首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To examine the effects of elevated N and S inputs on a central hardwood forest, a whole-watershed acidification experiment was initiated in 1989 on the Fernow Experimental Forest, West Virginia. Annual experimental additions of 40 kg S ha−1 year−1 and 35 kg N ha−1 year−1 as ammonium sulfate fertilizer were applied to a 34 ha watershed with a 25-year-old stand of central Appalachian hardwoods. An adjacent watershed served as the control. After 5 years of treatment (total additions of 275 kg S ha−1 and 220 kg N ha−1), stream water NO3, Ca2+, Mg2+ concentrations and export increased. Soil solution concentrations provide evidence that the treatment watershed is nitrogen-saturated, which was unexpected for such a young stand. No statistically significant changes in annual SO42− export were observed, but peak stream water concentrations of SO42− did increase during the treatment period. Changes in soil solution chemistry suggest that the treated watershed also may be approaching SO42− saturation.  相似文献   

2.
Seasonal and spatial variability of litterfall and NO3 and NH4+ leaching from the litter layer and 5-cm soil depth were investigated along a slope in a tropical dry evergreen forest in northeastern Thailand. Using ion exchange resin and buried bag methods, the vertical flux and transformation of inorganic nitrogen (N) were observed during four periods (dry, early wet, middle wet, and late wet seasons) at 15 subplots in a 180-m × 40-m rectangular plot on the slope. Annual N input via litterfall and inorganic N leached from the litter layer and from 5-cm depth soil were 12.5, 6.9, and 3.7 g N m−2 year−1, respectively, whereas net mineralization and the inorganic N pool in 0–5-cm soil were 7.1 g N m−2 year−1 and 1.4 g N m−2, respectively. During the early wet season (90 days), we observed 82% and 74% of annual NO3 leaching from the litter layer and 5-cm soil depth, respectively. Higher N input via leaf litterfall in the dry season and via precipitation in the early wet season may have led to higher NO3 leaching rate from litter and surface soil layers during the early wet season. Large spatial variability in both NO3 vertical flux and litterfall was also observed within stands. Small-scale spatial patterns of total N input via litterfall were significantly correlated with NO3 leaching rate from the surface soil layer. In tropical dry evergreen forests, litterfall variability may be crucial to the remarkable seasonal changes and spatial variation in annual NO3 vertical flux in surface soil layers.  相似文献   

3.
Above ground dry mass production and N accumulation on an areal basis in stems, branches and needles as well as in litterfall in a Norway spruce stand in south Sweden treated with unlimited availability of water and nutrients (fertilisation with irrigation) or of water (irrigation) during a 6 year experimental period are presented. Fertilisation was made in liquid form on a weekly basis during the vegetation period with 100 kg N ha−1 year−1 during each year. The fertiliser also included a balanced composition of P, K, Ca, Mg and S as well as of micronutrients. Irrigation was carried out as soon as a 20 mm water storage deficit developed. It is concluded that there is a large potential to improve Norway spruce production through liquid fertilisation with irrigation. Stem and branch production of Norway spruce was almost doubled due to this treatment. Also, stand needle dry mass and litterfall were markedly increased in comparison with the control. Water and N availability were the two most limiting growth factors. During the experimental period, irrigation had a greater effect on growth than N addition. The gross N uptake increased by 450 kg ha−1 as a result of 600 kg ha−1 fertiliser addition. Needle retention was increased for irrigated trees but needle litterfall remained unchanged. Changing the forest management of Norway spruce to intensive cultivatation results in transitional carbon sequestration in both stand and soil compared with an untreated ecosystem. The largest long-term environmental value is, however, achieved if this cultivated renewable biomass is used as a substitute for fossil fuels. Wood utilisation options of intensively cultivated Norway spruce are discussed.  相似文献   

