首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods were developed for the measurement of superoxide dismutase (SOD), diamine oxidase (DAO) and caeruloplasmin oxidase in the blood of thoroughbred horses. These enzymes were measured in 178 normal thoroughbreds stabled throughout the United Kingdom. The relationships between the activities of SOD, DAO and caeruloplasmin oxidase and the blood concentrations of their associated trace metals (copper, zinc and manganese) were studied in 52 of the thoroughbreds. Trace metals were measured by electrothermal atomic absorption spectrophotometry. No relationships were found between the activities of erythrocyte SOD and serum/whole blood copper, zinc and manganese, or serum DAO and serum copper or zinc concentrations. Caeruloplasmin oxidase in equine blood was found to be correlated to serum copper concentration, r = 0.695 (P less than 0.001) over the normal range. Samples from thoroughbreds with trace metal deficiency or toxicity were not available for study. The observed normal ranges for the activity of these enzymes are as follows: SOD: 50 to 200 units per ml whole blood between 5 and 95 percentiles; DAO: 0.1 to 28.5 units per litre (means = 14.8, SD 7.1) and caeruloplasmin oxidase; 11.6 to 35.8 units per ml (means = 23.7, SD 6.0). For numerical simplicity, the activity of DAO is given in units per litre, compared to units per ml for caeruloplasmin oxidase and SOD.  相似文献   

2.
Plasma concentrations of plasminogen were determined in 28 clinically normal horses, including 13 adult geldings, five non-pregnant mares, five pregnant mares and five yearlings (two fillies, three geldings). Plasminogen was quantitated by a chromogenic assay based on activation of plasmin by excess urokinase. The overall mean plasma plasminogen for these horses was 2.94 +/- 0.54 CTA units (casein units, as defined by the Committee on Thrombolytic Agents) per ml. There were no significant differences in mean plasma plasminogen values among adult geldings, non-pregnant mares, pregnant mares or yearling horses (P greater than 0.05).  相似文献   

3.
The concentration of copper and zinc in the blood and sera of over 300 Thoroughbreds in training was determined by atomic absorption between February 1979 and July 1981. The mean (+/- sd) concentration of copper in the serum of stabled Thoroughbreds (79 +/- 16 micrograms/dl) was significantly (P less than 0.0001) lower than that of those at grass (101 +/- 26 micrograms/dl), whereas the mean serum zinc concentration of stabled Thoroughbreds (170 +/- 54 micrograms/dl) was higher than that of those at grass (111 +/- 45 micrograms/dl). No such differences were observed in whole blood. There were marked differences in the mean serum copper and zinc concentrations in the blood of Thoroughbreds housed in different stables. Significant changes occurred throughout the year in the mean values from individual stables. However, there were no such changes in the mean values of the total population. The observed differences were probably caused by dietary variations. The results emphasise the need to establish reference values related to diet if copper and zinc levels in blood are to be used for interpretative purposes.  相似文献   

4.
Sodium cefadroxil was administered as a single intravenous dose (25 mg/kg) to six healthy adult mares. Plasma samples were collected over a 24-h period and cefadroxil concentrations were measured by microbiological assay. The pharmacokinetic behavior of the drug was appropriately described in terms of a one-compartment open model. Values for the major pharmacokinetic terms were: extrapolated initial plasma concentration = 59.2 +/- 15.0 micrograms/ml; half-life = 46 +/- 20 min; apparent volume of distribution = 462 +/- 191 ml/kg; and body clearance = 7.0 +/- 0.6 ml/min.kg. In a subsequent study, a suspension of cefadroxil monohydrate was administered intragastrically (25 mg/kg) to the same six horses. Plasma concentrations of the drug peaked at 1-2 h but, in general, absorption was both poor and inconsistent. The data were unsuitable for determination of cefadroxil bioavailability from this oral dosage form. Ninety-nine isolates of eleven bacterial species obtained from clinically ill horses were tested for susceptibility to cefadroxil. All strains of Streptococcus equi, Streptococcus zooepidemicus, coagulase-positive staphylococci, Corynebacterium pseudotuberculosis and five out of six strains of Actinobacillus suis were highly susceptible to the drug (MIC less than 4 micrograms/ml). Escherichia coli, Klebsiella pneumoniae and Salmonella sp. showed intermediate susceptibility (MIC 4-16 micrograms/ml), while all isolates of Corynebacterium (Rhodococcus) equi, Enterobacter cloacae and Pseudomonas aeruginosa proved to be highly resistant to cefadroxil (MIC greater than 128 micrograms/ml).  相似文献   

