首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments simulating interplanting of resistant rootstocks with susceptible rootstocks that maintain high population densities of Tylenchulus semipenetrans in field soil were carried out in microplots at two locations, and in an naturally infested orchard. Selections of Cleopatra mandarin (03) × Poncirus trifoliata (01) 03.01.5 and 03.01.13, Citrus volkameriana (23) × P. trifoliata 23.01.17, Troyer citrange (02) × Cleopatra mandarin 02.03.24, Troyer citrange × Common mandarin (04) 02.04.18, King mandarin (05) × P. trifoliata 05.01.7, and Carrizo citrange were exposed to continuous high population densities of a population of the Mediterranean biotype of T. semipenetrans. The selection 23.01.17 retained its resistance in the microplots and in the field (< 1.2% females and eggs per gram fibrous root of those on Carrizo citrange). The selection 03.01.5 also retained its resistance in the microplots at Moncada (< 0.5% females and eggs per gram fibrous root of those on Carrizo citrange) but numbers of females and eggs per gram fibrous root were 27% and 22% at Amposta, and 139% and 18% in the orchard of those on Carrizo citrange, respectively. The selection 05.01.7 supported equal number of females and 43% eggs per gram fibrous root of those on Carrizo citrange in the nematode-infested orchard. The remaining selections supported high populations of T. semipenetrans.  相似文献   

2.
3.
A graft-transmissible pathogen causing bud union crease of Nagami kumquat SRA–153 on Troyer citrange was characterized for host range and symptomatology. Buds of Marsh grapefruit, Nules clementine, Eureka lemon and Pineapple sweet orange preinoculated with kumquat SRA–153 were propagated on citrange rootstocks. Some plants of Nules clementine and Eureka lemon had developed bud union crease six months after propagation, whereas all Marsh grapefruit and Pineapple sweet orange plants still showed normal bud union after one year. On indexing these preinoculated species, Nules clementine and Eureka lemon caused vein clearing in Pineapple sweet orange and Dweet tangor, chlorotic blotching in Dweet tangor and stem pitting in Etrog citron, whereas Marsh grapefruit and Pineapple sweet orange caused only chlorotic blotching in Dweet tangor and stem pitting in Etrog citron. Following shoot-tip grafting in vitro of kumquat SRA–153, kumquats 38–1 and 497–2 obtained from it caused chlorotic blotching in Dweet tangor and stem pitting in Etrog citron, but not vein clearing in Pineapple sweet orange and Dweet tangor or bud union crease when propagated on citrange. These results suggest the presence of at least two pathogens or pathogen strains in kumquat SRA–153 and the elimination of one of them after shoot-tip grafting in vitro or inoculation on Marsh grapefruit or Pineapple sweet orange. They also indicate that the pathogens in kumquat SRA–153 can be detected by indexing on Dweet tangor or Etrog citron.  相似文献   

4.
柑桔碎叶病毒的发生与初步鉴定   总被引:1,自引:0,他引:1  
 采用特洛亚枳橙(Troyer citrange),卡里佐枳橙(Carrizo citrange)、鲁斯克枳橙(Rusk citrange)和厚皮来檬(Citrus excelsa)作指示植物,鉴定出黄岩栽培的柑桔本地早,少核本地早、槾桔、早桔、朱红、乳桔、椪柑.北京柠檬、兴津温州及采自温州的柳橙等10个品种,无论枳砧或构头橙砧的都感染有碎叶病毒(Tatter Leaf Virus)枳橙的症状是叶片出现黄白色斑点,皱缩,畸形,茎下出现黄白色条斑,扭曲;厚皮来檬的症状是叶片黄白色斑点,皱缩、畸形.田间栽培的构头橙砧柑桔品种比枳砧的表现耐柑桔碎叶病毒。枳橙的TLV病叶和田间本地早(积)叶片、花瓣能汁液磨擦豇豆(Vigna sp.)叶,并能回接豇豆,接种3—5天后,豇豆叶即出现红褐色(木占)斑,电镜初步观察到为450—900nm长杆状病毒粒子。  相似文献   

5.
柑桔体细胞杂种对柑桔脚腐病的抗病性研究   总被引:2,自引:0,他引:2  
 三七[Panax notoginseng(Burk) F.H.Chen,1945]是我国的名贵药材之一,与三七有关的各种病害的研究报道较多,但根结线虫危害三七,引起三七根结线虫病尚未见报道。  相似文献   