4.
Soil N transformations using the polyvinyl chloride (PVC) closed-top tube in situ incubation method were studied in Nanchang urban forests of the mid-subtropical region of China in different months of 2007. Four plots of 20 m × 20 m were established in four different plant communities that represented typical successional stages of forest development including shrubs, coniferous forest, mixed forest and broad- leaved forest. Average concentrations of soil NH 4 + -N from January to December were not different among the four plant communities. The concentrations of soil NO 3 - -N and mineral N, and the annual rates of ammonification, nitrification and net N-mineralization under the early successional shrub community and coniferous forest were generally lower than that of the late successional mixed and broad-leaved forests (p<0.05). Similar differences among the plant communities were also shown in the relative nitrification index (NH 4 + -N/NO 3 - -N) and relative nitrification intensity (nitrification rate/net N-mineralization rate). The annual net N-mineralization rate was increased from younger to older plant communities, from 15.1 and 41.4 kg·ha -1 ·a -1 under the shrubs and coniferous forest communities to 98.0 and 112.9 kg·ha -1 ·a -1 under the mixed and broad-leaved forests, respectively. Moreover, the high annual nitrification rates (50-70 kg·ha -1 ·a -1 ) and its end product, NO 3 - -N (2.4-3.8 mg·kg -1 ), under older plant communities could increase the potential risk of N loss. Additionally, the temporal patterns of the different soil N variables mentioned above varied with different plant community due to the combined affects of natural biological processes associated withforest maturation and urbanization. Our results indicated that urban for- ests are moving towards a state of "N saturation" (extremely nitrification rate and NO 3 - -N content) as they mature.  相似文献   

5.
Nitrate in the soil water below the root zone is a pre-condition for nitrate leaching, and it indicates loss of nutrients from the forest ecosystem. Nitrate leaching may potentially cause eutrophication of surface water and contamination of ground water. In order to evaluate the extent of nitrate leaching in relation to land-use, a national monitoring programme has established sampling routines in a 7×7 km grid including 111 points in forests. During winters of 1986–1993, soil samples were obtained from a depth of 0–25, 25–50, 50–75 and 75–100 cm. Nitrate concentrations in soil solutions were determined by means of a 1 M KCl extraction. The influence of forest size, forest-type, soil-type, tree species and sampling time on the nitrate concentrations was analysed in a statistical model. The analysis focused on data from depth 75–100 cm, as nitrate is considered potentially lost from the ecosystem at this depth. The range of nitrate concentrations was 0–141 mg NO3–N dm−3 and the estimated mean value was 1.51 mg NO3–N dm−3. The concentration was influenced by (1) forest size (concentrations in forests <10 ha were higher than concentrations in forests >50 ha), (2) forest-type (afforested arable land had higher concentrations than forest-type `other woodland'), (3) soil-type (humus soils showed above average concentrations, and fine textured soils had higher concentrations than coarse textured soils), and (4) sampling time. Unlike other investigations, there was no significant effect of tree species. A few sites deviated radically from the general pattern of low concentrations. The elevated concentrations recorded there were probably caused by high levels of N deposition due to emission from local sources or temporal disruptions of the N cycle. The nitrate concentration in the soil solution below the root zone was mostly rather low, indicating that, generally, N saturation has not yet occurred in Danish forest ecosystems. However, median concentrations exceeding drinking water standards (11.3 mg NO3–N dm−3) were found at 7% of the sites. Furthermore, 30% of the sites had median concentrations above 2 mg NO3–N dm−3, suggested as an elevated level for Danish forest ecosystems, equalling annual N losses of more than 2–6 kg ha−1 year−1.  相似文献   

6.
In most temperate forest, nitrogen (N) is considered a limiting factor. This becomes important in extreme environments, as Nothofagus antarctica forests, where the antecedents are scarce. Thinning practices in N. antarctica forests for silvopastoral uses may modify the soil N dynamics. Therefore, the objective of this work was to evaluate the temporal variation of soil N in these ecosystems. The mineral extractable soil N, net nitrification and net N mineralization were evaluated under different crown cover and two site quality stands. The mineral N extractable (NH4 +–N + NO3 ?–N) was measured periodically. Net nitrification and net N mineralization were estimated through the technique of incubation of intact samples with tubes. The total mineral extractable N concentration varied between crown cover and dates, with no differences among site classes. The lowest and highest values were found in the minimal and intermediate crown cover, respectively. In the higher site quality stand, the annual net N mineralization was lower in the minimal crown cover reaching 11 kg N ha?1 year?1, and higher in the maximal crown cover (54 kg N ha?1 year?1). In the lower site quality stand there was no differences among crown cover. The same pattern was found for net nitrification. Thinning practices for silvopastoral use of these forests, keeping intermediate crown cover values, did not affect both N mineralization and nitrification. However, the results suggest that total trees removal from the ecosystem may decrease N mineralization and nitrification.  相似文献   

