首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为提高桉树人工林小径桉木的干燥效率和质量,在对桉木干燥加工企业进行调研的基础上,对巨尾桉(Eucalyptus grandis×E.urophylla)锯材的堆积方式和干燥基准进行分析,制定优化干燥工艺.结果表明,采用优化后的干燥工艺,小径巨尾桉锯材从初含水率47.30%干燥至终含水率9.14%,共耗时178 h,平均干燥速率0.21%/h,比企业干燥工艺的干燥速率高出23.53%;干燥质量指标均满足GB/T 6491-2012对二级锯材的技术要求.该工艺可进行推广,有利于桉木锯材干燥生产的提质增效及节能减排.  相似文献   

2.
采用辊筒式单板干燥机对尾巨桉、柳叶桉、巨桉、大花序桉、邓恩桉、粗皮桉6种桉木单板进行干燥试验研究,结果表明,树种对单板干燥质量具有极显著影响。从单板终含水率及均匀性看,粗皮桉、尾巨桉和大花序桉较好,邓恩桉干燥速率低,终含水率未达到单板干燥质量要求;从干燥后单板的开裂数量及延长度看,树种间差异不显著;从干燥后单板的翘曲程度看,柳叶桉、粗皮桉和邓恩桉质量较好;从单板干燥过程中节子脱落造成的孔洞增加数看,尾巨桉、邓恩桉和柳叶桉质量较好。总体来看,粗皮桉、尾巨桉、大花序桉和柳叶桉的单板干燥质量较好,可以满足胶合板生产质量要求,邓恩桉和巨桉单板干燥需要进一步研究。  相似文献   

3.
桉树木材干燥特性与工艺及其皱缩研究现状   总被引:3,自引:0,他引:3  
本文回顾和分析了桉树木材与干燥有关的材性和干燥特性 ,指出桉木的密度、含水率和干缩率变异性大、渗透性差 ,在干燥过程中易产生皱缩、开裂等干燥缺陷 ,若采用预冻处理和前后期调湿处理可减少木材的皱缩 ;同时建议研究各种桉木不同规格板材的干燥基准和两段式干燥工艺  相似文献   

4.
40mm厚小径尾巨桉木材的干燥工艺   总被引:2,自引:0,他引:2  
针对小径级尾巨桉与成熟材的材性差异,为了提高小径尾巨桉锯材的干燥速度及干燥质量,进行了40 mm厚尾巨按锯材干燥工艺的研究.结果表明,将初含水率92%的尾巨桉木材干燥至含水率为11%,共用时392 h,干燥质量达到GB/T 6491-1999《锯材干燥质量》规定的一级要求.  相似文献   

5.
研究采用高温连续式热压干燥的方法,干燥速生杨木单板,并辅以适当的“呼吸”周期,可在2min内将1.7mm厚的生材单板(初含水率149%)干至8%以下的终含水率。干单板平整,光滑,终含水率均匀,无撕裂。研究表明,此法干燥人工林速生杨木单板是一条高效、优质的途径。  相似文献   

6.
对我国40 mm厚黑木相思锯材干燥工艺进行研究,为其实际干燥生产提供参考。结果表明:黑木相思锯材由初含水率105.9%干燥至终含水率9.8%,干燥用时453 h(18.9 d)。干燥锯材的平均最终含水率满足GB/T 6491—2012《锯材干燥质量》中二级锯材干燥质量指标要求,干燥均匀度、厚度上含水率偏差、残余应力以及可见干燥缺陷满足一级质量指标的要求。  相似文献   

7.
按树木材干燥特性与工艺及其皱缩研究现状   总被引:5,自引:2,他引:5  
本文回顾和分析了桉树木材与干燥有关的材性和干燥特性,指出按木的密度、含水率和干缩率变异性大、渗透性差,在干燥过程中易产生皱缩、开裂等干燥缺陷,若采用预冻处理和前后期调温处理可减少木材的皱缩;同时建议研究各种桉木不同规格板材的干燥基准和两段式干燥工艺。  相似文献   

8.
桦木,柞木小径材刨切薄板热压干燥的研究   总被引:4,自引:1,他引:3  
对桦木、柞木两树种小径材刨切薄板(213mm×70mm×4mm)热压干燥工艺的研究,着重探讨了:(1)热压干燥对桦木、柞木小径材刨切薄板翘曲度的影响;(2)热压干燥工艺参数及其交互作用与板片终含水率及厚度压缩率的关系,建立多元线性回归方程;(3)通过电镜分析,确定桦木、柞木小径材刨切薄板的优化干燥工艺条件。  相似文献   