5.
Experiments to determine the residual plasma concentrations of phenylbutazone and its metabolites found in horses racing on a 'no-race day medication' or 24-h rule were carried out. One dosing schedule (oral-i.v.) consisted of 8.8 mg/kg (4 g/1000 lbs) orally for 3 days, followed by 4.4 mg/kg (2 g/1000 lbs) intravenously on day 4. A second schedule consisted of 4.4 mg/kg i.v. for 4 days. The experiments were carried out in Thoroughbred and Standardbred horses at pasture, half-bred horses at pasture, and in Thoroughbred horses in training. After administering the i.v. schedule for 4 days to Thoroughbred and Standardbred horses at pasture, the mean plasma concentrations of phenylbutazone increased from 0.77 microgram/ml on day 2 to 2.5 micrograms/ml on day 5. The shape of the frequency distribution of these populations was log-normal. These data are consistent with one horse in 1,000 yielding a plasma level of 8.07 micrograms/ml on day 5. After administration of the oral-i.v. schedule to Thoroughbred and Standardbred horses at pasture, the mean plasma concentrations of phenylbutazone were 3.4 micrograms/ml on day 2 and 3.5 micrograms/ml on day 5. The range on day 5 was from 1.4 to 8.98 micrograms/ml and the frequency distribution was log-normal. These data are consistent with one horse in 1000 having a plasma level of 15.8 micrograms/ml on day 5. In a final experiment, the oral dosing schedule was administered to 62 Thoroughbred horses in training. Plasma concentrations on day 5 in these horses averaged 5.3 micrograms/ml. The range was from 1.3 to 13.6 micrograms/ml and the frequency distribution was log-normal. Statistical projection of these values suggests that following this oral dosing schedule in racing horses about one horse in 1000 will yield a plasma level of 23.5 micrograms/ml of phenylbutazone 24 h after the last dose.  相似文献   

6.
The pharmacokinetics and bioavailability of rifampin were determined after IV (10 mg/kg of body weight) and intragastric (20 mg/kg of body weight) administration to 6 healthy, adult horses. After IV administration, the disposition kinetics of rifampin were best described by a 2-compartment open model. A rapid distribution phase was followed by a slower elimination phase, with a half-life (t1/2[beta]) of 7.27 +/- 1.11 hours. The mean body clearance was 1.49 +/- 0.41 ml/min.kg, and the mean volume of distribution was 932 +/- 292 ml/kg, indicating that rifampin was widely distributed in the body. After intragastric administration of rifampin in aqueous suspension, a brief lag period (0.31 +/- 0.09 hour) was followed by rapid, but incomplete, absorption (t1/2[a] = 0.51 +/- 0.32 hour) and slow elimination (t1/2[d] = 11.50 +/- 1.55 hours). The mean bioavailability (fractional absorption) of the administered dose during the first 24 hours was 53.94 +/- 18.90%, and we estimated that 70.0 +/- 23.6% of the drug would eventually be absorbed. The mean peak plasma rifampin concentration was 13.25 +/- 2.70 micrograms/ml at 2.5 +/- 1.6 hours after dosing. All 6 horses had plasma rifampin concentrations greater than 2 micrograms/ml by 45 minutes after dosing; concentrations greater than 3 micrograms/ml persisted for at least 24 hours. Mean plasma rifampin concentrations at 12 and 24 hours after dosing were 6.86 +/- 1.69 micrograms/ml and 3.83 +/- 0.87 micrograms/ml, respectively. We tested 162 isolates of 16 bacterial species cultured from clinically ill horses for susceptibility to rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A study was undertaken to investigate the variations in the content of zinc and copper in the plasma of Sudanese camels (Camelus dromedarius). A total of 993 Arabi camels, aged 0.5-8 years, were used to assess the effect of season, age, sex and physiological status on the plasma concentrations of copper and zinc. There was an increase in the concentration of Cu and a decrease in the concentration of Zn in the plasma with age. The concentrations of both Cu and Zn in the plasma were higher in the rainy season than in the dry season. The plasma copper concentrations in pregnant, low-lactating and high-lactating camels were 81.3 +/- 4.7, 59.7 +/- 6.1 and 61.3 +/- 5.5 microg/100 ml, respectively. The corresponding values for zinc were 51.0 +/- 8.9, 53.4 +/- 6.4 and 67.1 +/- 5.5 microg/100 ml, respectively. However, there was no effect of sex on the content of these minerals in the plasma.  相似文献   