7.
Long-term patterns in nutrient cycling in regrowing Douglas-fir (Pseudosuga menziesii Mirb. Franco) and red alder (Alnus rubra Bong.) on native soils plus soils previously occupied by other species were simulated using the nutrient cycling model. Simulations of regrowing stands were also compared with observations of nutrient cycling in mature Douglas-fir and red alder. We hypothesized that (1) prolonged presence of red alder will cause a depletion in soil base cations due to increased nitrification and NO3 leaching; (2) lower base cation availability under red alder will ultimately cause biomass production to decline; (3) high N availability in red alder soils will favor regrowth of Douglas-fir; (4) higher base cation and P status of the Douglas-fir soils will favor growth of red alder both in the short- and long-term, since N is not limiting to red alder; and (5) in regrowing red alder, NO3 leaching will increase with time as a result of increased N fixation. All hypotheses were confirmed, but the effect of soil type on biomass production was minimal both for red alder and Douglas-fir. The higher soil organic matter content in the mature red alder stand most likely reflected previous occupation by old-growth Douglas-fir and also a large litter input from the understory vegetation. In general, the nutrient cycling model simulated differences in nutrient cycling patterns at least qualitatively between Douglas-fir and red alder and was helpful in identifying potential gaps in the understanding of biogeochemical cycling as well as uncertainties in the data. The nutrient cycling model did not fully elucidate differences in P cycling between Douglas-fir and red alder and overestimated weathering rates under Douglas-fir. Uncertainties in the data included: (1) temporal patterns in N fixation in the regrowing stands; (2) understory litterfall; and (3) site history and, consequently, presence of pre-existing differences in site conditions.  相似文献   

8.
The effects of 4 years of simulated nitrogen (N) and sulfur (S) depositions on gross N transformations in a boreal forest soil in the Athabasca oil sands region (AOSR) in Alberta, Canada, were investigated using the 15N pool dilution method. Gross NH4+ transformation rates in the organic layer tended to decline (P < 0.10, marginal statistical significance, same below) in the order of control (CK, i.e., no N or S addition), +N (30 kg N ha−1 yr−1), +S (30 kg S ha−1 yr−1), and +NS treatments, with an opposite trend in the mineral soil. Gross NH4+ immobilization rates were generally higher than gross N mineralization rates across the treatments, suggesting that the studied soil still had potential for microbial immobilization of NH4+, even after 4 years of elevated levels of simulated N and S depositions. For both soil layers, N addition tended to increase (P < 0.10) the gross nitrification and NO3 immobilization rates. In contrast, S addition reduced (P < 0.001) and increased (P < 0.001) gross nitrification as well as tended (P < 0.10) to reduce and increase gross NO3 immobilization rates in the organic and mineral soils, respectively. Gross nitrification and gross NO3 immobilization rates were tightly coupled in both soil layers. The combination of rapid NH4+ cycling, negligible net nitrification rates and the small NO3 pool size after 4 years of elevated N and S depositions observed here suggest that the risk of NO3 leaching would be low in the studied boreal forest soil, consistent with N leaching measurements in other concurrent studies at the site that are reported elsewhere.  相似文献   

