the efficacy of four products that are commonly used in hatchery for nutritional enhancement of rotifer Brachionus plicatilis as the starter food for yellowtail kingfish Seriola lalandi larvae. This experiment consisted of one fresh algae and three enrichment products: (1) Fresh algae were a mixture of Nannochloropsis and Isochrysis at 2:1 on a cell concentration basis; (2) S.presso, (Selco S.presso ®, INVE Aquaculture); (3) Algamac 3050® (Aquafauna, USA); (4) Nutrokol ® (Nutra‐Kol, Australia). Survival rates of the fish fed rotifers enriched with fresh microalgae (40.69%) and S.presso (31.21%) were higher than those fed Algamac 3050 (10.31%). On 3 day post hatch (DPH), fish feeding incidence in the fresh algae treatment was significantly higher than that in other treatments. On 6 DPH, fish showed the lowest feeding incidence in the Algamac 3050 treatment. The methods of enrichment did not affect total lipid levels in either rotifer or fish larvae, but Algamac 3050 enrichment achieved the highest DHA/EPA ratio and lowest EPA/ARA ratio in both rotifers and fish larvae. This study indicates that fresh algae can be replaced by S.presso, but Algamac 3050 is not as good as other formula for rotifer enrichment in rearing yellowtail kingfish larvae in this system.  相似文献   

18.
In each of two separate experiments, eggs from a single female goldfish were fertilized, incubated at 22°C and sampled regularly up to day 6 when the larvae could be expected to commence feeding. Hatching normally occurred on Day 4. Lipids were extracted from the eggs and larvae and the neutral lipid and neutral phospholipids were isolated on aminopropyl columns. Fatty acid analysis of the eggs revealed the typical situation in fish where the phospholipids were rich in polyunsaturated fatty acids (PUFA) and the neutral lipids were rich in monounsaturated fatty acids (MUFA). Assay of lipid masses revealed that little depletion of lipid occurred until after hatch and that the neutral phospholipids were the principal fraction consumed. Although the neutral lipid mass did not change substantially during development, its fatty acid profile did. The proportions of several PUFA in the neutral lipids, especially 226(n–3), 205(n–3) and 204(n–6), increased substantially during development while proportions of MUFA and 182(n–6) declined. This appears to be a mechanism by which the larva can retain essential fatty acid released on hydrolysis of phospholipid while deriving the benefits of catabolism of phospholipid as fuel, namely the provision of phosphate and choline for intermediary metabolism and for the synthesis of macromolecules and neurotransmitter.Abbreviations AA arachidonic acid (204(n–6)) - DHA docosahexaenoic acid (226(n–3)) - EPA eicosapentaenoic acid (205(n–3)) - MUFA monounsaturated fatty acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PUFA polyunsaturated fatty acid - SFA saturated fatty acid  相似文献   

19.
This study was undertaken to investigate the effect of sustained physical exercise (SS, swimming speed) on the fatty acid profile of muscle in PIT-tagged all-female chinook salmon (Oncorhynchus tshawytscha) in relation to their age and ration level (RL; i.e., maximum ration, RL100 or 75% of maximum, RL75). Accordingly, body weight (BW), specific growth rate (SGR), and total muscle lipid content (TLC) were considered as covariates in data analyses. In addition, plasma levels of thyroid hormones (thyroxine, T4 and 3,5,3′-triiodo-l-thyronine, T3) were compared to the muscle fatty acid (FA) compositions of individual fish to determine if there were any associations between thyroidal status and FA percentages. During the 300-day study, body weight increased from 75 to 440 g. Fish age explained most of the changes found in muscle FA composition [that is, R2 was 0.23 for saturated fatty acids (SAFAs), 0.65 for monounsaturated fatty acids (MUFAs), and 0.71 for polyunsaturated fatty acids (PUFAs) with p<0.0007 in all cases]. Reduction in RL had less influence on FA composition (p>0.15 for SAFA, and R2 was 0.27 for MUFA and 0.34 for PUFA, with p<0.0001 in each of the latter cases). SS only affected MUFA significantly (p<0.07 with R2=0.09). The observed effects of fish age and SS on FA composition were to a large degree uninfluenced by BW, SGR, or TLC, while the effects of RL were markedly diminished when these covariates were included in the statistical model. Thus, the changes in body weight and/or lipid content were viewed as being the direct cause for the alteration in muscle FA profile seen with the main factor RL. The effect of SS was pronounced only if fish with a reduced RL were compared. In this situation, the level of PUFA, especially docosahexaenoic acid (DHA; 22:6 n-3), decreased and MUFA increased. Plasma T4 was unrelated to muscle FA levels, but plasma T3 was correlated positively with muscle MUFA and negatively with PUFA. We conclude that in order for exercise to affect chinook salmon fillet FA composition, it has to be combined with restricted feeding. The data also imply that in accordance with higher vertebrates, T3 is also involved in the regulation of FA metabolism in fish.  相似文献   

20.
Nine isoenergetic (18.5 kJ g−1) diets were formulated, in a 3 × 3 factorial design, by varying three levels of dietary protein (350, 400 and 450 g kg−1) at each of three levels of dietary lipid (65, 90 and 115 g kg−1) accordingly. Each diet was hand fed two times daily for 8 weeks to triplicate homogenous groups of eight fish (average weight 3.34 ± 0.02 g) per tank connected to a recirculation system. Results showed that the feed efficiency and growth performance significantly (P<0.05) increased with increasing protein level at the two lower lipid levels (65 and 90 g kg−1), respectively, as indicated by indices such as %weight gain, specific growth rate, protein efficiency ratio, feed conversion ratio and feed intake, but did not at the highest lipid level (115 g kg−1). The muscle polyunsaturated fatty acids (PUFA) content declined with increasing dietary protein level at the lipid levels producing the highest growth, suggesting that the utilization of PUFA influences growth. Whereas the muscle monounsaturated fatty acids level was generally lower than the dietary levels in all the treatments tested, indicating preferential catabolism for energy, the muscle saturated fatty acids level was comparatively higher than in the diets, indicating selective deposition. Docosa hexaenoic acid (22:6n3, DHA), which was very low in the diet and in the initial fish, was higher in the muscle of some of the treatments, indicating the ability of Channa striatus to desaturate and elongate short‐chain PUFA to long‐chain HUFA, due to the availability of dietary 18:3n3 and 20:5n3 (the precursors for DHA biosynthesis). It could be concluded, based on the results of this trial, that a diet formulated to contain 65 g kg−1 lipid and 450 g kg−1 protein, with a gross energy of 18.5 kJ g−1 and a dietary n3/n6 PUFA ratio of about 0.1, is sufficient to promote good feed efficiency and growth performance in C. striatus fingerling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号