首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同关键酶基因在甘蓝型油菜种子发育过程中对油脂积累的影响重大。为此,本实验选取3个不同含油量的甘蓝型油菜作为模型。研究BnACC1、BnDGAT1和BnPDAT1基因在甘蓝型油菜种子发育时期的表达模式。结果表明:BnACC1在这三种甘蓝型油菜种子中的基因表达模式基本一致,在低含油量油菜的种子发育前期和高含油量油菜的种子成熟期相对表达量高,说明在油脂积累旺盛期该基因的高表达可提高含油量;而BnDGAT1和BnPDAT1在这三种甘蓝型油菜表达模式存在差异。其中,BnDGAT1基因在高含油量油菜中的相对表达量高于低含油量油菜。这说明BnDGAT1基因对油脂积累有一定的促进作用。BnPDAT1基因的相对表达量与甘蓝型油菜含油量密切相关。本研究可以为提高油菜含油量的相关分子机制提供了科学依据。  相似文献   

2.
为探究甘蓝型油菜中BnaPDAT1基因表达特性与油脂合成之间的关系。选用2个含油量具有显著差异的甘蓝型油菜双低品系855(49. 72%)和868(35. 06%),以qRT-PCR方法检测BnaPDAT1各拷贝在两品系油菜中的表达规律,同时以薄层层析(TLC)和气相色谱(GC)检测两品系油菜中TAG的积累规律。结果表明:授粉后种子中BnaPDAT1基因及其3个拷贝表达量均呈先升高后降低的趋势,花、叶片中均有BnaPDAT1表达,三拷贝表达存在差异,但表现整体调控的特点。两品系油菜叶(Bna A10. PDAT1除外)和授粉后20 d的种子中BnaPDAT1及其3个拷贝表达量具有极显著差异,其余各时期两品系间表达差异规律不明显,BnaPDAT1在高含油量品系855中授粉后20 d表达量为全生育期最高值(11. 100 9),是868的5. 07倍;叶中表达量8. 858 6,为868的7. 34倍,表达特性与Bna C09. PDAT1相似。两品系油菜种子TAG含量变化均呈S型,授粉20 d后油脂合成进入快速增长阶段,授粉后35 d进入缓慢增长期;授粉后30 d以前TAG含量品系间差异不大,授粉后35 d开始出现差异,授粉后40 d差异进一步扩大并趋于稳定。BnaPDAT1基因表达和种子TAG含量变化没有明显的直接关系,但高含油品系中BnaPDAT1基因表达值明显高于低含油品系。  相似文献   

3.
甘油三磷酸酰基转移酶(GPAT)基因编码参与植物油脂生物合成的酶。为了提高油菜籽含油量,促进油菜增产增油,改善菜籽油脂肪酸组分,克隆甘蓝型油菜Napin启动子与三酰甘油合成相关基因BnGPAT9,构建pBI121-Napin-BnGPAT9植物过表达载体,利用农杆菌介导法转化拟南芥,采用气相色谱法分析种子中脂肪酸组分,通过索式抽提法测定种子中油脂含量,研究在种子中过表达BnGPAT9基因对种子油脂合成的影响。Napin启动子在线分析表明,克隆到的启动子具有大量TATA-box、CAAT-box以及ABRE、GCN4等特征元件,完全具备种子特异性表达功能;种子中脂肪酸组分分析显示,拟南芥种子中油酸(C18∶1)含量提高0.70~1.01百分点,亚油酸(C18∶2)和芥酸(C22∶1)含量降低;拟南芥种子含油量测定结果显示,种子中含油量显著增加1.91~2.56百分点。综上,甘蓝型油菜BnGPAT9基因对植物油脂合成具有重要作用,利用Napin启动子在拟南芥种子中过表达BnGPAT9基因可提高种子含油量并改善脂肪酸组成成分,为BnGPAT9基因应用于油菜油脂改良方面打下一定基础。  相似文献   

