首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
为探究黄瓜花叶病毒(Cucumber mosaic virus,CMV)、马铃薯Y病毒(Potato virus Y,PVY)混合侵染烟株对烟蚜取食行为的影响,利用刺探电位图谱(electrical penetration graph,EPG)技术记录了烟蚜在健康烟株与CMV、PVY混合侵染后不同发病级别烟株上的取食波形。结果显示:烟蚜在健康烟株上的刺探次数最少,在感病烟株上的C波总持续时间均显著长于健康烟株;第1次到达韧皮部前的刺探次数,健康植株上仅为4.00次,3级感病烟株上的为健康烟株上的2倍;在健康烟株上E2波总持续时间为120.65 min,极显著大于2级和3级感病烟株;刺探过程中,感病烟株上的pd波出现次数均高于健康烟株,且pd波II-1和II-3亚波的持续时间也显著高于健康烟株。研究表明,CMV、PVY混合侵染烟株可降低寄主对烟蚜的适合度,且能促进烟蚜对病毒的传播。  相似文献   

2.
It is known from laboratory studies that tobacco-associated forms of Myzus persicae (Sulzer) and the closely related tobacco aphid Myzus nicotianae (Blackman) are often somewhat less susceptible to imidacloprid than non-tobacco strains of M. persicae. Choice tests (floating leaf technique) showed that tobacco aphids were also less susceptible to the antifeedant potential of imidacloprid in contact bioassays. Synergists like piperonyl butoxide or DEF did not enhance the susceptibility of tobacco-associated morphs of Myzus ssp. to imidacloprid, thus providing evidence that neither oxidative detoxication nor hydrolytic metabolization took place. However, in an attempt to study the influence of endosymbiotic bacteria on the efficacy of imidacloprid, we allowed small populations of tobacco aphids to feed on diets containing the antibiotic chlortetracycline prior to imidacloprid treatment. While the effectiveness of imidacloprid, i.e. lower LC50 values, could be improved in all strains, including the susceptible reference strain, there was no change in overall tolerance factors. In order to investigate any possible alteration of the target site, the affinity of imidacloprid and nicotine to nicotinic acetylcholine receptors in whole-aphid homogenates was measured. All strains (and clones) showed the same high-affinity binding sites and no detectable difference. Studies using the FAO dip method revealed that the lower susceptibility of M. nicotianae is not restricted to chloronicotinyls like imidacloprid or acetamiprid, because other insecticides with different modes of action such as pymetrozine and fipronil were also affected in laboratory studies. It is considered that the observed tolerance to chloronicotinyls in certain strains of Myzus ssp. is a natural variation in response, probably not coupled with any known mechanism of resistance in this species complex. © 1998 SCI  相似文献   

3.
With a combination of biological, analytical, electrophysiological, and video-optical methods, it was possible to show that low concentrations of the new chloronicotinyl insecticide, imidacloprid, strongly affect the behaviour of Myzus persicae (Sulz.), leading eventually to the death of the aphids. Tests to elucidate the biological properties were performed under laboratory conditions with cabbage leaf petioles placed in insecticidal solutions over different periods of time. LC15(24h) values were considered as low concentrations and calculated for imidacloprid and pirimicarb, respectively. Imidacloprid at low concentrations depressed the honeydew excretion of apterous adults of M. persicae by almost 95% within 24 h without affecting the vitality of the majority of aphids, whereas, at equitoxic concentrations, pirimicarb showed much weaker effects on honeydew excretion, which strongly coincided with mortality. In choice experiments with alate morphs of M. persicae over 48 h, their larvae almost always occurred on the untreated control leaf, and were not found on the leaf which was treated systemically with low concentrations of imidacloprid. Apterous aphids placed on cabbage leaves systemically treated with low concentrations of imidacloprid showed nearly the same decrease in weight as untreated starving aphids, suggesting that their death was caused by starvation. Aphids that were moved from imidacloprid-treated to untreated leaves after 24 h began feeding on the latter and showed a steady increase in weight and honeydew production. This suggests that the behavioural response is reversible. Aphids on pirimicarb-treated (equitoxic dose) leaves showed no decrease in weight. Electrical penetration graphs revealed that M. persicae on artificial membranes containing imidacloprid probed more often before feeding than aphids on control sachets. Time-lapse videofilming of apterous adults placed on cabbage leaves revealed a migration from the leaf treated with low concentrations of imidacloprid to an untreated leaf. From the results of these experiments and the observed symptomatology it is possible to postulate two different and dose-dependent modes of action of imidacloprid on M. persicae: (1) the well-known mode of action with visually obvious irreversible symptoms (paralysis, tremor, uncoordinated leg-movement) at field rates, and (2) the reversible starvation response as an antifeedant effect, which is not coupled with typical symptoms of neuronal disorder, at lower concentrations.  相似文献   