8.
Ten horses, a pony, and 13 cats were used to evaluate base-line blood ammonia, bilirubin, and urea nitrogen concentrations and to determine The effects of prolonged cold storage (-20 degrees C) before assay. Base-line plasma ammonia concentrations in cats (0.992 +/- 0.083 [SE] micrograms/ml) did not change significantly after 48 hours of storage (0.871 +/- 0.073 micrograms/ml); however, they were increased 4.2- and 13-fold after 168 and 216 hours of storage, respectively. In contrast to base-line plasma-ammonia values in cats, those of horses were significantly (0.265 +/- 0.044 micrograms/ml) lower, and significantly increased from base-line values after 48 hours of storage (0.861 +/- 0.094 micrograms/ml) and continued to increase 25.6-fold at 168 hours and 18.4-fold at 216 hours. Plasma urea nitrogen concentrations in cats (25.8 +/- 1.06 mg/dl) and horses (11.2 +/- 0.749 mg/dl) did not change significantly during 168 hours of storage. Total plasma bilirubin values from both cats (0.19 +/- 0.049 mg/dl) and horses (0.75 +/- 0.064 mg/dl) also did not change significantly during storage. These results indicate that feline plasma samples for ammonia determinations may be stored at -20 degrees C for up to 48 hours, whereas equine plasma ammonia values tend to increase during that time. The reason for the increase remains unexplained. Both feline and equine plasma urea nitrogen and total bilirubin are stable for at least 168 hours of storage at -20 degrees C.  相似文献   