6.
Several budwood-transmitted citrus diseases, including citrus tristeza virus, citrus psorosis, citrus impietratura and a range of citrus viroids, were tested both visually and biochemically on a combined indicator (CInd) plant consisting of an Alemow (Citrus macrophylla) rootstock grafted with Etrog citron (C.medica) and Sour orange (C.aurantium) or Sweet orange (C.sinensis) buds. Indexing on CInd plants is economical for limited testing space; an additional advantage is that, by collecting budwood directly from the CInd plants, the risk of diagnostic failure due to uneven pathogen distribution in the budwood source tree is considerably reduced.  相似文献   

7.
Citrus tristeza virus (CTV) represents one of the major threats to citrus production worldwide. In the East Adriatic region, CTV symptoms are mostly absent due to traditional citrus grafting on trifoliate orange (Poncirus trifoliata), a CTV-tolerant rootstock. Therefore, the virus has been continuously spreading by the propagation of infected material. The genetic variability of CTV was studied on nineteen citrus samples, collected from orchards in the coastal region of Croatia, Montenegro and Albania, that previously tested positive by ELISA and immunocapture RT-PCR. Single-strand conformation polymorphism of the amplified coat protein gene demonstrated the presence of different CTV variants in each amplicon, while sequence analysis of cloned CP gene variants confirmed their clustering into six out of the seven phylogenetic groups so far delineated. Four of these groups include sequences of severe quick decline, seedling yellows and stem-pitting (SP) isolates, thought to be found only rarely in the Mediterranean region. Regardless of the lack of symptoms in the field, CTV isolates from the East Adriatic displayed high genetic variability and pathogenic potential, additionally confirmed by biological characterisation. The high percentage of mixed infections suggest the potential for further diversification and a greater risk of severe variants spreading into new areas.  相似文献   

8.
Huanglongbing (HLB), associated with the phloem‐limited bacterium ‘Candidatus Liberibacter asiaticus’ (Las), is devastating trees in citrus orchards of Florida. Additionally, Phytophthora nicotianae, omnipresent in citrus soils, causes root rot that reduces water and nutrient uptake by fibrous roots. To investigate fibrous root damage and replacement and canopy size in relation to infection of fibrous roots by Las and P. nicotianae, rootstock seedlings of Swingle citrumelo (Citrus paradisi × Poncirus trifoliata) were inoculated with Las or P. nicotianae in two greenhouse pot trials. Phytophthora nicotianae caused root damage within 5 weeks post‐inoculation, which led to greater reduction of canopy size than for Las‐infected seedlings by the end of the experiment. Las increased accumulation of fibrous root biomass at 5 weeks post‐root trimming (wpt) in the 2014 trial and at 11 wpt in the 2015 trial. New root length was not consistently increased by Las. Reduced total leaf area of symptomless Las‐infected seedlings compared to noninoculated controls might be due to the combined effect of altered carbohydrate allocation between shoots and roots and altered leaf morphology.  相似文献   

9.
The mechanism of resistance to diclofop-methyl in three Italian populations of Lolium spp. (two resistant and one susceptible) was investigated. The major proportion of R-1 (Tuscania 1997) and R-2 (Roma 1994) plants (approximately 80%) survived after herbicide treatment by emitting new tillers from the crown. Both resistant (R-1 and R-2) and susceptible (Vetralla 1994) Lolium spp. populations were target-site sensitive. No difference in diclofop-methyl absorption by shoots of resistant and susceptible biotypes was observed. At the dose corresponding to 1× the recommended field rate, a relatively higher metabolism was found in R-2 biotype. In contrast, at the doses 2× and 10× the field rate no difference in herbicide metabolism between susceptible and resistant biotypes was observed. At all the three herbicide doses (1×, 2×, and 10× the field rate) 48 h after the treatment (HAT), the total amount of metabolites produced by wheat was more than three times higher than that produced by resistant and susceptible ryegrass biotypes. At the doses 1× and 2× the field rate, the herbicide translocation was different in the susceptible biotypes compared to resistant biotypes. The total amount of the radiolabel found 48 HAT in culm and root was approximately twice in susceptible biotype than in resistant biotypes. Susceptible and resistant ryegrass biotypes differed in the capability of their roots to acidify the external medium. Susceptible biotype acidified the external solution at approximately 6 times the rates of the resistant biotypes. In the present study, the mechanism responsible for resistance in the investigated resistant biotypes was not univocally identified. Indirect evidence supports the possible involvement of herbicide sequestration or immobilization.  相似文献   