4.
为探明烟蚜茧蜂Aphidius gifuensis Ashmead对烟蚜Myzus persicae(Sulzer)取食感染马铃薯Y病毒(Potato virus Y,PVY)烟株的适应性,利用刺探电位图谱(EPG)技术记录了烟蚜在感病烟株与健康烟株上的取食行为,并测定了烟蚜茧蜂对取食2种烟株烟蚜的寄生率以及烟蚜茧蜂的羽化率、发育时间及性比等指标。结果表明,与健康烟株相比,烟蚜在感染PVY烟株上的第1次刺探取食持续时间显著延长,且口针遇到阻力的次数(F波)和总持续时间均显著减少。烟蚜在感病烟株木质部的吸食时间(G波)显著长于健康烟株。感病烟株上烟蚜在韧皮部阶段的分泌唾液时间(E1波)较在健康烟株上显著缩短,而被动吸食汁液时间(E2波)显著延长。烟蚜茧蜂寄生取食感染PVY烟株的烟蚜,虽然能成功完成其生活史,但适应性与寄生取食健康烟株烟蚜的蚜茧蜂存在差异。在感染PVY烟株上,烟蚜茧蜂对烟蚜的寄生率为33.67%,显著低于对照的64.67%;且僵蚜体重明显下降,羽化的成蜂个体较小;成蜂存活时间1.48 d也极显著短于对照组的2.25 d。表明烟蚜茧蜂对取食感染PVY烟株烟蚜的适应性较低,PVY可通过烟蚜为介体间接降低烟蚜茧蜂的适应力。  相似文献   

5.
Duration of systemic pesticide activity under field conditions has wide implications for pest management. Our aim was to determine the duration of activity of systemic insecticides commonly used in cultivated tobacco (Nicotiana tabacum) by measuring the levels of insect infestations on field plots and effects on reproduction and survival of the green peach aphid (Myzus persicae) in controlled bioassays using field grown leaves. Plants were treated with different concentrations of two systemic neonicotinoid pesticides, imidacloprid and thiamethoxam, and grown in small field plots. Our results show that these materials are effective under field conditions against aphids for at least 13 weeks after transplant. Pesticides also affected aphid reproduction and nymph survival in bioassays, although some aphids survived on pesticide-treated leaves. We also observed that leaf age affected aphid survival. We showed that neonicotinoids were very effective against M. persicae, aphids are a useful organism to assess pesticide efficacy early in the growing season, but plant characteristics are more important than pesticide concentration in the second half of the growing season.  相似文献   

