首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used 14C tracers to determine photosynthate distribution in cherrybark oak (Quercus pagoda Raf.) seedling sprouts following release from competing mid-story vegetation. Fall acquisition of labeled photosynthates by seedlings followed expected source-sink patterns, with root and basal stem tissues serving as the primary sinks. Four months after the seedlings had been labeled with 14C, they were clipped to induce sprouting. First-flush stem and leaf tissues of the resulting seedling sprouts were the primary sinks for labeled photosynthates stored in root tissues. Second-flush stem and leaf tissues, and first-flush stem and leaf tissues the following growing season, were not primary sinks for labeled photosynthates stored in root tissues despite the high radioactivity in root tissues. Root tissues appeared to deposit photosynthates in a layering process whereby the last photosynthates stored in new xylem were the first to be depleted during the initiation of a growth flush the following spring. There were more labeled photosynthates in roots of released seedling sprouts compared with non-released seedling sprouts, indicating increased vigor of released seedling sprouts in response to greater light availability. In contrast, stem and source leaf tissues of non-released seedling sprouts contained greater percentages of labeled photosynthates compared with released seedling sprouts, indicating either greater sink strength or poorly developed xylem and phloem pathways that created inefficiencies in distribution to root tissues. The 14C distribution coefficients confirmed the distribution patterns and provided additional information on the important sinks in released and non-released cherrybark oak seedling sprouts.  相似文献   

2.
  • ? The natural regeneration of shade-tolerant tree species is characterized by large spatial heterogeneity and temporal variability. The mechanisms producing those patterns are still poorly understood and the knowledge of long-term fluctuations in regeneration processes is very limited.
  • ? We used data from long-term study plots in an old-growth stand dominated by European beech and silver fir to address three questions: (1) Is a tendency towards clumping in seedlings associated with a particular spatial scale? (2) Are the spatial patterns in seedlings constant over time? (3) Is the distribution of seedlings related to light intensity?
  • ? Over the study period the seedling density varied from 2.5 to 6 ind./m2. Stronger fluctuations occurred at a fine scale. Seedlings were clumped at distances ranging from a few centimeters to a few meters. The distribution of places with high seedling densities was relatively constant over time, especially in beech. Positive but weak rank correlations were found between light intensity and densities of beech and fir seedlings.
  • ? Despite large fluctuations in seedlings densities, caused by mast-seeding, a permanent seedling bank was maintained. Very pronounced clumping of tree seedlings found in this study was only partially explained by differences in light intensity.
  •   相似文献   

    3.
  • ? The combined effect of water stress and light on seedlings of forest species is a key factor to determine the best silvicultural and afforestation practices in the Mediterranean area.
  • ? The aims of this work was (1) to determine the optimal light level for the early development of cork oak seedlings under mild water stress and (2) to test if the combined effect of water stress and light followed the trade-off, the facilitation or the orthogonal hypothesis.
  • ? Shade reduced instantaneous photosynthetic rates and water use efficiency in cork oak. However, seedlings grown under moderate shade (15% of full sunlight) were capable to accumulate similar amount of biomass than those grown under more illuminated environments by increasing their specific leaf area. Absolute differences in net photosynthesis between light treatments were higher in well watered than in water stressed seedlings. However, the impact of both factors on overall growth was orthogonal.
  • ? We concluded that cork oak development is impaired under deep shade (5% of full sunlight) but it can be optimal under moderate shade (15% of full sunlight) even under moderate water stress. Implications of these patterns on regeneration, cultivation and afforestation of cork oak are discussed.
  •   相似文献   

    4.
  • ? Fine-scale spatial and temporal establishment patterns of direct-seeded oaks on abandoned agricultural land have been little studied despite their potential importance for long-term stand structure.
  • ? Here we periodically monitored seedling emergence and early growth of bur oak (Quercus macrocarpa Michx.) and red oak (Q. rubra L.) on an abandoned pasture, and tested the effects of herbaceous competition, rodents, and soil physicochemical properties.
  • ? Herbaceous competition slightly decreased diameter growth, but rodents had little impact on establishment. Red oak seedlings emerged earlier than bur oak and in a greater proportion (92% vs. 56%). Seedling emergence and early growth of both species showed significant spatial structures that were partly explained by variation in soil physicochemical properties. Bur oak was more responsive to microenvironmental heterogeneity than red oak, yet much of the variation in emergence and growth of both species remained unexplained.
  • ? This suggests that other factors, such as acorn size or genetic variability, may exert equal or greater control than microenvironmental heterogeneity over seedling emergence and early growth of these two oak species on abandoned pastureland.
  •   相似文献   