4.
张宇婷  鲁少平  金诚  郭亮 《作物学报》2019,45(3):381-389
甘蓝型油菜是主要的油料作物之一,种子含油量一般在35%~50%。油脂主要储存于油菜种子胚中,胚主要由子叶[包括外子叶(OC)和内子叶(IC)和胚轴(EA)]组成。低芥酸油菜品种皖油20号(WY20)种子不同部位的含油量存在显著差异。WY20的胚中, OC含油量最高, EA含油量最低。同时,脂肪酸组成在种子不同部位也存在差异, EA中棕榈酸(C16:0)、亚油酸(C18:2)及二十碳酸(C20:0)的比例均显著高于子叶,特别是C16:0在EA中的比例约为子叶的2倍。而油酸(C18:1)及二十碳烯酸(C20:1)在子叶中的比例均显著高于EA。硬脂酸(C18:0)在OC中含量最低,在IC和EA中无差别。亚麻酸(C18:3)则在OC中含量最高,在IC和EA中无差异。对发育34d种子的IC、OC和EA进行转录组分析,将三个部位中基因表达定量分析的结果两两比较后共发掘出7192个差异表达基因,其中OC和IC之间差异表达基因数目较少,子叶和EA间有较多的差异表达基因。子叶和胚轴中的差异表达基因富集在光合作用、脂肪酸代谢和叶绿素合成等生物学过程。基因功能注释显示,差异表达基因中有355个和脂质代谢相关,且多集中在质体中脂肪酸从头合成途径。本研究表明油脂合成途径关键基因的差异调控是造成油菜种子不同部位含油量和脂肪酸组成差异的主要因素。  相似文献   

5.
溶血磷脂酰基转移酶(LPAT)是植物油脂合成途径的一个关键酶,在植物油脂品质改良和提高种子含油量方面具有重要的应用价值。本研究通过构建花生种子全长cDNA文库,结合大规模EST测序和功能注释,从花生中克隆了溶血磷脂酸酰基转移酶基因,命名为AhLPAT。该基因cDNA全长1 629 bp,对应的基因组序列5 531 bp,由11个外显子和10个内含子组成,内含子剪接方式符合GT-AG剪接规则。根据编码区预测AhLPAT编码一条387个氨基酸组成的多肽,预测分子量为43.2 kD,等电点为9.42。AhLPAT蛋白含有一个典型的酰基转移酶保守功能结构域以及溶血磷脂酰基转移酶相似的保守区域。该蛋白的氨基酸序列与已报道的其他物种LPAT蛋白序列有较高的一致性。AhLPAT与旱金莲、油菜、海甘蓝、蓖麻和拟南芥的LPAT蛋白氨基酸相似性依次为90%、89%、89%、88%和87%。系统进化分析表明,AhLPAT与拟南芥AtLPAT2亲缘关系较近,且同属于内质网型LPAT蛋白。RT-PCR分析表明,AhLPAT基因在花生根、茎、叶、花、果针和种子中均有表达,在花生开花后50~60 d,果针和种子中的表达量最高,且AhLPAT的表达量与花生种子含油量积累速率变化一致,二者显著相关(r=0.63,P<0.05)。推测AhLPAT基因在花生种子油脂合成中起重要作用。  相似文献   

6.
蔗糖非发酵相关蛋白激酶(sucrose non-fermenting-1-related protein kinase,SnRK)是植物中广泛存在的丝氨酸/苏氨酸蛋白激酶,它们参与调控植物的信号传导、逆境响应和种子生长等生物学过程。为了解析甘蓝型油菜(Brassica napus L.)中SnRK基因家族的性质及其对种子含油量的影响,本研究对BnSnRK基因家族的系统进化、基因结构、蛋白质理化性质、保守基序、蛋白质二级结构、顺式作用元件和亚细胞定位预测等进行分析,并通过候选基因关联分析、单倍型分析和qRT-PCR筛选影响种子含油量的BnSnRK基因。结果显示,鉴定得到92个BnSnRK成员,分为3个亚族,分布于甘蓝型油菜19条染色体上,亚族之间蛋白质理化性质差异显著。多数基因拥有7~14个外显子;同一亚族的motif分布情况更相似。BnSnRK家族主要在细胞质中表达,蛋白质二级结构主要以α-螺旋和不规则卷曲为主。关联分析筛选出与油菜种子含油量相关的12个家族成员,基因BnaC02g10730D可能负向调控甘蓝型油菜种子含油量,基因BnaA07g12290D、BnaA10g22850D、BnaA08g18050D、BnaC04g44390D可能正向调控甘蓝型油菜种子含油量。不同环境之间种子含油量差异显著,且与含油量相关的12个成员均含有MYB、MYC和ABA响应元件,环境特异的含油量关联基因可能与植物非生物胁迫响应相关。本研究为BnSnRK基因功能验证及育种工作提供了理论参考。  相似文献   