6.
BACKGROUND: Pest resurgence following a pesticide application may occur owing to a stimulatory (hormetic) response to sublethal insecticide concentrations. The objective of the present study was to examine the potential for a greenhouse‐derived red clone of Myzus persicae to exhibit resurgence owing to a hormetic response following a systemic imidacloprid treatment in a bell pepper greenhouse. RESULTS: No differences in mortality and fecundity were observed among apterous adults exposed to sublethal imidacloprid concentrations on excised pepper leaves fed aqueous solutions of imidacloprid. Survival of first‐generation progeny was negatively affected by imidacloprid exposure, yet surviving progeny exhibited no differences in development rates or fecundity from progeny of adults unexposed to imidacloprid. Aphid mortality declined most rapidly in clip cages on pepper leaves at the top of the pepper canopy as compared with leaves present at the middle or bottom of the pepper canopy. CONCLUSION: Imidacloprid decays rapidly in mature pepper plants, resulting in sublethal concentrations in the upper canopy in as little as 4 weeks. Sublethal insecticide concentrations have been implicated in the resurgence of pest populations; however, exposure to sublethal doses of imidacloprid are unlikely to result in pesticide‐induced resurgence of the M. persicae aphid clone examined in this study. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Resurgence of insect pests following insecticide applications is often attributed to natural enemy disturbance, but hormesis could be an alternative or additional mechanism. Green peach aphid, Myzus persicae (Sulzer), is an important insect pest of many crops worldwide that may be exposed to sublethal insecticide concentrations over time. Here, the hypothesis that exposure to low concentrations of imidacloprid and azadirachtin can induce hormetic responses in M. persicae is tested in the laboratory. RESULTS: When insects were exposed to potato leaf discs dipped in sublethal concentrations of insecticide, almost all measured endpoints—adult longevity, F1 production, F1 survival and F2 production—were affected, and a statistically significant (P < 0.05) stimulatory response was recorded for F2 production following exposure to imidacloprid. No other measures for hormesis were statistically significant, but other trends of hormetic response were consistently observed. CONCLUSIONS: Given that variable distribution and degradation of insecticides in the field would result in a wide range of concentrations over time and space, these laboratory experiments suggest that exposure to sublethal concentrations of imidacloprid and azadirachtin could stimulate reproduction in M. persicae. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Imidacloprid is the primary insecticide for controlling the tobacco‐adapted form of the green peach aphid (TGPA), Myzus persicae (Sulzer), a major pest of tobacco worldwide. This study used leaf‐dip bioassays to assess TGPA resistance to imidacloprid in the eastern United States from 2004 through 2007. RESULTS: When combined over the 4 year study, 18, 14 and 3% of the TGPA had imidacloprid resistance ratios (RRs) of 10–20‐fold, 20–30‐fold and 30–90‐fold, respectively, compared with the most susceptible colony tested. This indicates that some colonies have developed moderate levels of resistance to imidacloprid. A colony collected near Clayton, North Carolina, had the highest RR of 91 (LC50 value = 31 mg L?1). This resistance declined for six tests over a 3 year period in the laboratory culture from >130‐fold RR (LC50 = 48 mg L?1) to 40‐fold RR (LC50 = 15 mg L?1). Over the same period, the most susceptible colony and a standard colony not exposed to imidacloprid for over 7 years had consistently low LC50 values. CONCLUSION: Moderate levels of resistance to imidacloprid are noticed among TGPA colonies from the eastern United States. The variation in resistance indicates that the factors responsible are present in the populations at low frequencies and are just not enough to cause field failures yet. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Pesticide-induced hormesis may be an alternative mechanism for pest resurgence which is a serious problem in agriculture. Confirmation of the general phenomenon of hormesis may have significant implications for the design of pest control strategies and pest resistance management practices, although this has proved difficult due to the lack of appropriate methodology and the absence of well-defined mechanisms to support the experimental observations. In this study, a model-based approach to describe a dose-response relationship incorporating the hormetic effect was applied to the detection and estimation of imidacloprid-induced hormesis in the green peach aphid, Myzus persicae (Sulzer). The results indicated that imidacloprid at low concentrations induced stimulation of fecundity, however, high concentrations inhibition. This was reflected in an inverted U-shaped curve and related to the change of juvenile hormone III (JH III) levels in M. persicae. Fitting the data with quadratic and Weibull functions, which included a parameter for hormesis, showed that the magnitude of the hormetic effect was 31.31% for fecundity and 32.21% for JH III levels. The presence of hormesis in fecundity induced by imidacloprid may be related to the change in JH III levels in M. persicae.  相似文献   

10.
The metabolism of the chloronicotinyl insecticide imidacloprid is strongly influenced by the method of application. Whilst in foliar application most of the residues on the leaf surface display unchanged parent compound, most of the imidacloprid administered to plants by soil application or seed treatment is metabolized more or less completely, depending on plant species and time. The present study revealed that certain metabolites of imidacloprid which have been described in crop plants are highly active against aphid pests in different types of bioassays. Some of these metabolites showed a high oral activity against the green peach aphid (Myzus persicae), and the cotton aphid (Aphis gossypii). The aphicidal potency of the metabolites investigated was weaker in aphid dip tests than in oral ingestion bioassays using artificial double membranes. The most active plant metabolite was the imidazoline derivative of imidacloprid. The LC50 values of this metabolite for M. persicae and A. gossypii in oral ingestion bioassays were in the lower ppb-range, i.e. 0·0044 and 0·0068 mg litre-1, respectively. Most of the other reported metabolites showed much weaker activity. Compared to imidacloprid, the imidazoline derivative showed superior affinity to housefly (Musca domestica) head nicotinic acetylcholine receptors, while all other metabolites were less specific than imidacloprid. It seems possible that, after seed treatment or soil application, a few of the biologically active metabolites arising are acting in concert with remaining levels of the parent compound imidacloprid, thus providing good control and long-lasting residual activity against plant-sucking pests in certain crops. © 1998 SCI.  相似文献   