10.
Leaf and stem inoculations of lemon seedlings withPhoma tracheiphila resulted in severe infection and did not reflect satisfactorily the reaction of lemon cultivars to natural mal secco infection in the field. A tolerance rating by stem inoculation was closer to known field performance of lemon cultivars. The tolerance was affected by the rootstock, withCitrus volkameriana conferring a higher tolerance than Sour orange (C. aurantium) or Rough lemon (C. jambhiri). The field inoculation test gave ratings of tolerance closest to natural infection data; Monachello was the only tolerant cultivar, and Santa Teresa showed slight tolerance.  相似文献   

11.
The action of atrazine and its biodegradation products on the membrane transport of potassium in roots was evaluated in both sensitive and resistant plants. Excised roots of maize and oat showed inhibition of potassium uptake efficiency in the presence of 1.4 × 10?4M atrazine and 1.4 × 10?4M deethylated atrazine. Other biodegradation products such as 2-chloro-4-amino-6-ethylamino-1,3,5-triazine,2-chloro-4,6-,bisamino-1,3,5-triazine, and 2-chloro-4-amino-1,3,5-triazine showed no inhibitory effect on the K+ uptake capacity. Two maize hybrids showing different uptake efficiency were inhibited differently by atrazine. We suggest that atrazine and deethylated atrazine inhibited the K+ transport interacting directly with the plant cell membranes without discerning between resistant and sensitive plants.  相似文献   

12.
The vesicular arbuscular fungusGlomus mosseae (Nicol. & Gerd.) Gerd. & Trappe was retrieved from citrus trees growing in loess soil in the Negev region of Israel. Inoculation of citrus seedlings with the mycorrhizal fungus greatly increased the growth of plants in soil low in phosphorus. Rough lemon responded more than Sour orange. Vesicular arbuscular mycorrhiza caused higher concentrations of P and Cu and lower concentrations of N, K and Ca in leaves of inoculated plants.  相似文献   

13.
The present work deals with the insecticidal efficacy of different modified natural silica products against the field pests Epilachna vigintioctopunctata (F.) and Spodoptera litura (F.). The substances “Fossil Shield® 90.0s”, “Advasan®” as well as different formulations of a silica-derived substance named “AL06” (developed in the section Urban Horticulture, Humboldt-University Berlin) were dusted into gauze-covered cages. In each cage, test insects were placed and mortality measured over time. A 100% mortality rate was archieved two days after treatment of adult E. vigintioctopunctata and S. litura larvae with some silica “AL06”-formulations. In contrast, mortality rate for E. vigintioctopunctata larva was only 30 to 70% after two days of treatment. Mortality rate was dose dependend, even though a linear correlation could not be found. Furthermore, the commercial substance “Advasan®” was able to control the horticultural pest E. vigintioctopunctata within 48 hours successfully. For future horticultural applications, possible phytotoxic side effects of silica dusts and an application technology resulting in adequate leaf coverage have to be considered.  相似文献   

14.
ABSTRACT Phytophthora nicotianae and P. palmivora infect and cause rot of fibrous roots of susceptible and tolerant citrus rootstocks in Florida orchards. The infection and colonization by the two Phytophthora spp. of a susceptible citrus host, sour orange (Citrus aurantium), and a tolerant host, trifoliate orange (Poncirus trifoliata), were compared using light and electron microscopy. Penetration by both Phytophthora spp. occurred within 1 h after inoculation, regardless of the host species. No differences were observed in mode of penetration of the hypodermis or the hosts' response to infection. After 24 h, P. palmivora had a significantly higher colonization of cortical cells in susceptible sour orange than in tolerant trifoliate orange. Intracellular hyphae of both Phytophthora spp. were observed in the cortex of sour orange, and cortical cells adjacent to intercellular hyphae of P. palmivora were disrupted. In contrast, the cortical cells of sour orange and trifoliate orange adjacent to P. nicotianae hyphae and the cortical cells of trifoliate orange adjacent to P. palmivora were still intact. After 48 h, the cortical cells of both hosts adjacent to either Phytophthora spp. were disrupted. After 48 and 72 h, P. palmivora hyphae colonized the cortex of sour orange more extensively than the cortex of trifoliate orange; P. palmivora also colonized both hosts more extensively than P. nicotianae. A higher rate of electrolyte leakage among host-pathogen combinations reflected the combined effects of greater cell disruption by P. palmivora than by P. nicotianae, and the higher concentration of electrolytes in healthy roots of trifoliate orange than of sour orange. Although cellular responses unique to the tolerant host were not observed, reduced hyphal colonization by both pathogens in the cortex of trifoliate orange compared with sour orange is evidence for a putative resistance factor(s) in the trifoliate orange roots that inhibits the growth of Phytophthora spp.  相似文献   