7.
含油量是油菜最重要的性状之一, 目前已有较多的油菜种子含油量定位研究, 然而各研究系统相对独立, 群体与标记的差别使得难以比较不同研究结果。本研究连续4年种植了一个含308份材料的油菜自然群体, 结合60K SNP芯片数据对种子含油量进行了全基因组关联分析(GWAS), 并将所鉴定的显著位点与早前2个自然群体及10个分离群体鉴定到的位点进行全基因组比较与整合。结果显示, 通过GWAS共检测到8个与种子含油量显著关联的位点, 单个位点解释的表型变异度为3.22%~5.13%; 结合其他12个群体的定位结果, 共获得193个油菜含油量整合位点, 分布于油菜的所有19条染色体, A亚基因组平均每条染色体有13个位点, 显著高于C亚基因组(7个)。对不同群体鉴定结果的比较发现, 7个整合区间能在至少3个群体中被检测到, 均位于A亚基因组染色体(A01、A02、A03、A06、A08、A09和A10)上, 其中有3个与C亚基因组上的区间存在同源性, 在这3个区间中共鉴定到26个已知的油脂代谢相关基因。本研究将193个位点锚定到法国公布的甘蓝型油菜参考基因组, 构建了一个可视的油菜种子含油量位点全基因组整合系统, 可为油菜种子含油量重要位点的确定提供帮助, 并为制定提高油菜种子含油量的育种方案提供参考。  相似文献   

8.
油菜籽饼粕是畜禽养殖中重要的蛋白原料, 但饼粕中的硫苷是一种抗营养物质, 食用过多会对禽畜产生毒害, 因此挖掘油菜籽粒硫苷含量的候选基因对油菜种子低硫苷育种具有重要现实意义。本研究连续4年种植1个含157份材料的油菜自然群体, 结合重测序数据对种子硫苷含量进行全基因组关联分析(GWAS), 并对15份低硫苷和15份高硫苷材料进行种子发育早期的转录组测序, 通过权重基因共表达网络分析(WGCNA)鉴定种子硫苷含量的候选基因。用GWAS共检测到45个与种子硫苷含量显著相关的SNP, 单个位点解释的表型变异为13.5%~23.3%, 主要分布在A09、C02和C09染色体的3个区间中, 覆盖5个已知的硫苷代谢基因。用WGCNA分析发现高、低硫苷材料之间的2275个差异表达基因, 可分为12个基因模块, 其中1个模块的基因显著富集在已知的硫苷生物合成途径, 对该模块内163个基因的权重分析得到13个候选基因。经检测, GWAS和WGCNA共得到的18个候选基因中, 有14个候选基因的表达量与种子硫苷含量显著相关(r = 0.376~0.638, P<0.05)。用两种方法鉴定到1个共同的候选基因BnaC02g41790D (基因名MAM1), 与该基因连锁的5个SNP构成5种单体型, 等位基因效应分析发现, 自然群体中63%的材料(99/157)为Hap 5, 平均硫苷含量为50.79 μmol g-1, 与另外4种单体型(95.04~110.28 μmol g-1)存在极显著差异(P<0.01)。本研究结合GWAS和WGCNA两种方法鉴定了油菜种子硫苷含量的候选基因, 可为复杂性状候选基因的筛选提供参考。  相似文献   

9.
《分子植物育种》2021,19(16):5496-5502
高含油油菜可提高单位面积产油量,因而受到广泛关注,但不同含油量油菜种子中代谢物的差异尚未清楚。本研究以2个含油量不同的甘蓝型油菜近等基因系授粉后20~35 d种子为材料,使用超高效液相色谱-四极杆飞行时间质谱分析不同含油量材料间代谢物差异。以低含油量材料为对照,共筛选出46种差异代谢物,其中24种与油脂合成通路相关,14种与脂肪酸合成通路相关,3种与糖代谢相关,2种与维生素代谢相关,1种与激素代谢相关,2种与花青素代谢相关。高含油油菜种子种固醇、花青素、硬脂酸、亚油酸等脂肪酸较高,亚麻酸含量较低。该结果有助于揭示油菜种子中油脂合成的机制,可为高含油油菜育种提供参考。  相似文献   

10.
磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvatecarboxylase,PEPC)是控制油料作物种子中蛋白质/油脂含量比率的一个关键酶。本研究检测了花生AhPEPC1基因抑制表达的转基因株系种子含油量,与非转基因花生相比,转基因花生种子含油量提高了5.7%~10.3%。利用转录组测序(RNA-Seq)技术分析花生中AhPEPC1基因的抑制表达是否影响其他基因的功能。结果表明,转录组分析筛选到110个基因差异表达,其中25个基因上调表达,85个基因表达下调。对110个差异表达基因进行了KEGG富集分析,其中有34个基因成功获得了KEGG注释,发现氨基酸的生物合成途径中有2个基因(Aradu.M0JX8,Aradu.FE0Z7)下调表达。利用荧光定量PCR分析了15个DEG(differential expressed gene)在非转基因对照和转基因花生种子中的表达情况,发现其趋势与转录组测序结果基本一致。研究结果可在一定程度上解析AhPEPC1基因调控花生种子含油量的分子机制。  相似文献   