9.
The pharmacokinetics of flunixin were studied in 6 adult lactating cattle after administration of single IV and IM doses at 1.1 mg/kg of body weight. A crossover design was used, with route of first administration in each cow determined randomly. Plasma and milk concentrations of total flunixin were determined by use of high-pressure liquid chromatography, using an assay with a lower limit of detection of 50 ng of flunixin/ml. The pharmacokinetics of flunixin were best described by a 2-compartment, open model. After IV administration, mean plasma flunixin concentrations rapidly decreased from initial concentrations of greater than 10 micrograms/ml to nondetectable concentrations at 12 hours after administration. The distribution phase was short (t1/2 alpha, harmonic mean = 0.16 hours) and the elimination phase was more prolonged (t1/2 beta, harmonic mean = 3.14 hours). Mean +/- SD clearance after IV administration was 2.51 +/- 0.96 ml/kg/min. After IM administration, the harmonic mean for the elimination phase (t1/2 beta) was prolonged at 5.20 hours. Bioavailability after IM dosing gave a mean +/- SD (n = 5) of 76.0 +/- 28.0%. Adult, lactating cows (n = 6) were challenge inoculated with endotoxin as a model of acute coliform mastitis. After multiple administration (total of 7 doses; first IV, remainder IM) of 1.1 mg/kg doses of flunixin at 8-hour intervals, plasma flunixin concentrations were approximately 1 microgram/ml at 2 hours after each dosing and 0.5 micrograms/ml just prior to each dosing. Flunixin was not detected in milk at any sampling during the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Cephapirin (20 mg/kg of body weight, IV) was administered before and after 3 doses of probenecid (25, 50, or 75 mg/kg, intragastrically, at 12-hour intervals) to 2 mares. Clearance and apparent volume of distribution, based on area under the curve, were negatively correlated with probenecid dose. Clearance of cephapirin was decreased by approximately 50% by administration of 50 mg of probenecid/kg. Serum, synovial fluid, peritoneal fluid, CSF, urinary, and endometrial concentrations of cephapirin were determined after 5 doses of cephapirin (20 mg/kg, IM, at 12-hour intervals) without and with concurrently administered probenecid (50 mg/kg, intragastrically) to 6 mares, including the 2 mares given cephapirin, IV. Highest mean serum cephapirin concentrations were 16.1 +/- 2.16 micrograms/ml at 0.5 hour after the 5th cephapirin dose [postinjection (initial) hour (PIH) 48.5] in mares not given probenecid and 23.7 +/- 1.30 micrograms/ml at 1.5 hours after the 5th cephapirin dose (PIH 49.5) in mares given probenecid. Mean peak peritoneal fluid and synovial fluid cephapirin concentrations were 6.2 +/- 0.57 micrograms/ml and 6.6 +/- 0.58 micrograms/ml, respectively, without probenecid administration and 12.3 +/- 0.46 micrograms/ml and 10 +/- 0.78 micrograms/ml, respectively, with concurrent probenecid administration. Mean trough cephapirin concentrations for peritoneal and synovial fluids in mares given probenecid were 2 to 3 times higher than trough concentrations in mares not given probenecid. Overall mean cephapirin concentrations were significantly higher for serum, peritoneal fluid, synovial fluid, and endometrium when probenecid was administered concurrently with cephapirin (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The role of decreased luteal activity in embryonic loss after induced endotoxemia was studied in mares 21 to 35 days pregnant. Fourteen pregnant mares were treated daily with 44 mg of altrenogest to compensate for the loss of endogenous progesterone secretion caused by prostaglandin F2 alpha (PGF2 alpha) synthesis and release following intravenous administration of Salmonella typhimurium endotoxin. Altrenogest was administered daily from the day of endotoxin injection until day 40 of gestation (group 1; n = 7), until day 70 (group 2; n = 5), or until day 50 (group 3; n = 2). In all mares, secretion of PGF2 alpha, as determined by the plasma 15-keto-13,14-dihydro-PGF2 alpha concentrations, followed a biphasic pattern, with an initial peak at 30 minutes followed by a second, larger peak at 105 minutes after endotoxin injection. Plasma progesterone concentrations decreased in all mares to values less than 1 ng/ml within 24 hours after endotoxin injection. In group 1, progesterone concentrations for all mares were less than 1 ng/ml until the final day of altrenogest treatment. In 6 of 7 mares in group 1, the fetuses died within 4 days after the end of treatment, with progesterone concentrations less than 1 ng/ml at that time. In the mare that remained pregnant after the end of treatment, plasma progesterone concentration was 1.6 ng/ml on day 41 and increased to 4.4 ng/ml on day 44. In group 2, all mares remained pregnant, even though plasma progesterone concentrations were less than 1 ng/ml in 4 of 5 mares from the day after endotoxin injection until after the end of altrenogest treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Previous research from our laboratory showed that approximately one third of obese, nonfoaling mares displayed a condition of hyperleptinemia coupled with hyperinsulinemia that resembled type 2 diabetes in humans. The current study was performed to evaluate the prevalence of the hyperleptinemic syndrome in lactating mares and its possible impact on their rebreeding success. Additionally, we investigated possible relationships between leptin levels in lactating versus nonlactating mares. In experiment 1, jugular blood samples were collected from 198 lactating mares on two occasions approximately 2 weeks apart. The mares resided on eight farms in Louisiana; breeds included Thoroughbred (n = 86), Quarter Horse (n = 71), Warmblood (n = 24), and draft-type (n = 17). Body condition scores (BCS) were measured at the time of blood sampling; plasma samples were assessed for leptin and progesterone concentrations. Reproductive and medical histories, as well as feeding regimens, were compiled on each mare. Based on our previous reports and examination of the current data, a mare was considered hyperleptinemic if her plasma samples contained greater than10 ng/mL leptin; normal was considered 6.0 ng/mL or less; mares with levels above 6.0 and 10 ng/mL or greater were classified as intermediate. Overall mean leptin concentration was 4.7 ng/mL, and average BCS was 5.5. After analysis, 24 mares were classified as hyperleptinemic (12%), 138 were classified as normal (70%), and 36 were classified as intermediate (18%). Leptin concentrations were affected by BCS (P = .08), with higher concentrations in mares with higher body condition; however, there were hyperleptinemic mares with BCS of 4 to 5.5. Feeding regimen affected leptin concentrations (P < .01), with mares on pasture full-time having the highest concentrations. There was no effect of breed, mare age, number of years the mare had been bred, number of live foals, progesterone concentrations, or last foaling date on leptin concentrations. Rebreeding success averaged 81% overall and was not affected by leptin classification. In experiment 2, nonfoaling mares kept on pasture had mean leptin concentrations of 7.0 ng/mL; 8 of 31 mares (26%) displayed hyperleptinemia. Mean leptin concentration was correlated with BCS (R2 = 0.65; P < .02) but was not affected by age of the mare. It was concluded that the hyperleptinemic condition occurs in lactating broodmares, even at BCS as low as 4. The overall incidence appears to be lower in broodmares than in nonfoaling mares, likely because of their lower BCS in general and the energy demands of lactation. Hyperleptinemia did not affect rebreeding success at the end of the breeding season.  相似文献   