9.
Tree-based intercropping (TBI) systems, combining agricultural alley crops with rows of hardwood trees, are largely absent in Canada. We tested the hypothesis that the roots of 5–8 years old hybrid poplars, growing in two TBI systems in southern Québec, would play a “safety-net” role of capturing nutrients leaching below the rooting zone of alley crops. TBI research plots at each site were trenched to a depth of 1 m on each side of an alley. Control plots were left with tree roots intact. In each treatment at each site, leachate at 70 cm soil depth was repeatedly sampled over two growing seasons using porous cup tension lysimeters, and analyzed for nutrient concentrations. Daily water percolation rates were estimated with the forest hydrology model ForHyM. Average nutrient concentrations for all days between consecutive sampling dates were multiplied by water percolation rates, yielding daily nutrient leaching loss estimates for each sampling step. We estimated that tree roots in the TBI system established on clay loam soil decreased subsoil NO3 leaching by 227 kg N ha−1 and 30 kg N ha−1 over two consecutive years, and decreased dissolved organic N (DON) leaching by 156 kg N ha−1 year−1 in the second year of the study. NH4 + leaching losses at the same site were higher when roots were present, but were 1–2 orders of magnitude lower than NO3 or DON leaching. At the sandy textured site, the safety net role of poplar roots with respect to N leaching was not as effective, perhaps because N leaching rates exceeded root N uptake by a wider margin than at the clay loam site. At the sandy textured site, significant and substantial reductions of sodium leaching were observed where tree roots were present. At both sites, tree roots reduced DON concentrations and the ratio of DON to inorganic N, perhaps by promoting microbial acquisition of DON through rhizodeposition. This study demonstrated a potential safety-net role by poplar roots in 5–8 year-old TBI systems in cold temperate regions.  相似文献   

10.
In six Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] stands in the Puget Sound Region in Western Washington/USA, forest floor C and N pools were quantified on control plots and on plots that had been fertilized repeatedly with urea 8–30 years ago (total amount of applied N 0.9–1.1 Mg ha−1). Additionally, net N mineralization and nitrification rates were assessed in field and laboratory incubation experiments. Forest floor C/N ratios were decreased on the fertilized plots of all sites compared to the respective control plots. The decreases were particularly strong at sites with initial C/N ratios larger than 30. On sites with low productivity (site index at age 50: <33 m), N fertilization resulted in considerable increases in forest floor N pools. Net N mineralization and nitrification during 12-week field incubation was negligible for the unfertilized and fertilized plots of all except one site (Pack Forest), where the stand had been clear-cut 2 years ago. The increases in N mineralization rates during 12-week laboratory incubation induced by repeated N fertilization showed an inverse relationship to the time elapsed since the last fertilizer application, and were generally larger at sites with initial forest floor C/N ratios >30. For the investigated sites, fertilization effects on net N mineralization sustained for at least 11 years after the last fertilizer application. Nitrification correlated strongly with the forest floor pH; significant formation of NO3 was observed only for O layers with a pH (H2O) higher than 4.5.  相似文献   

11.
Forest fires are known to influence nutrient cycling, particularly soil nitrogen (N), as well as plant succession in northern forest ecosystems. However, few studies have addressed the dynamics of soil N and its relationship to vegetation composition after fire in these forests. To investigate soil N content and vegetation establishment after wildfire, 13 sites of varying age class were selected in the Sub-Boreal spruce zone of the central interior of British Columbia, Canada. Sites varied in time since the last forest fire and were grouped into three seral age classes: (a) early-seral (<14 years), (b) mid-seral (50–80 years) and (c) late-seral (>140 years). At each site, we estimated the percent cover occupied by trees, shrubs, herbs and mosses. In addition, the soil samples collected from the forest floor and mineral horizons were analyzed for the concentrations of total N, mineralizable N, available NO3-N and available NH4+-N. Results indicated that soil N in both the forest floor and mineral horizons varied between the three seral age classes following wildfire. Significant differences in mineralizable N, available NO3-N and available NH4+-N levels with respect to time indicated that available soil N content changes after forest fire. Percent tree and shrub cover was significantly correlated to the amount of available NH4+-N and mineralizable N contents in the forest floor. In the mineral horizons, percent tree cover was significantly correlated to the available NH4+-N, while herb cover was significantly correlated with available NO3-N. Moss cover was significantly correlated with total N, available NO3-N and mineralizable N in the forest floor and available NO3-N in the mineral horizons. We identified several unique species of shrubs and herbs for each seral age class and suggest that plant species are most likely influencing the soil N levels by their contributions to the chemical composition and physical characteristics of the organic matter.  相似文献   