11.
《分子植物育种》2021,19(17):5688-5695
脂肪酸延伸酶1基因FAE1和Δ~(12)-脂肪酸脱饱和酶基因FAD2是植物脂肪酸生物合成途径中的两个关键酶基因,在同一甘蓝型油菜品种CY2中对这两个关键酶基因进行单表达和双表达遗传调控获得五种不同类型的具有相同遗传背景的转基因株系。本研究分析比较了种植于相同环境条件下的五类转基因株系及野生型对照的种子脂肪酸组成和含油量,结果表明,两基因单独和双重调控可显著改变油酸、亚油酸、亚麻酸、花生烯酸和芥酸等多种脂肪酸含量,其中两个内源目标基因同时沉默种子中的油酸含量从20.5%提高到了82.8%,拟南芥FAE1基因籽粒特异表达种子中的芥酸含量由43.9%增加到了60.2%。与野生型对照相比,五类转基因种子中的十八碳不饱和脂肪酸相对比率和油酸脱饱和比例均发生了显著变化。此外,增强FAE1基因表达后种子含油量有所提高,而沉默两个目标基因的表达则使种子含油量降低,表明两个关键酶基因调控对油脂合成与积累也产生一定影响。  相似文献   

12.
长链烷烃是甘蓝型油菜角质层蜡质的优势组分,在阻止植株的非气孔性水分散失中起主要作用。BnCER1-2催化甘蓝型油菜长链烷烃的生物合成,但BnCER1-2是否通过与其他蛋白互作调控长链烷烃合成还不清楚。前期通过甘蓝型油菜蜡质差异材料转录组筛选获得4个长链烷烃合成相关基因BnCER3.a10、BnCER3.c02、BnCYTB5B.c09、BnCER1-L2.a05。本研究克隆了这4个基因的编码序列,序列分析表明BnCER3.a10/c02和BnCER1-L2.a05前体蛋白具有典型的脂肪酸羟化酶与WAX2C末端结构域,而BnCYTB5B.c09具有Cyt_B5蛋白家族保守结构域。亚细胞定位结果表明, BnCER3.a10/c02、BnCYTB5B.c09和BnCER1-L2.a05均定位于细胞内质网,与BnCER1-2共定位。双分子荧光互补(bimolecular fluorescent complementation,BiFC)与萤火素酶互补试验(luciferase complementation assay,LCA)检测结果表明, BnCER3.a10、BnCYTB5B.c09、B...  相似文献   

13.
为了获取油茶Aux/IAA基因家族的分布和结构特征,利用HMM进行油茶全基因组Aux/IAA基因的鉴定。结果表明,油茶Aux/IAA基因非均匀分布在10条染色体上;序列长度和外显子数量差异较大,氨基酸长度范围在132~1 085之间,外显子数量为2~16个,同一系统发育亚组上的基因具有类似的外显子数量和基序结构;油茶Aux/IAA部分基因具备响应生长素的顺式作用元件外,还具备其他激素响应的基序和光响应元件。转录组数据表明,CoIAAChr12_3、CoIAAChr7_5、CoIAAChr9_3、CoIAAChr9_4、CoIAAChr7_6基因在油茶花芽、花瓣、萼片、雄蕊、雌蕊中高表达,可能与花的形成和发育相关。CoIAAChr12_5在油茶种子中高表达,可能与油茶种子发育相关。本研究为Aux/IAA基因家族在油茶中的系统研究提供了基础。  相似文献   

14.
植物油是重要的食品、生物能源和工业原料。油料作物育种的一个重要方向是提高种子的含油量。种子油脂合成的生化过程已经非常清楚,但这个过程的调控机制还有待研究。研究表明许多转录因子,如LEC1、LEC2、ABI3和WRI1等在种子发育时油脂的合成与积累过程中发挥重要的调控作用,这些转录因子可能作为分子育种中潜在的靶基因。在此首先简要介绍了种子油脂合成过程;然后综述了分子手段提高油料作物种子含油量的策略;最后,我们详细介绍了目前已知的与种子中油脂积累过程相关的转录因子。以期为分子育种中靶基因选择提供理论依据。  相似文献   