    5.
  • ? Interpopulation variation in key functional traits of Pinus pinaster Ait. is well recognized. However, the relative importance of drought tolerance to explain this regional variation in the species remains elusive.
  • ? Here, we raise the question whether water availability constitutes a likely driver of regional variation in biomass allocation, growth and morphological traits of ten populations that cover the distribution range of P. pinaster. We carried out an experiment where seedlings of five families per population were submitted to two contrasting watering treatments.
  • ? The effects of water availability and population were significant for relative diameter and height growth rate, biomass allocation and number of lateral stems and dwarf shoots. Total dry mass significantly differed between watering treatments but it did not among populations. Populations could be clustered into four main groups. Root mass fraction explained most of the variation and significantly correlated to altitude but not to aridity.
  • ? The geographical pattern of genetic variation found in morphology and biomass allocation did not translate into population differences in drought tolerance or phenotypic plasticity to water availability, indicating that water availability is not a likely driver of the regional variation observed in the studied traits of P. pinaster at the seedling stage.
  •   相似文献   

    6.
  • ? Seedling density and the regeneration mechanisms of five tree species, Anogeissus leiocarpa, Combretum aculeatum, Combretum micranthum, Combretum nigricans, and Pteleopsis suberosa were investigated in relation to latitudinal gradient across the Sahelo-Sudanian zone of West Africa.
  • ? Data were collected on 461 quadrats (2 m × 5 m) laid out every 30 m on transect lines through Combretaceae communities at four latitudinal positions. Regeneration mechanisms were determined by excavating the below ground root system and assessing basal and aerial sprouts.
  • ? The results showed a significant species × latitudinal position effect on the total density of seedling populations, and the density of single- and multi-stemmed individuals (p < 0.001). C. aculeatum and C. micranthum were abundant in the North-Sahelian sector, C. nigricans and P. suberosa in the Sudanian sector and A. leiocarpa across a wide range from the South-Sahelian to South-Sudanian sectors. In general, 58% of the seedlings were regenerated asexually (as coppice, water sprout, layer, and root sucker) while 42% were sexual recruits (as true seedling and seedling sprouts). The proportion of vegetatively propagated seedlings increased with increasing latitude for all species except C. micranthum, for which a clear decreasing trend was observed. The relative importance of the different regeneration mechanisms varied among species: seedling sprouts were important for A. leiocarpa, C. aculeatum and C. nigricans, coppice for C. micranthum and sucker for P. suberosa
  • ? The significant interaction observed between species and latitudinal position highlights the importance of accurate species-site matching to ensure successful restoration of degraded areas in the Sahelo-Sudanian zone. Inter-species differences in regeneration mechanism could be related to their biology and ecological adaptation to the site-specific biotic and abiotic factors.
  •   相似文献   

    7.

    Key message

    Quercus robur seedling mass was affected more by planting density than by taproot pruning. Root pruning enhanced stem biomass at the expense of roots in later growth stages. Alteration of biomass allocation due to nursery practices may result in greater susceptibility to injury and death of the seedlings under unfavorable environmental conditions.

    Context

    Plants adjust their growth and modulate the resource allocation in response to applied treatments and environmental conditions.

    Aims

    The aim was to examine how taproot pruning in seedlings grown at different densities affected long-term growth of Quercus robur.

    Methods

    Seedlings, sown as acorns at two planting densities, with or without pruned roots were harvested in the second, fourth, and fifth years of growth. The effect of root pruning on biomass allocation was determined by measuring leaf, stem, and root mass fractions; carbohydrate concentrations in the roots; and C/N ratios. Specific leaf area and root length were also determined to assess morphological adaptations to growth conditions.

    Results

    Total seedling mass was affected more by planting density than by taproot pruning. After 4 years of growth, root mass fractions were lower and stem mass fractions were greater in seedlings planted at a higher density. Five-year old root-pruned seedlings also had a lower root mass fraction and higher stem mass fractions than unpruned seedlings. Specific root length was not affected by root pruning or planting density.