13.
SUMMARY Vitamin B12 and folate concentrations were determined by radioimmunoassay in groups of horses in Queensland. Highest serum vitamin B12 levels were found in supplemented performance horses. These, together with pastured horses that included pregnant and lactating mares, had significantly greater serum folate activity than permanently stabled animals. The range of red cell folate concentrations was much narrower in horses in training than from any other group. Red cell folate may be a better indicator of a horse's folate status than the serum folate value. Vitamin B12 and folate concentrations were highest in spring and summer. Small intestinal dysfunction in 2 horses was not associated with vitamin B12 or folate malabsorption. Serum folate levels returned to normal 24 h after intramuscular injections of 75 to 150 mg folic acid, whereas serum vitamin B12 values remained elevated for at least one week following injections of 8 to 10 mg to non-supplemented horses.  相似文献   

14.
AIM: To determine the suitability of measuring faecal oestrone sulphate (OS) by enzymeimmunoassay as a means of determining pregnancy status in mares bred under New Zealand conditions. METHODS: An antibody-coated microtitre plate-based enzymeimmunoassay was used to determine the concentration of OS in faecal and plasma samples obtained from pregnant and non-pregnant mares. RESULTS: In non-pregnant mares, the mean faecal OS concentration was 34 ng/g, and the value three standard deviations above this was 80 ng/g. None of 427 faecal samples collected from 116 non-pregnant mares over a l-year period had an OS concentration >80 ng/g. Only five samples from three mares had an OS concentration >65 ng/g, the value two standard deviations above the mean non-pregnant value. Analysis of faecal OS concentrations in 532 faecal samples collected from 39 pregnant mares showed that as pregnancy progressed, an increasing proportion of faecal samples had OS concentrations >80 ng/g. None of the mares 150 days or more pregnant had faecal OS concentrations <50 ng/g, and 204/220 samples obtained from these mares had faecal OS concentrations >80 ng/g. Following foaling or foetal death, elevated faecal OS concentrations returned quickly to non-pregnant levels. The mean +/- s.e.m. plasma level of OS in five mares bled daily throughout one oestrous cycle was 1.7 +/- 0.2 ng/ml. Sixty-eight blood samples from pregnant mares bled up to five times between 92 days after mating and foaling all had plasma OS concentrations >30 ng/ml, with 64/68 being >50 ng/ml. CONCLUSIONS: This study shows that measuring faecal OS concentrations by enzymeimmunoassay offers a convenient, accurate, non-invasive means of determining pregnancy status in mares from 150 days after mating onwards. Mares with faecal OS concentrations <50 ng/g can be considered not pregnant, while mares with faecal OS concentrations >80 ng/g can be considered pregnant. Those few mares returning a faecal OS concentration between 50 and 80 ng/g should be retested to obtain a conclusive result. Measuring plasma OS concentrations allows pregnancy status to be determined earlier (from 100 days after mating). Moreover, the discrimination between non-pregnant and pregnant levels is greater for OS in plasma than in faeces. CLINICAL RELEVANCE: Measurement of OS concentrations in faeces provides an alternative and non-invasive means of determining pregnancy status in mares from 150 days after mating.  相似文献   