11.
A French strain of the tobacco aphid Myzus nicotianae Blackman (Homoptera: Aphididae), strain FR, showed high tolerance to imidacloprid in short-term (48-h) oral ingestion bioassays when compared to a susceptible reference strain of Myzus persicae, strain NS. The resulting tolerance factors were >50. Measures of the contact activity of imidacloprid by the FAO dip method failed to detect these high factors of tolerance. The tolerance factor was in general <10 when using the dip method. The resulting difference between tolerance factors could be attributed to a behavioural component to fitness between strain FR and strain NS as further experiments revealed. When measuring the effect of systemically applied imidacloprid on honeydew excretion, a 50% reduction occurred in both strain FR and strain NS at nearly the same concentration of imidacloprid, providing evidence for a similar antifeedant response in both strains. Starvation experiments revealed that the French strain was able to survive approximately 24 h longer than a reference laboratory strain of M. persicae. This result coincided with the fact that systemically applied imidacloprid showed the same aphicidal potential against strain FR after three days as against strain NS after two days, i.e. 24 h later. After rearing in the laboratory for six months the French strain of M. nicotianae lost its hardiness and also its apparent ability to tolerate imidacloprid. However, strain FR was a heterogeneous field strain and it is possible that a susceptible variant out-reproduced a more hardy variant. These findings indicate that the type of bioassay is very important when assessing aphid populations for resistance against the chloronicotinyl insecticide imidacloprid, because of its distinct mode of action. It is obvious that an aphid dip test, i.e. FAO dip test, produces more reliable results than the different kinds of short-term oral ingestion bioassays, because of the reversible behavioural changes induced by imidacloprid after oral uptake. Thus a short-term oral ingestion bioassay (≤48 h) is not recommended for precise detection of possible resistance of Myzus sp. to imidacloprid, although this mode of uptake for imidacloprid might be sometimes more realistic in terms of field behaviour. The ideal test to generate most accurate data would be a slightly longer (72-h) feeding bioassay, perhaps used in conjunction with a dip test. The possible influence of the results on resistance monitoring is discussed. © 1997 SCI.  相似文献   

12.
释放异色瓢虫对北京温室甜椒和圆茄上桃蚜的控害效果   总被引:2,自引:1,他引:1  
为评价异色瓢虫在温室条件下对桃蚜的控害能力及效益,在甜椒和圆茄生产温室中以生物农药防治为对照,开展释放异色瓢虫控制桃蚜的示范试验,分析天敌害虫的种群动态变化,并计算防治成本。结果显示:异色瓢虫能够持续控制甜椒温室中桃蚜种群密度,其定殖率在蚜虫暴发高峰期时最高,为64%;且甜椒产量及经济效益高于生物农药防治。在圆茄温室中,前期释放的异色瓢虫使桃蚜高峰延缓1周出现;在增加瓢虫释放量后,1周内桃蚜种群密度下降了79%,且瓢虫定殖率达到86%,控害效果较好。表明通过生产期全程监测天敌-害虫的种群动态,在植株定植15 d后每周确定益害比,通过2~3个月持续释放异色瓢虫,可有效、持续控制整个生产期桃蚜为害。  相似文献   

13.
Bioassays of nicotine and imidacloprid against clones of Myzus persicae (Sulzer) and Myzus nicotianae (Blackman) from around the world demonstrated that some had low levels of resistance to both compounds. This was expressed not only as a reduced mortality, but more markedly as differential inhibition of feeding by imidacloprid concentrations in the parts per billion range. Such concentrations also reduced aphid fecundity by inhibiting the production and viability of nymphs, and this effect was more marked for susceptible aphids than for those showing reduced direct lethal and antifeedant effects.  相似文献   