9.
赵庚  褚俊  孟杨  陈广元 《森林工程》2014,30(5):53-57
以菲律宾桃花芯木为研究对象,探索30 mm厚菲律宾桃花芯木锯材干燥工艺。通过百度试验法得知其初期开裂为3级、内裂为2~3级、截面变形为1级;通过密度测定实验得知其气干密度为0.562 g/cm^3、全干密度为0.517 g/cm^3和基本密度为0.465 g/cm^3。根据该木材密度和干燥特性制定3种30 mm厚菲律宾桃花芯木锯材干燥基准并分别进行常规干燥工艺试验。通过对3次工艺试验结果的综合分析表明:在3次工艺实验所用执行基准均能满足2级干燥指标。其中,第一次工艺实验所用执行干燥基准为本研究中最佳干燥基准。第一次工艺实验的初始温度为60℃,末期温度为80℃、初含水率为66.97%、终含水率为7.79%的锯材干燥周期为185 h。  相似文献   

10.
通过百度试验法研究了25年生大花序桉木材的干燥特性,制定其干燥基准,进行干燥工艺优化试验。结果表明:大花序桉初期开裂等级为4级,内裂等级为2级,截面变形等级为2级,干燥速度等级为5级,属中等难干材;采用百度试验法制定的干燥工艺,40 mm厚大花序桉从初含水率48.89%降至9.45%,干燥周期为26天,干燥均匀度较好,厚度上含水率偏差为3.22%,除纵裂外,其他可见干燥缺陷指标均达到国家标准GB/T 6491-2012《锯材干燥质量》规定的一级要求。  相似文献   

11.
超声波喷雾干燥壶瓶枣多糖及其对产品品质的影响   总被引:2,自引:0,他引:2  
以干燥后多糖的羟基自由基清除能力、含水量和平均粒径为指标,对壶瓶枣多糖的超声波喷雾干燥工艺进行了优化,并对比分析了超声波喷雾干燥、二流体喷雾干燥和真空冷冻干燥对壶瓶枣多糖品质的影响。结果表明,超声波喷雾干燥的最佳工艺条件为:进风温度135℃,进料量16 m L/min,进气压力0.10 MPa,此时出风温度89℃,壶瓶枣多糖产品含水量4.91%,羟基自由基清除率为50.83%,平均粒径9.14μm。羟基自由基清除能力、单糖组成和红外光谱分析表明,3种干燥方式对多糖的活性、单糖组成和官能团没有影响,且多糖主要由鼠李糖、阿拉伯糖、木糖、甘露糖、葡萄糖和半乳糖组成,其物质的量之比为1∶11∶2∶1∶38∶5,羟基自由基清除率为50%左右。通过对多糖产品的微观形态及粒度分布分析可知,冷冻干燥产品以块状和棒针状为主,超声波和二流体喷雾干燥产品均成颗粒状,但是超声波喷雾干燥的产品粒径分布较窄,粒径在2~20μm范围内呈正态分布,优于其他2种干燥技术。  相似文献   

12.
栓皮栎地板材的干燥工艺研究   总被引:1,自引:0,他引:1  
本文对栓皮栎地板材的干燥工艺进行了研究。结果表明,按照本研究提出的栓皮栎地板材的干燥工艺,将厚23mm的栓皮栎地板材从初含水率48.1%干燥到终含水率9.3%,干燥周期为16天,干燥质量较好,基本无可见干燥缺陷出现,含水率均匀。  相似文献   

13.
杉木人工林木材的高频真空干燥工艺   总被引:2,自引:0,他引:2  
对人工林杉木25mm和50mm厚板材进行了系列高频真空干燥试验.结果表明:干燥后的板材变形小,表面平整,表芯层含水率差异较小.尽管试板的初始含水率差异较大,但根据高频真空干燥靠近正极板的木材比靠近负极板的干燥速度快的特点,试板的初始含水率由低至高在负极板至正极板之间进行顺序摆放码垛,干燥后的板材含水率可达到均匀一致.  相似文献   

14.
The European Drying Group (EDG) proposal on a wood drying quality standard defines demands on final moisture content variation of the dried wood. The final moisture content variation will depend on material parameters as well as the production process and the wood will always show a “natural” moisture content variation after drying. Thus the drying process has to be defined well enough to allow for the natural moisture content variation in order to fulfil the demands of the drying standards. As the average equilibrium moisture content of the wood in a vacuum drying kiln with pure steam atmosphere is determined by the pressure and the temperature, the demands on the climate control system to fulfil the demands of the drying standard can be calculated with regard to the natural moisture content variation of the wood. In the first part of this contribution the demands on climate control in vacuum dryers are calculated based on the EDG-standard and the natural moisture content variation. In the second part of the contribution the demands on climate control are compared with climate and moisture content measurements from industrial production in vacuum kilns. Critical factors in kiln design and climate control system design necessary to maintain a controlled drying climate are listed.  相似文献   