15.
16.
Several glutathione S-transferases which catalyze the conjugation of reduced glutathione with organophosphorus triesters were separated from fat bodies of adult female American cockroaches, Periplaneta americana (L.). Two transferases (I, V) were active on diazinon and three transferases (II, III, IV) were active on methyl parathion. The transferase (I) active on the pyrimidinyl moiety of diazinon was distinguishable from the other transferases on the O-methyl portion of methyl parathion, as shown by chromatographic properties, and additionally it was almost inactive or less active on 3,4-dichloronitrobenzene, methyl iodide, p-nitrobenzyl chloride, trans-cinnamaldehyde, and 1,2-epoxy-3-(p-nitrophenoxy)propane. Transferase II had high activities with “aryl” and “aralkyl” compounds, transferase III with “epoxide” and “alkene,” and transferase IV with “alkyl,” “aryl,” and “aralkyl” compounds. This indicated that the transferases had overlapping substrate specificities. The molecular weight was 35,000–37,000 for both of the enzymes active on methyl parathion and diazinon. The pH optima with methyl parathion and diazinon were about 8.5 and 6.5, respectively. At a glutathione concentration of 5 mM, Michaelis constants were 0.28 and 0.13 mM for methyl parathion and diazinon, respectively.  相似文献   

17.
The mode of action of trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine), oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide), pronamide(N-(1,1-dimethylpropynyl) 3,5-dichlorobenzamide), and propham (isopropyl carbanilate) on purified microtubules from pig brains and on the ultrastructure of wheat (Triticum aestivum L. “Mediterranean,” C. I. 5303) and corn (Zea mays L. “yellow dent, U. S. 13”) roots was compared with that known for colchicine. Colchicine disrupts the in vivo cortical and spindle microtubules of root cells. Like colchicine, the herbicides trifluralin, oryzalin, and pronamide caused the loss of both cortical and spindle microtubules of root cells. The rate of microtubule disappearance depended on the type of herbicide and length of exposure of roots to the herbicide. Unlike colchicine, cortical microtubules were present in propham-treated roots but they were disoriented within the cell.In vitro polymerization studies with pig brain microtubules (Sus scrofa) showed that the herbicides failed to inhibit the assembly of purified microtubular protein into microtubules and that radioactively labeled herbicides did not bind to the microtubular protein. Colchicine inhibited the polymerization of microtubular protein and readily bound to the microtubular subunits. These results indicate that the mode of action of the herbicides is not similar to that of colchicine and that the loss of microtubules from root tip cells treated with trifluralin, oryzalin, and pronamide may be caused by these herbicides interfering with synthesis of microtubular protein or metabolism of endoplasmic reticulum membranes involved in microtubule assembly. The mode of action of propham appears to be on the microtubular organizing centers rather than on microtubules per se.  相似文献   