    Conclusion

    Decrease of relative root biomass with simultaneous increase of stem biomass may be a long-term consequence of taproot pruning of Q. robur, and the effects may manifest years after the seedling stage.
      相似文献   

    8.
  • ? Knowledge of whole tree seedling water fluxes is important in ecological and forestry research, especially under conditions with low transpiration, but no standard method has yet been established that provides reliable in situ measurements.
  • ? The aims were: (1) to assess the performance of two methods for estimating sap-flows in oak seedlings following planting by correlating the data they provided with natural light intensities over a three-week period, and (2) to compare the estimates with transpiration data obtained by weighing pots.
  • ? Estimates of sap flows obtained from data provided by constant power (Dayau-type) heat balance gauges under low light conditions (100–450 μmol m?2 s?1) were less variable than estimates from variable power (EMS-type) heat balance gauges. The EMS-type system yielded data with little between-gauge variation, but consistently underestimated transpiration on a daily basis, a systematic error that should be corrected by other methods. The Dayau-type gauges yielded data with substantial variations, and several gauges are probably needed in research to cover these variations. Further, both systems provide rather uncertain estimates of short-time (hour) transpiration rates.
  • ? However, provided that these considerations are taken into account, we conclude that it should be possible to use either system in various research contexts.
  •   相似文献   

    9.

    Key message

    Mixing sessile oak and Scots pine in central France to reduce intraspecific competition for water resources did not improve the ability of these two species to withstand severe drought during the summer.

    Context

    In order to reduce the impact of increasingly extreme droughts on forests, managers must adapt their practices to future climate conditions. Maintaining a greater diversity of tree species in temperate forest ecosystems is one of the recommended options.

    Aims

    We addressed how interactions between sessile oak and Scots pine in mixed forests in central France affect their functional response to drought.

    Methods

    We characterized the carbon isotope composition (δ13C) in the tree growth rings formed during wet (2001, 2007) or dry (2003, 2004) summers for each of the two species growing both in pure and in mixed stands in order to compare the effect of stand composition on variations in carbon isotope discrimination (Δ13C) among contrasted years.

    Results

    The severe drought in 2003 induced a strong decrease in Δ13C for all trees and in all stands as compared to 2001. This decrease was greater in pine than in oak. There was no significant difference between pure and mixed stands in the response of either species to drought.

    Conclusion

    Mixing sessile oak and Scots pine in stands in central France does not improve the ability of either species to withstand severe drought during the summer.
      相似文献   

    10.
  • ? The short-term effect of organic residue management on the growth and nutrition of Pinus pinaster Ait. seedlings, and on nutrient leaching and chemical properties of an acid soil was assessed through a lysimeter experiment. Treatments included absence, placement on the soil surface, and incorporation into the soil (with and without legume cover cropping) of organic residues (forest floor litter or forest floor litter plus harvest residues).
  • ? Residues placed on the soil surface enhanced seedling growth. Organic residues reduced nutrient losses (NO 3 ? , Ca and Mg) and resulted in nutrient accumulation in the soil. Harvest residues positively affected K seedling nutrition status and enhanced K soil accumulation.
  • ? Legume cover cropping reduced soil nutrient losses (N, Ca, Mg and K) during the early stage of seedling growth; it also improved seedling nutrition status (N and P), but without any effect on growth.
  • ? Harvest residues plus forest floor litter placed on the soil surface was the most appropriate management to both reduce nutrient losses through leaching and increase height of seedlings at the end of the experimental period (two years).
  •   相似文献   

    11.
  • ? Transplant shock, implicated by depressed seedling physiological status associated with moisture stress immediately following planting, limits early plantation establishment. Large root volume (Rv) has potential to alleviate transplant shock because of higher root growth potential and greater access to soil water.
  • ? We investigated impacts of drought and transplant Rv on photosynthetic assimilation (A), transpiration (E), stomatal conductance (g s ), predawn leaf xylem water potential (ΨL), and growth of northern red oak (Quercus rubra L.) seedlings to explain mechanisms associated with susceptibility to transplant shock. One year-old barerooot seedlings were graded into four Rv categories and either well watered or subjected to drought consisting of low, medium, or high moisture stress by discontinuing irrigation at 22-day intervals for 3 months. Thereafter, all treatments were re-watered to examine recovery.
  • ? Transplant shock was signified by reduced A, E, g s, and ΨL, which generally increased with increasing moisture stress and Rv. Physiological status improved during recovery, though stress was still evident in seedlings exposed to medium or high moisture stress and in larger Rv seedlings. Growth declined with increasing moisture stress but was generally similar among Rv treatments, likely reflecting greater A at the whole plant level and/or reliance upon stored reserves in large Rv seedlings.
  • ? The most effective drought avoidance mechanisms were root growth, stomatal regulation, reduced leaf area, and higher growth allocation to roots relative to shoots. Our results suggest that large initial Rv does not enhance drought avoidance during the first season after transplant in northern red oak seedlings.
  •   相似文献   