15.
 Steam conditioning of softwood boards after kiln drying is of critical importance for relief of residual drying stresses and to improve distribution of final moisture content. The conditioning practice in New Zealand includes two steps: immediately after high temperature (HT) drying the load is cooled until the core wood temperature is 75 to 90°C, and then the stack is steam conditioned for a period of 1 to 4 hours depending on the lumber thickness and moisture content after drying. In this work, experimental and theoretical studies were performed to better understand the conditioning process and to investigate factors which influence its effectiveness. In the experiment, 50 mm thick Pinus radiata sapwood boards were first dried at 120/70°C for 11, 12, 13, 16 and 18 hours, respectively, to varying moisture contents, and then cooled and steam conditioned for 1 hour. To assess the effectiveness of conditioning, moisture pick-up, moisture gradient, and transverse residual drying stress (indicated by cup and strain) were measured. It was found that drying wood to a low moisture content (below 6%) increased the conditioning effectiveness. A separate matched stack was conditioned for 4 hours after 13 hours drying which showed better results than 1 hour conditioning. A mathematical model for wood drying was extended to include both the cooling and conditioning phases. The model was numerically solved to examine the wood temperature and moisture content changes during the whole process of drying, cooling and final steam conditioning. Increase in wood temperature, moisture pickup and moisture gradient during steam conditioning were predicted and validated by the experimental data. This information is currently being used at the New Zealand Forest Research Institute in simulation of stress development and relief for drying of Pinus radiata lumber. Received 6 July 1998  相似文献   

16.
The first part of this contribution determined the demands on climate control in vacuum drying kilns that are necessary to achieve the final moisture content variation stipulated in the European Drying Group (EDG) proposal on wood drying quality standards. In this second part of the contribution, these demands are compared with measurements of actual climates and the resulting final moisture content in vacuum kilns during industrial production. The measurements show that none of the studied industrial vacuum kilns are capable of controlling climate with acceptable accuracy. The variations in drying climate lead to large variations in final moisture content and reduced production capacities. Drying quality and drying capacity would be greatly increased with improved kiln design and improved climate control systems. Critical factors in kiln design and climate control system design necessary to maintain a controlled drying climate are listed.  相似文献   

17.
木材干燥过程中,介质循环速度是一个影响木材干燥的重要工艺参数.在木材各含水率阶段,通过试验分析研究不同介质循环速度对木材干燥速度的影响.结果表明,介质循环速度对干燥速度的影响显著,但其影响随木材含水率(MC)的降低而减弱.在低介质循环速度条件下,试件MC大于45%时,表现为木材干燥速度和木材含水率偏差(△MC)随循环风速的增加而增加,呈显著正相关关系;试件MC介于35% ~ 45%之间时,正相关关系存在但不显著;试件MC小于35%时,干燥室内循环风速的大小不影响木材的干燥速度和木材含水率偏差(△MC).对试件表层含水率分析,试件表层含水率大于25%时,试件表面循环风速对试件表层含水率的影响显著;试件表层含水率小于25%时,试件表面循环风速对试件表层含水率的影响很小,不同循环风速下试件表层含水率基本一样.  相似文献   

18.
通过百度试验法研究小径巨尾桉(Eucalyptus grandis×E. urophylla)的干燥特性,制定巨尾桉材干燥基准,进行干燥工艺优化试验.结果表明:小径巨尾桉材初期开裂等级为3级,内裂等级为2级,截面变形等级为5级,属中等难干材;采用制定的巨尾桉材干燥基准,试件从初含水率115.13%降至8.50%的干燥周期为16.3 d,除瓦弯变形外,其他可见干燥缺陷指标均达到国家标准GB/T 6491—2012 《锯材干燥质量》规定的一级要求.  相似文献   

19.
文章采用百度试验法对金檀木材进行干燥特性研究,提出金檀家具用料板材的干燥基准,并进行了工艺试验研究。结果表明,金檀木材初期开裂为5级;内裂为2级;截面变形为3级,干燥速度为4级。初期开裂较严重,干燥速度慢,故金檀为难干燥木材。采用给出的干燥工艺,42 mm厚铁线子地板坯料从初含水率30.66%干燥到12.8%的干燥周期为43d,干燥质量满足家具用料的加工要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号