14.
为评估短翅蚜小蜂对桃蚜的搜寻及控害潜能,采用叶碟法研究了短翅蚜小蜂对甘蓝和辣椒2种植物上桃蚜2龄若虫的取食与寄生行为。结果表明,短翅蚜小蜂对甘蓝桃蚜和辣椒桃蚜的取食和寄生功能反应均符合Holling II及Holling III型方程。短翅蚜小蜂的取食和寄生搜寻效应均随蚜虫密度的增加而降低,当桃蚜密度小于35头时,短翅蚜小蜂对甘蓝桃蚜的取食搜寻效应大于辣椒桃蚜,而当桃蚜密度大于35头时,短翅蚜小蜂对辣椒桃蚜的取食搜寻效应大于甘蓝桃蚜;短翅蚜小蜂在所有密度下对辣椒桃蚜的寄生搜寻效应均大于甘蓝桃蚜。短翅蚜小蜂取食甘蓝桃蚜的瞬间攻击率a'为0.3289,处理时间T_h为0.2597,均大于辣椒桃蚜,寄生甘蓝桃蚜的瞬时攻击率a'为0.8213,小于辣椒桃蚜,而处理时间T_h为0.0275,大于寄生辣椒桃蚜;短翅蚜小蜂对甘蓝桃蚜的理论最大取食量和寄生量均小于辣椒桃蚜。研究表明,短翅蚜小蜂对不同密度的桃蚜均有一定的控制能力,且对辣椒桃蚜的控制作用大于甘蓝桃蚜。  相似文献   

15.
The ability ofMyzus persicae to transmit PVYN from potato to tobacco is not influenced by the temperature at which aphids are reared. A positive correlation exists between the relative virus concentration of PVYN in potato as determined by serology and A6-test, and its availability toM. persicae as indicated by transmission tests to tobacco.Samenvatting De Bokx en Piron (1977) vonden, dat de virusconcentratie van aardappelvirus YN (PVYN) in Eersteling positief was gecorreleerd met de temperatuur, waarbij aardappelplanten werden geteeld. De vraag is nu of er een verband bestaat tussen de virusconcentratie in de waardplant en de verspreiding van PVYN-virus door bladluizen (Myzus persicae). Myzus persicae gekweekt bij verschillende temperaturen (Tabel 1) werd gebruikt voor virusoverdracht uit aardappelplanten geteeld bij 22°C (=gelijke virusconcentratie), terwijl bladluizen gekweekt bij kamertemperatuur werden gebruikt voor overbrengen van PVYN uit planten geteeld bij verschillende temperaturen (=verschillende virusconcentraties).De overdracht van PVYN doorM. persicae, werd niet beïnvloed door de temperatuur waarbij de bladluizen werden gekweekt. Er was echter een positieve correlatie tussen de relatieve concentraties van PVYN in aardappel, bepaald volgens de microprecipitatietoets en de A6-bladtoets, en de overdracht door bladluizen naar tabak (Fig. 1).  相似文献   

16.

BACKGROUND

The prophylactic use of seeds treated with neonicotinoid insecticides remains an important means of controlling aphid pests in canola (Brassica napus) crops in many countries. Yet, one of the most economically important aphid species worldwide, the peach potato aphid (Myzus persicae), has evolved mechanisms which confer resistance to neonicotinoids, including amplification of the cytochrome P450 gene, CYP6CY3. While CYP6CY3 amplification has been associated with low-level resistance to several neonicotinoids in laboratory acute toxicity bioassays, its impact on insecticide efficacy in the field remains unresolved. In this study, we investigated the impact of CYP6CY3 amplification on the ability of M. persicae to survive neonicotinoid exposure under laboratory and semi-field conditions.

RESULTS

Three M. persicae clones, possessing different copy numbers of CYP6CY3, were shown to respond differently when exposed to the neonicotinoids, imidacloprid and thiamethoxam, in laboratory bioassays. Two clones, EastNaernup209 and Osborne171, displayed low levels of resistance (3–20-fold), which is consistent with previous studies. However, in a large-scale semi-field trial, both clones showed a surprising ability to survive and reproduce on B. napus seedlings grown from commercial rates of neonicotinoid-treated seed. In contrast, an insecticide-susceptible clone, of wild-type CYP6CY3 copy number, was unable to survive on seedlings treated in the same manner.