    12.
    • ? Nitrogen (N) is one of the most important resources for plants, generally enhancing leaf photosynthesis because a large part of it is allocated to Rubisco and thylakoïds. This is well known in leaves where photosynthesis (i.e. gas exchange, Rubisco activity, chlorophyll content) is positively correlated to leaf N content.
    • ? In order to test this hypothesis in stems, N concentration, CO2 exchange and also Rubisco and PEP carboxylase activities were measured in summer on current-year stems of young European beeches (Fagus sylvatica L.) growing on soils of different N content.
    • ? The CO2 refixation rate of stems increased from 58.5% to 74.3% when stem N concentration increased from 5.7 to 10.1 mg g?1 DW. A hyperbolic relationship was obtained between stem gross photosynthesis and N concentration, with an x-intercept of 0.3 mmol N g?1 DW. Stem PEP carboxylase activity was higher in stems than in leaves and increased with stem N concentration whereas Rubisco activity did not change between treatments in both tissues.
    • ? In spite of a low nitrogen investment in stem photosynthesis (low PNUE), these results suggest that (1) stems invest more N in CO2 refixation when more N is widely available, (2) stem photosynthesis is able to operate at low N concentration and (3) stem PEP carboxylase is involved in stem carbon refixation, but also simultaneously supplies carbon skeletons for N assimilation.
      相似文献   

    13.

    Key message

    The effects of distance dependence, negative density dependence (NDD), phylogenetic density dependence, and habitat filtering were integrated to provide additional evidence in temperate forest tree seedling survival. The main focus of this study was to explore how population density and habitat filtering regulate NDD. An approach involving four classes of population density and three classes of soil moisture was tested, including the effect of habitat variables to more accurately evaluate the underlying ecological processes affecting the density dependence of seedlings.

    Context

    NDD is an important mechanism for the maintenance of species diversity across multiple life stages, particularly during seedling recruitment. By regulating specific population structures to maintain species diversity, the effects of density dependence and distance dependence are sometimes difficult to distinguish. Nevertheless, the contribution of NDD to community assembly, relative to other processes such as habitat filtering, remains a subject of debate. Recently, it has been reported that seedling survivals are also negatively correlated with phylogenetic relatedness between neighbors and focal individuals. This effect is known as phylogenetic negative density dependence (PNDD). However, another opposite effect known as phylogenetic positive density dependence (PPDD) has also been reported to exist.

    Aims

    The objectives of this study are to examine the following: (i) how population density affects negative density dependence (NDD); (ii) how habitat filtering regulates the NDD; (iii) whether more evidence can be found for PNDD or PPDD and why; and (iv) whether the intensity of negative density dependence is affected by the distance between parent trees and seedlings.

    Methods

    The study was conducted in a 20-ha primary mixed broad-leaved Korean pine forest in Changbai Mountain of China. We used generalized linear mixed models to analyze how the seedling survival of 23 woody plant species relates to neighborhoods and habitat variables. Four models were established with and without habitat variables, and two of the four models were used to test how different population densities of focal seedlings and different gradients of habitat variable regulated negative density dependence.

    Results

    The following results were obtained: (1) the strongest conspecific negative density dependence (CNDD) was found within a radius of 15 m; (2) seedling survival were most strongly impacted by the density of conspecific seedling and adult neighbors in habitats with relatively low soil moisture; (3) the effect of seedling-seedling CNDD was especially significant, when densities ranged from 20 to 40 seedlings/4 m2, and (4) there were some evidences of phylogenetic positive density dependence (PPDD), and the effect of seedling-seedling PPDD was increasing with an increase in soil moisture.