15.
为了探讨农大D666含油量超亲遗传的分子机制,以及籽仁含油量与油脂合成酰基转移酶基因(GPAT9,LPAAT,DGAT1-2)表达水平的相关性,选取油脂积累的三个关键期R4、R5和R6期荚果的籽仁,进行荧光定量PCR检测,分析了高油品系农大D666及其亲本不同发育时期籽仁内三类酰基转移酶基因的表达量,结果表明:在检测的3个材料中属于B染色体组的GPAT9-B和DGAT1-2B表达量明显高于A染色体组的部分同源基因GPAT9-A和DGAT1-2A,属于A染色体组LPAAT-A表达量明显高于B染色体组的LPAAT-B。农大D666的3类酰基转移酶基因表达量随荚果发育时期变化的模式与两个亲本、以及两个亲本间存在差异。农大D666的GPAT9-A表达量不同发育时期籽仁间无差异,其余基因随着荚果发育表达量逐渐升高。在R6期籽仁中,农大D666的GPAT9-B、GPAT9、DGAT1-2A、DGAT1-2B、DGAT1-2表达量均极显著高于两个亲本品种。DGAT1-2和GPAT9、LPAAT表达量的比值与种子最终含油量存在明显正相关。在发育的花生种子油脂积累的过程中,DGAT1-2和GPAT9、LPAAT表达量需要维持一定的协调性才有利于油脂的积累,从本研究中可得出R5期DGAT1-2和GPAT9、LPAAT表达量之间协调性较好,有利于油脂的合成与积累。推测高油品系农大D666含油量高的原因与R5期DGAT1-2和GPAT9、LPAAT表达量的相对值大小及R6期GPAT9、DGAT1-2的高表达有关。  相似文献   

16.
刘睿洋  刘芳  官春云 《作物学报》2016,42(7):1000-1008
高油酸油具备较高的营养价值,在甘蓝型油菜中,脂肪酸去饱和酶基因(FAD2)是控制油酸含量的关键基因。本研究克隆了甘蓝型油菜A5、C5、A1连锁群上3个BnFAD2基因的全长cDNA序列,分别命名为BnFAD2-A5、BnFAD2-C5和BnFAD2-A1,各自编码384、384、136个氨基酸。分别使用TMHMM、Clust X软件分析FAD2基因的跨膜结构域和酶活中心表明,BnFAD2-A1不具备脱氢酶活性。采用酵母功能互补实验对4个基因(含已发表的BnFAD2-C1)进行功能验证,发现BnFAD2-A5和BnFAD2-C5基因去饱和能力接近,均大于BnFAD2-C1基因。采用qRT-PCR分析4个基因在甘蓝型油菜不同组织中的表达规律及血凝素标签法分析BnFAD2-C1、BnFAD2-A5和BnFAD2-C5的蛋白稳定性,表明BnFAD2-A5和BnFAD2-C5是影响油菜种子油酸积累的主效基因。  相似文献   

17.
油菜种子发育是产量和品质形成的关键发育阶段,包含了复杂的发育过程和调控网络,有效地解析种子发育的转录调控机制具有重要的意义。以甘蓝型春油菜品种青杂5号为研究材料,利用RNA-seq技术对种子发育的后期(30-DAF,40-DAF)2个发育时间进行转录组测序,筛选差异基因,并利用GO数据库和KEGG数据库注释差异基因功能和可能参与的调控途径。结果表明,从油菜种子灌浆后期的2个时间点的转录组中分别检测到70 850和65 193个表达基因,筛选得到2 654个差异表达基因,其中1 941个基因下调表达,713个基因上调表达,29个基因表达差异倍数|log2Ratio|≥10。GO基因功能分析显示,生物学途径中富集最显著的条目是染色质组装相关的等生物学过程,分子功能方面富集最显著的条目依次是蛋白质代谢、营养库活性等功能类别,而在细胞组件方面富集最显著的条目是染色体相关的等细胞组件。Pathway显著性富集分析显示注释基因最多的途径是次生代谢途径,其次是淀粉、蔗糖代谢途径、苯丙素生物合成途径中的、碳代谢途径和氨基酸生物合成途径。甘蓝型油菜种子发育后期的转录组分析表明,种子发育30-DAF时期次生代谢物、脂质代谢等表达活跃,40-DAF时期逐渐转变为蛋白质、氨基酸生物合成、光合碳代谢、碳代谢等表达活跃,提示油菜种子灌浆后期仍处于复杂的物质与能量代谢调控过程。  相似文献   