12.
  • ? The short-term effect of organic residue management on the growth and nutrition of Pinus pinaster Ait. seedlings, and on nutrient leaching and chemical properties of an acid soil was assessed through a lysimeter experiment. Treatments included absence, placement on the soil surface, and incorporation into the soil (with and without legume cover cropping) of organic residues (forest floor litter or forest floor litter plus harvest residues).
  • ? Residues placed on the soil surface enhanced seedling growth. Organic residues reduced nutrient losses (NO 3 ? , Ca and Mg) and resulted in nutrient accumulation in the soil. Harvest residues positively affected K seedling nutrition status and enhanced K soil accumulation.
  • ? Legume cover cropping reduced soil nutrient losses (N, Ca, Mg and K) during the early stage of seedling growth; it also improved seedling nutrition status (N and P), but without any effect on growth.
  • ? Harvest residues plus forest floor litter placed on the soil surface was the most appropriate management to both reduce nutrient losses through leaching and increase height of seedlings at the end of the experimental period (two years).
  •   相似文献   

    13.
    Silvicultural canopy gaps are emerging as an alternative management tool to accelerate development of complex forest structure in young, even-aged forests of the Pacific Northwest. The effect of gap creation on available nitrogen (N) is of concern to managers because N is often a limiting nutrient in Pacific Northwest forests. We investigated patterns of N availability in the forest floor and upper mineral soil (0–10 cm) across 6–8-year-old silvicultural canopy gaps in three 50–70-year-old Douglas-fir forests spanning a wide range of soil N capital in the Coast Range and Cascade Mountains of western Oregon. We used extractable ammonium (NH4+) and nitrate (NO3) pools, net N mineralization and nitrification rates, and NH4+ and NO3 ion exchange resin (IER) concentrations to quantify N availability along north-south transects run through the centers of 0.4 and 0.1 ha gaps. In addition, we measured several factors known to influence N availability, including litterfall, moisture, temperature, and decomposition rates. In general, gap-forest differences in N availability were more pronounced in the mineral soil than in the forest floor. Mineral soil extractable NH4+ and NO3 pools, net N mineralization and nitrification rates, and NH4+ and NO3 IER concentrations were all significantly elevated in gaps relative to adjacent forest, and in several cases exhibited significantly greater spatial variability in gaps than forest. Nitrogen availability along the edges of gaps more often resembled levels in the adjacent forest than in gap centers. For the majority of response variables, there were no significant differences between northern and southern transect positions, nor between 0.4 and 0.1 ha gaps. Forest floor and mineral soil gravimetric percent moisture and temperature showed few differences along transects, while litterfall carbon (C) inputs and litterfall C:N ratios in gaps were significantly lower than in the adjacent forest. Reciprocal transfer incubations of mineral soil samples between gap and forest positions revealed that soil originating from gaps had greater net nitrification rates than forest samples, regardless of incubation environment. Overall, our results suggest that increased N availability in 6–8-year-old silvicultural gaps in young western Oregon forests may be due more to the quality and quantity of litterfall inputs resulting from early-seral species colonizing gaps than by changes in temperature and moisture conditions caused by gap creation.  相似文献   

    14.
    The effects of soil compaction and cultivation on soil mineral N dynamics were investigated through an 18-month, in situ N mineralisation experiment during the inter-rotation and early establishment period of a second rotation (2R) hoop pine (Araucaria cunninghamii Aiton ex A. Cunn) plantation in southeast Queensland, Australia. Treatments were 0, 1 and 16 passes of a fully laden forwarder (gross weight, 40.2 Mg) and cultivation by disc plough (zero cultivation and cultivation). Nitrate N was the dominant form of mineral N throughout the 18-month sampling period in both non-cultivated and cultivated soils, varying between 10 and 40 kg ha−1 whilst ammonium N remained <10 kg ha−1. Compaction had no significant effect on N mineralisation or nitrification. However, the remediation of the effects of compaction on soil through the use of the disc plough had significant impacts on N mineralisation, nitrification and N leaching. On a seasonal basis, the mean net N mineralisation increased from around 30 to 53 kg ha−1, nitrification from 28 to 43 kg ha−1 and nitrate N leaching from around 10 to 73 kg ha−1 following cultivation.  相似文献   