18.
Three Australian Sisymbrium orientale and one Brassica tournefortii biotypes are resistant to acetolactate synthase (ALS)-inhibiting herbicides due to their possession of an ALS enzyme with decreased sensitivity to these herbicides. Enzyme kinetic studies revealed no interbiotypic differences within species in Km (pyruvate) (the substrate concentration at which the reaction rate is half maximal) but a greater Vmax (the rate when the enzyme is fully saturated with substrate) for two of the resistant S orientale biotypes over susceptible levels. F1 hybrids from reciprocal crosses between resistant and susceptible biotypes of S orientale showed an intermediate response to chlorsulfuron compared to the parental plants. ALS herbicide resistance in S orientale segregated in a 3:1 (resistant:susceptible) ratio in F2 plants with a single rate of chlorsulfuron, indicating that resistance is inherited as a single, incompletely dominant nuclear gene. Two regions of the ALS structural gene known to vary in ALS-resistant biotypes were amplified and sequenced. Resistant S orientale biotypes NS01 and SS03 contained a single nucleotide substitution in Domain B, predicting a Trp (in susceptible) to Leu (in resistant) amino acid change. Two adjacent nucleotide substitutions (CC T to AT T) predicting a Pro (in susceptible) to Ile (in resistant) change in the primary amino acid sequence were identified in Domain A of resistant S orientale biotype SS01. Likewise, a single nucleotide substitution at the same site in the resistant B tournefortii biotype predicts a Pro (in susceptible) to Ala (in resistant) substitution. No other interbiotypic nucleotide differences predicted amino acid changes in the sequenced regions, suggesting that the amino acid substitutions reported above are responsible for resistance to ALS-inhibiting herbicides in the respective biotypes. © 1999 Society of Chemical Industry  相似文献   

19.
Two Alisma plantago‐aquatica biotypes resistant to bensulfuron‐methyl were detected in rice paddy fields in Portugal’s Mondego (biotype T) and Tagus and Sorraia (biotype Q) River valleys. The fields had been treated with bensulfuron‐methyl‐based herbicide mixtures for 4–6 years. In order to characterize the resistant (R) biotypes, dose–response experiments, absorption and translocation assays, metabolism studies and acetolactate synthase (ALS) activity assays were performed. There were marked differences between R and susceptible (S) biotypes, with a resistance index (ED50R/S) of 500 and 6.25 for biotypes Q and T respectively. Cross‐resistance to azimsulfuron, cinosulfuron and ethoxysulfuron, but not to metsulfuron‐methyl, imazethapyr, bentazone, propanil and MCPA was demonstrated. No differences in the absorption and translocation of 14C‐bensulfuron‐methyl were found between the biotypes studied. Maximum absorption attained 1.12, 2.02 and 2.56 nmol g−1 dry weight after 96 h incubation with herbicide, for S, Q and T biotypes respectively. Most of the radioactivity taken up by the roots was translocated to shoots. Bensulfuron‐methyl metabolism in shoots was similar in all biotypes. The R biotypes displayed a higher level of ALS activity than the S biotype, both in the presence and absence of herbicide and the resistance indices (IC50R/S) were 20 197 and 10 for biotypes Q and T respectively. These data confirm for the first time that resistance to bensulfuron‐methyl in A. plantago‐aquatica is target‐site‐based. In practice, to control target site R biotypes, it would be preferable to use mixtures of ALS inhibitors with herbicides with other modes of action.  相似文献   

20.
The nucleotide sequences for the minor coat protein (CPm) gene and its deduced amino acid sequences for two aphid-transmissible and two nontransmissible isolates of Citrus tristeza virus (CTV) from symptomless orchard trees of Miyagawa satsuma [Citrus unshiu (Macf.) Marc.] on trifoliate orange [Poncirus trifoliate (L.) Raf.] and declining Washington navel [C. sinensis (L.) Osb.] trees on sour orange (C. aurantium L.) rootstocks were analyzed and compared with those of highly transmissible CTV strains available in GenBank. The isolates produced severe symptoms on indicator plants and their aphid transmissibility was assayed through acquisition by A. gossypii of CTV and subsequent inoculation feeding on young Mexican lime seedlings. The CPm gene nucleotides and coded amino acid sequences were very similar among the nontransmissible isolates and among the transmissible. Five of 73 nucleotide substitutions that existed between CPm gene nucleotide sequence of nontransmissible and transmissible isolates caused changes in the deduced amino acid sequences of the nontransmissible isolates. Two nucleotide substitutions yielded new amino acids with similar properties. However, the three remaining mutations led to substitution of new amino acids with a different charge and polarity at positions 14, 238 and 239. The last two mutations occurred at the C-terminal region of the CPm, which is implicated in the formation of a salt bridge that helps to maintain the protein’s tertiary structure. Amino acid substitutions can affect aphid transmission efficiency by altering the conformation of the proteins or masking motifs involved in the interaction between CPm and aphid stylets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号