18.
为探讨沙棘非种子组织(果肉)和种子油脂合成积累与源汇基因表达间的关系,以2016年不同发育时期(7月10日,7月26日,8月11日,8月26日)的品系"TF-23"果实为材料,利用氯仿甲醇法测定果肉和种子含油量,采用q RT-PCR方法分析油脂合成源基因(GPD1)和汇基因(DGAT1,DGAT2)在果肉和种子间的表达差异及其对油脂合成积累的影响。结果表明:(1)沙棘果实发育过程中,果肉和种子含油率均呈逐渐上升趋势,但果肉的油脂合成积累速度快于种子,且果肉含油率20.62%明显高于种子6.16%。(2)源基因GPD1在果肉发育过程中一直维持在较高水平,明显促进了果肉TAG合成前体G3P的高效合成,而同期汇基因DGAT1和DGAT2的高表达则促进了TAG的高效积累;相反,种子发育过程中,源基因GPD1表达量非常低,而同期的DGAT1基因表达维持在较低水平且呈略微下降趋势,限制了种子油脂的合成积累。(3)沙棘非种子组织(果肉)和种子油脂合成积累的显著差异源于源基因GPD1和汇基因DGAT1协同表达的差异。本研究可为进一步培育果肉和种子含油量均高的沙棘良种提供科学参考。  相似文献   

19.
生物产量是作物获得高产的重要基础,对于甘蓝型油菜(Brassica napus L.)尤其重要。本研究利用588份甘蓝型油菜材料构成的自然群体2年生物产量表型数据的全基因组关联分析,再结合高生物产量材料‘CQ45’和低生物产量材料‘CQ46’的转录组测序(RNA-seq)结果,整合了6个甘蓝型油菜材料6个部位(茎秆、叶片、花后30 d主轴与侧枝种子、花后30d主轴与侧枝角果皮)的转录组数据构建的加权共表达网络分析(WGCNA),筛选出与生物产量相关的候选基因。通过相关分析发现,2年间甘蓝型油菜自然群体中生物产量对大多数产量相关性状都具有正向效应;自然群体2年生物产量分析的最佳模型均为K+PCA模型,共检测到9个显著位点(P 1/385691或P 0.05/385691);根据CQ45和CQ46共36组转录组数据,选择MAD值为前5%的基因共计5052个用于构建WGCNA,通过筛选合并共得到了15个模块,其中5个基因共表达模块分别与叶片、茎秆和花后30d种子显著性相关;整合了WGCNA中关键模块的hub gene、GWAS分析得到的显著SNP位点和极端表型差异基因确定候选基因,它们的拟南芥同源基因为HCEF1、HOG1、SBPASE、ACT2,这些基因在光合作用的卡尔文循环、碳同化、物质积累等方面发挥重要作用。  相似文献   

20.
甘蓝型油菜结角高度与荚层厚度的全基因组关联分析   总被引:1,自引:0,他引:1  
角果是油菜重要的光合作用和种子存储器官,对油菜产量具有重要贡献。本研究以412份具有代表性的甘蓝型油菜品种(系)为材料,利用芸薹属60K Illumina Infinium SNP芯片对其基因型分析,并对油菜结角高度和角果层厚度进行全基因组关联分析。结果共检测到16个显著关联的SNP,其中重庆环境下分别检测到2个和4个SNP与结角高度和结角层厚度显著关联,单个SNP解释的表型变异为5.61%~5.69%和5.94%~6.31%。云南环境下分别检测到5个和1个显著关联的SNP,单个标记解释的表型变异为12.66%~13.97%和22.43%。对2个环境的结角高度差和结角层厚度差共检测到3个和1个与性状显著相关的SNP,它们对表型变异的解释率分别为17.33%~20.32%和29.05%。其中,环境间结角厚度差的关联SNP与重庆环境结角层厚度的1个显著关联SNP位于同一LD区间。各显著关联标记LD区段的多个基因调节植物细胞组织发生、花分生组织发育、角果数目和多器官发育,如NSN1、TPST和SAC1等,它们可能通过上述功能影响油菜花序或角果的生长发育,导致结角高度或结角层厚度差异。本研究发掘的这些位点和候选基因可作为影响油菜结角高度和角果层厚度的重要候选区域和基因,为揭示油菜结角性状的遗传基础和分子机制,提高油菜单位面积产量奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号