    15.
    Measurements of gross NH 4 + and NO 3 ? production in forest soils were conducted using the 15N pool dilution method. Mineral topsoils (0?C10?cm depth) were collected from four forests from northern to southern Japan with a natural climate gradient to elucidate the mechanisms regulating gross nitrification rates in forest soils. Additionally, we attempted to evaluate the relative importance of heterotrophic nitrification in gross total nitrification using acetylene as a specific inhibitor of autotrophic nitrification. Distinct differences were found among sites in the gross rates of NH 4 + production (3.1?C11.4?mg?N?kg?1?day?1) and gross total nitrification (0.0?C6.1?mg?N?kg?1?day?1). The rates of gross heterotrophic nitrification were low in this study, indicating that heterotrophic nitrification is of minor importance in most forest mineral topsoils in Japan. Significant relations were found between gross autotrophic nitrification and gross NH 4 + production, soil N, and soil C concentrations, but none was found between gross autotrophic nitrification and soil pH. We determined the critical value of the gross NH 4 + production rates for gross autotrophic nitrification under which no gross autotrophic nitrification occurred, as well as the critical soil C/N ratio above which gross autotrophic nitrification ceased. Results show that tight coupling of production and consumption of NH 4 + prevents autotrophic nitrifiers from utilizing NH 4 + as long as NH 4 + availability is low.  相似文献   

    16.
    To study the specific effects of N and P fertilizers on soil microbial processes under field conditions, a pine forest in southern Alberta was fertilized with ammonium nitrate and urea (0 and 188 kg N ha−1, respectively) singly and in combination with triple super phosphate (0 and 94 kg P ha−1, respectively). Microbial respiration (BR), substrate induced respiration (SIR), metabolic quotient (qCO2) and rates of microbially mediated key processes were monitored in the forest floor FH material during the growing periods of spring 1990 to fall 1992. A transient increase in soil NH4+ availability was detected following N addition but significant increases in PO43− availability were detected throughout the study as a result of P enhancement. Microbial variables were unaffected by N addition, whereas soil organic matter and SIR was increased with P fertilization. Microbial BR and qCO2 were reduced with P fertilization suggesting more efficient utilization of C. Increased net mineralization of P in the P-fertilized plots was found during the second and third summers after fertilization, following immobilization of P during the first year. In contrast, NH4+-N mineralization in the N-fertilized plots was significantly increased only during the first year. Rates of nitrification were unaffected by either N or P addition. Decomposition of pine litter was enhanced with N addition only during the first year and P had no effect on decomposition. Addition of N and P at these rates does not appear to impose a major ecological stress to the soil ecosystem.  相似文献   

    17.
    Forest stands at the Harvard Forest, Petersham, MA, receiving experimentally elevated N inputs have shown greatly increased N leaching loss yet still retain over 70% of the added N in soils, presumably in organic form. Whether microbial or abiotic mechanisms are responsible for the high N retention is not well understood. We monitored soil respiration and extractable NH4-N and NO3-N following monthly applications of NH4NO3 to a hardwood forest and a pine plantation during the fifth year of chronic fertilizer applications (15 g N as NH4NO3 m−2 per year). We hypothesized that individual N applications would increase short-term soil respiration (within 1 month) in previously unamended and N-limited soil, but that little or no increase would occur following N applications to chronically N-amended soils, assumed to be carbon-limited to some degree after 5 years of N additions. Short-term soil respiration did not increase after N additions in either the chronically amended or previously untreated soils except for one instance in the latter. However, extractable N levels in both previously unamended plots returned to pre-application levels within 2 weeks of the N addition. This rapid disappearance of the applied N suggests microbial immobilization, but in all but one instance there was no accompanying CO2 efflux increase indicating increased microbial biomass growth. A model of N immobilization through microbial biomass production, driven by the observed apparent net N immobilization, predicted soil CO2 efflux 4–17 times greater than measured rates. Microbial biomass production does not appear to be the mechanism by which the fertilizer N immobilization occurred, according to our assumptions about microbial C:N ratios and carbon use efficiency. Hardwood stand average soil respiration rates over the study period were significantly higher in the previously unamended plot than in the control, and the control and chronically N-treated plot respiration rates were similar. Soil respiration rates for all pine stand treatments were similar. These results are insufficient to support our hypotheses concerning carbon versus nitrogen limitation in these soils. Our results, along with evidence from other studies, suggest that abiotic mechanisms play a role in the high retention of long-term N additions in these soils.  相似文献   