    Conclusion

    Our results demonstrate that conspecific negative density dependence played an important role in seedling survival, which is closely related to habitat filtering and population density. However, we found some evidences of phylogenetic positive density dependence. We suggest that future studies of neighborhood density dependence should increase awareness of evolutionary relationships.
      相似文献   

    14.
  • ? Fall fertilization may increase plant nutrient reserves, yet associated impacts on seedling cold hardiness are relatively unexplored.
  • ? Bareroot red pine (Pinus resinosa Ait.) seedlings in north-central Minnesota, USA were fall fertilized at the end of the first growing season with ammonium nitrate (NH4NO3) at 0, 11, 22, 44, or 89 kg N ha?1. Seedling morphology and cold hardiness [assessed by freeze induced electrolyte leakage (FIEL)] were evaluated six weeks after fertilization and following the second growing season.
  • ? Seedling height and number of needle primordia increased with fertilizer rate for both sampling years. Seedlings fertilized with 44 and 89 kg N ha?1 attained target height (15 cm) after the second growing season. Shoot and root N concentration increased after the first growing season in fall fertilized seedlings compared to controls. Fall fertilized seedlings had lower FIEL (i.e., increased cold hardiness) compared to controls when tested at ?40 °C after the first growing season, but no significant differences in FIEL of control and fertilized seedlings were observed after the second growing season.
  • ? Results suggest that fall fertilization of red pine seedlings can help render desired target height in the nursery, while maintaining or increasing cold hardiness levels.
  •   相似文献   

    15.

    Key message

    The disturbance of a research plot by a windstorm allowed us to study the role of the seedling bank in the regeneration processes. The released advance regeneration dominated among the saplings; taller individuals retained their position until the end of the study. Pioneer species occurred sporadically. Seven years after the disturbance, the windthrow was covered by a dense thicket of young trees.

    Context

    The dominant role played by advance regeneration in natural regeneration processes after intense wind disturbances is still a matter of dispute.

    Aims

    We took advantage of a windstorm in one of our research plots to study the role of the seedling bank released by the disturbance in the regeneration processes.

    Methods

    We collected data in 70 plots, recording the survivorship of seedlings, annual height growth, and signs of browsing. The height ranking was analyzed with Kendall’s concordance coefficient, and the height growth rates were compared using Dunn’s test.

    Results

    The density of seedlings increased from 6.7/m2 in 2008 to 8.1/m2 in 2010 and then decreased to 1.2/m2 in 2015. The density of saplings increased continuously from 0.14 to 1.9/m2. The highest size differentiation occurred in sycamore maple; the individuals which were taller before the windstorm retained their position until the year 2015. The only species that was recruited mainly from germinants was European hornbeam.

    Conclusion

    The advance regeneration released by the windstorm played a major role in the regeneration process, while pioneer species occurred only sporadically. Seven years after the disturbance, the windthrow was already covered by a dense thicket of young trees.
      相似文献   

    16.

    Key Message

    Gene expression analysis showed that prolonged short day (SD) treatment deepened dormancy and stimulated development of freezing tolerance of Picea abies seedlings. Prolonged SD treatment also caused later appearance of visible buds in autumn, reduced risks for reflushing, and promoted earlier spring bud break.

    Context

    Short day (SD) treatment of seedlings is a common practice in boreal forest tree nurseries to regulate shoot growth and prepare the seedlings for autumn planting or frozen storage.

    Aims

    The aim of this study was to examine responses of Norway spruce (Picea abies (L.) Karst.) to a range of SD treatments of different length and evaluate gene expression related to dormancy induction and development of freezing tolerance.

    Methods

    The seedlings were SD treated for 11 h a day during 7, 14, 21, or 28 days. Molecular tests were performed, and the expression profiles of dormancy and freezing tolerance-related genes were analyzed as well as determination of shoot growth, bud set, bud size, reflushing, dry matter content, and timing of spring bud break.

    Results

    The 7-day SD treatment was as effective as longer SD treatments in terminating apical shoot growth. However, short (7 days) SD treatment resulted in later activation of dormancy-related genes and of genes related to freezing tolerance compared to the longer treatments which had an impact on seedling phenology.

    Conclusion

    Gene expression analysis indicated an effective stimulus of dormancy-related genes when the SD treatment is prolonged for at least 1–2 weeks after shoot elongation has terminated and that seedlings thereafter are exposed to ambient outdoor climate conditions.
      相似文献   