CONCLUSION

Our findings suggest that amplification of CYP6CY3 in M. persicae clones substantially impairs the efficacy of neonicotinoid seed treatments when applied to B. napus. These findings highlight the potentially important real-world implications of resistances typically considered to be ‘low level’ as defined through laboratory bioassays. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

17.
BACKGROUND: Myzus persicae is a globally important aphid pest that is mainly controlled through the application of chemical insecticides. Recently, a clone of M. persicae exhibiting control‐compromising levels of resistance to neonicotinoid insecticides was described. The resistance of this clone was associated with reduced affinity of imidacloprid for the target site (the nicotinic acetylcholine receptor) as a result of mutation of a key amino acid residue (R81T) in the loop D region of a nAChR β1 subunit. The potent levels of resistance conferred by this mechanism are cause for considerable concern, and the frequency and distribution of the mutation in worldwide populations of M. persicae require careful monitoring. In this study, a high‐throughput assay has been developed that allows detection of the mutation in individual aphids. RESULTS: A real‐time TaqMan assay to detect the R81T substitution was developed that proved to be sensitive and specific in tests of analytical sensitivity and in a blind genotyping trial of DNA extracted from individual aphids comprising the three possible genotypes. The assay was then used to examine the frequency of the R81T mutation in aphids collected and stored in ethanol from peach orchards in southern France. The R81T frequency varied from 33 to 100% in seven populations from the department of Gard, France. CONCLUSIONS: This study describes a rapid and sensitive assay that very effectively detects the R81T mutation in individual aphids. The results also have practical significance for the control of M. persicae in southern France and provide contemporary data to inform current resistance management strategies. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
An attempt was made to achieve low environmental risk control of insect pests using sublethal concentrations of insecticides, enhanced by the effect of high temperatures (>25°C). For each of the insecticides imidacloprid, abamectin, pirimicarb and azadirachtin, the lethal and sublethal concentrations were determined for the green peach aphidMyzus persicae (Sulzer) (Homoptera: Aphididae) and its predator, the lady beetleHarmonia axyridis (Pallas). The lady beetle was more tolerant of all four insecticides, as well as of high temperatures below 40°C, compared with the prey. The joint action of sublethal concentrations of insecticides and high temperatures was investigated to determine the sublethal concentrations and temperatures that would be effective in controlling the aphids, but not detrimental to the beneficial lady beetle. The results suggested a synergistic effect of sublethal insecticide concentrations and high temperatures against the green peach aphid.  相似文献   

19.
The toxicity of pirimicarb, imidacloprid, dimethoate, lambda-cyhalothrin, flonicamid and spinosad to the two-spot ladybird, Adalia bipunctata, was evaluated in a laboratory study. Susceptibility of fourth instars and female adults was assessed by measuring toxicity via residual contact and ingestion through feeding on contaminated green peach aphids (Myzus persicae). Flonicamid and spinosad had no lethal effects on larvae and female adults. Pirimicarb was harmless to the predator by ingestion exposure but showed some residual toxicity at high concentrations to both larval and adult stages. Imidacloprid was highly toxic to the larval stage by residual and ingestion exposure but caused very low adult mortality when ingested through contaminated prey. Dimethoate and lambda-cyhalothrin were highly toxic to both the larval and adult stages of the ladybird. Our findings indicate that pest management programs in agricultural crops using dimethoate, lambda-cyhalothrin and, to a lesser degree, imidacloprid, are detrimental to A. bipunctata, whereas pirimicarb, flonicamid and spinosad are more compatible with the use of this predator.  相似文献   

20.
寄主植物对桃蚜羧酸酯酶和乙酰胆碱酯酶的诱导作用   总被引:16,自引:1,他引:16  
在1995~1996年研究了寄主植物对桃蚜[Myzuspersicae(Sulzer)]羧酸酯酶(CarE)和乙酰胆碱酯酶(AChE)的诱导作用。在试验的甘蓝、茄子和桃树3种寄主植物中,取食甘蓝的桃蚜种群CarE和AChE活性最高,取食茄子和桃树的桃蚜种群CarE活性没有明显不同,而AChE活性取食茄子的桃蚜种群明显高于取食桃树的种群。CarE与底物的亲和力是桃树>茄子>甘蓝,而AChE与底物的亲和力则是甘蓝>茄子>桃树。AChE与毒扁豆碱的双分子速率常数(Ki)值大小顺序为甘蓝>桃树>茄子  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号