    18.
    Stable isotopes of nitrogen are potentially a valuable tool for regional assessments of nitrogen saturation because they provide an integrated measure of the past nitrogen cycling history of a site. We measured δ15N of soil and litter, as well as net nitrification potential, at three sites across a nitrate-loss gradient in the White Mountains, New Hampshire to test the hypotheses: (1) that δ15N in soil and litter increase across a spatial gradient of nitrate loss; and (2) that δ15N in soil and litter is elevated when nitrification is elevated. δ15N was found not to vary significantly among the three sites. Patterns of leaf litter and forest floor δ15N, however, were strongly influenced by species composition in individual plots. Beech litter had significantly higher δ15N than yellow birch, sugar maple, and red maple. The conifer-dominated plots had significantly lower δ15N in both the organic soil horizons and in litter than did the hardwood-dominated plots. When we adjusted for spatial heterogeneity in mineral soil δ15N values by using an enrichment factor, δ15Nfoliar − δ15NBs, in place of absolute soil δ15N values, a positive relationship was found with net nitrification for hardwoods. δ15N may also be a useful tool for evaluating species differences in nitrogen cycling and nitrogen uptake. The distinct pattern we observed of decreasing δ15N across the continuum from hardwood-dominated to conifer-dominated sites may suggest that local drivers (for example, nitrification rate) regulate the absolute value of foliar δ15N, while species-driven factors (e.g., timing and type of uptake) control the foliar δ15N value of one species relative to another in the same plot.  相似文献   

    19.
    Data have been compiled from published sources on nitrogen (N) fluxes in precipitation, throughfall, and leaching from 69 forest ecosystems at 50 sites throughout China, to examine at a national level: (1) N input in precipitation and throughfall, (2) how precipitation N changes after the interaction with canopy, and (3) whether N leaching increases with increasing N deposition and, if so, to what extent. The deposition of dissolved inorganic N (DIN) in precipitation ranged from 2.6 to 48.2 kg N ha−1 year−1, with an average of 16.6 kg N ha−1 year−1. Ammonium was the dominant form of N at most sites, accounting for, on average, 63% of total inorganic N deposition. Nitrate accounted for the remaining 37%. On average, DIN fluxes increased through forest canopies, by 40% and 34% in broad-leaved and coniferous forests, respectively. No significant difference in throughfall DIN inputs was found between the two forest types. Overall, 22% of the throughfall DIN input was leached from forest ecosystems in China, which is lower than the 50–59% observed for European forests. Simple calculations indicate that Chinese forests have great potential to absorb carbon dioxide from the atmosphere, because of the large forest area and high N deposition.  相似文献   

    20.
    To investigate the potential effects of nitrogen (N) deposition on Japanese forests, a chronic N-addition experiment that included three treatments (HNO3, NH4NO3, and control) was carried out in a 20-year-old Japanese cedar (Cryptomeria japonica D. Don) stand in eastern Japan over 7 years. The amount of N applied was 168 kg N ha−1 year−1 on the HNO3 plots and 336 kg N ha−1 year−1 on the NH4NO3 plots. Tree growth, current needle N concentration, and soil solution chemistry were measured. Nitrogen application decreased the pH and increased NO3 , Ca2+, Mg2+, and Al concentrations in the soil solution. The needle N concentration increased in both of the N plots during the first 3 years. Nevertheless, the annual increments in height and in the diameter at breast height of the Japanese cedars were not affected by N application, and no visible signs of stress were detected in the crowns. Our results suggest that young Japanese cedar trees are not deleteriously affected by an excess N load.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号