    17.
  • ? Young coast redwood (Sequoia sempervirens (D. Don.) Endl.) trees were pruned to various heights to examine the effect of pruning severity on epicormic sprouting. Seven separate stands were used with as many as six treatments per stand in coastal Humboldt County, California, USA.
  • ? Epicormic sprout development was affected by pruning severity but primarily at the most severe pruning treatments that removed all but the branches in the top 15% of tree height. Less severe treatments produced sprouts but the number and size of these sprouts were comparable to unpruned trees.
  • ? Natural clonal patterns were also used to explore patterns of sprouting between genotypes. Linear mixed-effects models were developed to predict sprouting frequency as a function of pruning severity while accounting for the nested data structure (i.e., stem sections sampled nested within genotypes within treatments within sites).
  • ? Comparing variances attributed to each of these random effects indicated that at any level of pruning severity, differences in epicormic sprouting between genotypes and sites expressed soon after pruning had disappeared after six growing seasons. Epicormic branches were more common two years after pruning than six years indicating many branches were dying. Branches were more common in the middle of the pruned bole, possibly because of competition from basal sprouts and the expanding tree crown.
  •   相似文献   

    18.
  • ? The effects of thinning and heavy stand density reduction was investigated in Turkey oak (Quercus cerris L.) forests of central Italy, to evaluate the physiological responses and the growth status of trees that survived a past coppice cut and thinning to convert the stand to high-forest.
  • ? The working hypothesis was that a strong decrease in stand density would cause a decreasing in canopy-intrinsic water-use efficiency (measured as the ratio of CO2 assimilation to stomatal conductance, A/g), thus an increase in tree-ring carbon isotopic discrimination (Δ13C).
  • ? The tree-ring Δ13C of the remaining trees (“survivors”) was found to have significantly (P < 0.05) raised between year two and year seven since the coppice stand was thinned (high-forest conversion thinnings). This effect was mostly caused by a large decrease in tree-rings Δ13C at control site which was characterized by high density and competition by trees. An increase in survivors tree-rings Δ13C probably indicates an improved water availability, possibly induced by a decrease in competition and in stand density or a decrease in the precipitation intercepted by the canopy (i.e., a stronger increase in g over A since a decrease in A is highly unlikely). A change in foliar nitrogen, foliar Δ13C and content in chlorophylls was also recorded seven years after thinning.
  • ? Thinnings carried out to convert old abandoned coppices into high-forest stands induce short-term stimulation of Turkey oak growth by increasing light and water availability. We were able to make a detailed reconstruction of the impact of past silvicultural treatment on the stand using a tree-ring wood Δ13C time-series.
  •   相似文献   

    19.
  • ? Seedling banks of woody species established under closed canopy have received little consideration in coppice forests despite their potential importance for natural regeneration.
  • ? This study aimed to evaluate the influences of canopy composition and of distance from the nearest forest edge on the abundance and species richness of the seedling bank, for different ecological groups of seedlings (age, successional status and dispersal vector) in 68 fragmented coppice stands.
  • ? Seedlings were found in 67 stands, with 19 species identified. Eight species present as older seedlings were lacking as first-year old seedlings, suggesting temporal variability of species recruitment. Seedling abundances of species with low-dispersal ability were positively correlated with the abundances of their conspecific adults. Seedling abundance of mid-successional species was negatively correlated with the distance from the nearest forest edge, while mid-to-late successional species seedling abundance presented the opposite pattern.
  • ? Our results showed that woody species were able to establish frequently under closed canopy in these fragmented coppices and form a seedling bank which may be used for natural regeneration.
  •   相似文献   

    20.

    Key message

    Short-rotation forestry using eucalyptus in degraded oak forests in the semi-arid area of NW Morocco can be a useful strategy to avoid further degradation and carbon loss from this ecosystem, but it might be constrained by nutrient and water supply in the long term.

    Context

    Land degradation and deforestation of natural forests are serious issues worldwide, potentially leading to altered land use and carbon storage capacity.

    Aims

    Our objectives were to investigate if short-rotation plantations can restore carbon pools of degraded soils, without altering soil fertility.

    Methods

    Carbon and nutrient pools in above- and below-ground biomass and soils were assessed using stand inventories, harvested biomass values, allometric relationships and selective sampling for chemical analyses.

    Results

    Carbon pools in the total ecosystem were low in the degraded land and in croplands (6–13 Mg ha?1) and high in forests (66–94 in eucalyptus plantations; 86–126 in native forests). The soil nutrient status of eucalyptus stands was intermediate between degraded land and native forests and increased over time after eucalyptus introduction. All harvest scenarios for eucalyptus are likely to impoverish the soil but, for the moment, the soil nutrient status has not been affected.

    Conclusion

    Afforestation of degraded land with eucalyptus can be a useful restoration tool relative to carbon storage and soil fertility, provided that non-intensive forestry is applied.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号