15.
An acute phase reaction was elicited in four horses to which Freund's adjuvant was administered intramuscularly. The localised inflammation was accompanied by changes in the plasma concentrations of copper, iron and zinc. The plasma copper concentration, the plasma ceruloplasmin copper concentration and the ceruloplasmin oxidase activity in the plasma steadily increased to a maximum 24 days after the administration of the adjuvant. At this time, the plasma copper concentration was 2.2 micrograms/ml, a 90 per cent increase over the baseline concentration. The ratio of the concentration of plasma ceruloplasmin copper to plasma copper remained constant, indicating that the non-ceruloplasmin bound copper component of the plasma is also an acute phase reactant in the horse. The plasma zinc and iron concentrations decreased to 59 per cent and 30 per cent of their respective baseline concentrations and the severity of the inflammation appeared to influence the plasma concentrations of each metal. Weak correlations between the plasma fibrinogen concentration and the plasma copper and zinc concentrations of 25 horses with plasma fibrinogen concentrations of 5 g/litre or greater indicated that a single measurement of plasma copper concentration is not useful in the diagnosis of non-specific inflammatory disorders of the horse. However, the results suggest that the plasma copper concentrations in serial samples may be used to monitor the resolution of inflammatory disorders in the horse.  相似文献   

16.
We previously reported that a rise in plasma leptin concentrations followed the rise in insulin and glucose in meal-fed horses, whereas horses maintained on pasture had little fluctuations in hormonal patterns. We have also described a hyperleptinemic-hyperinsulinemic condition that occurs in about 30% of our light horse mares of high body condition maintained on pasture. The present experiment was designed to 1) study the effect of 3 common feeding-housing regimens on leptin and other metabolic hormones in mares and 2) determine whether the hyperleptinemic condition interacted with these regimens. Six light horse mares with high body condition (average score = 7) were assigned to 2 simultaneous 3 x 3 Latin squares, 1 with normal mares (leptin = 0.1 to 6 ng/mL) and 1 with mares displaying hyperleptinemia (>10 ng/mL). Three feeding-housing regimens were compared: ad libitum pasture, ad libitum native grass hay in an outdoor paddock, and single morning feedings of a pelleted concentrate and hay at 0700 in a barn. Five days of acclimation to the feeding regimens were followed by a 36-h period of hourly blood collection to characterize the hormonal characteristics. Leptin concentrations were elevated (P < 0.001) in mares predetermined to be hyperleptinemic compared with normal mares, regardless of the feeding regimen. Leptin was greatest (P < 0.01) in mares on pasture and least in mares fed hay. Variations over time (P < 0.01) were present for all hormones and metabolites studied. Glucose and insulin concentrations were greatest (P < 0.01) in mares on pasture, with meal-fed mares exhibiting an immediate rise in plasma concentrations of both after feeding. Mares on hay had low and constant concentrations of glucose, insulin, and leptin, with no apparent fluctuations. Cortisol, prolactin, and IGF-I did not differ with leptin status, whereas GH differed due to feeding-housing regimen (P < 0.02); there was also an interaction of leptin status and feeding-housing regimen for GH concentrations (P = 0.094). It was concluded that 1) estimates of hormonal secretion in horses based on frequent sampling, depending upon the hormone in question, can be profoundly affected by the feeding-housing regimens, and 2) the hyperleptinemic condition persists under differing conditions of feeding-housing.  相似文献   

17.
OBJECTIVE: To determine pharmacokinetics of single and multiple doses of rimantadine hydrochloride in horses and to evaluate prophylactic efficacy of rimantadine in influenza virus-infected horses. ANIMALS: 5 clinically normal horses and 8 horses seronegative to influenza A. PROCEDURE: Horses were given rimantadine (7 mg/kg of body weight, i.v., once; 15 mg/kg, p.o., once; 30 mg/kg, p.o., once; and 30 mg/kg, p.o., q 12 h for 4 days) to determine disposition kinetics. Efficacy in induced infections was determined in horses seronegative to influenza virus A2. Rimantadine was administered (30 mg/kg, p.o., q 12 h for 7 days) beginning 12 hours before challenge-exposure to the virus. RESULTS: Estimated mean peak plasma concentration of rimantadine after i.v. administration was 2.0 micrograms/ml, volume of distribution (mean +/- SD) at steady-state (Vdss) was 7.1 +/- 1.7 L/kg, plasma clearance after i.v. administration was 51 +/- 7 ml/min/kg, and beta-phase half-life was 2.0 +/- 0.4 hours. Oral administration of 15 mg of rimantadine/kg yielded peak plasma concentrations of < 50 ng/ml after 3 hours; a single oral administration of 30 mg/kg yielded mean peak plasma concentrations of 500 ng/ml with mean bioavailability (F) of 25%, beta-phase half-life of 2.2 +/- 0.3 hours, and clearance of 340 +/- 255 ml/min/kg. Multiple doses of rimantadine provided steady-state concentrations in plasma with peak and trough concentrations (mean +/- SEM) of 811 +/- 97 and 161 +/- 12 ng/ml, respectively. Rimantadine used prophylactically for induced influenza virus A2 infection was associated with significant decreases in rectal temperature and lung sounds. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of rimantadine to horses can safely ameliorate clinical signs of influenza virus infection.  相似文献   

18.
OBJECTIVE: To compare health, hydration status, and management of stabled pregnant mares provided drinking water continuously or via 1 of 3 intermittent delivery systems. ANIMALS: 22 Quarter Horse (QH) or QH-crossbred mares and 18 Belgian or Belgian-crossbred mares (study 1); 24 QH or QH-crossbred mares and 18 Belgian or Belgian-crossbred mares (study 2). PROCEDURE: Stabled horses were provided water continuously or via 1 of 3 intermittent water delivery systems in 2 study periods during a 2-year period. Body temperature, attitude, appetite, water intake, and urine output were recorded daily. Hygiene of each horse and the stable were assessed weekly. Clinical and biochemical measures of hydration were determined 3 times during each study. Clinical measures of hydration included skin turgor, gum moisture, capillary refill time, and fecal consistency. Biochemical measures of hydration included PCV, plasma total protein concentration, serum osmolality, plasma vasopressin concentration, urine specific gravity, and urine osmolality. RESULTS: All horses remained healthy. Stable hygiene was worse when horses had continuous access to water. Clinical and biochemical measures of hydration did not differ among water delivery systems. CONCLUSIONS AND CLINICAL RELEVANCE: Various continuous and intermittent water delivery systems provided adequate amounts of water to stabled horses to maintain health and hydration status. Providing intermittent access to water may be preferable on the basis of stable hygiene.  相似文献   

19.
Serum concentrations of metronidazole were determined in 6 healthy adult mares after a single IV injection of metronidazole (15 mg/kg of body weight). The mean elimination rate (K) was 0.23 h-1, and the mean elimination half-life (t1/2) was 3.1 hours. The apparent volume of distribution at steady state was 0.69 L/kg, and the clearance was 168 ml/h/kg. Each mare was then given a loading dose (15 mg/kg) of metronidazole at time 0, followed by 4 maintenance doses (7.5 mg/kg, q 6 h) by nasogastric tube. Metronidazole concentrations were measured in serial samples of serum, synovia, peritoneal fluid, and urine. Metronidazole concentrations in CSF and endometrial tissues were measured after the fourth maintenance dose. The highest mean concentration in serum was 13.9 +/- 2.18 micrograms/ml at 40 minutes after the loading dose (time 0). The highest mean synovial and peritoneal fluid concentrations were 8.9 +/- 1.31 micrograms/ml and 12.8 +/- 3.21 micrograms/ml, respectively, 2 hours after the loading dose. The lowest mean trough concentration in urine was 32 micrograms/ml. Mean concentration of metronidazole in CSF was 4.3 +/- 2.51 micrograms/ml and the mean concentration in endometrial tissues was 0.9 +/- 0.48 micrograms/g at 3 hours after the fourth maintenance dose. Two mares hospitalized for treatment of bacterial pleuropneumonia were given metronidazole (15.0 mg/kg, PO, initially then 7.5 mg/kg, PO, q 6 h), while concurrently receiving gentamicin, potassium penicillin, and flunixin meglumine IV. Metronidazole pharmacokinetics and serum concentrations in the sick mares were similar to those obtained in the healthy mares.  相似文献   

20.
The pharmacokinetics and bioavailability of probenecid given IV and orally at the dosage level of 10 mg/kg of body weight to mares were investigated. Probenecid given IV was characterized by a rapid disposition phase with a mean half-life of 14.0 minutes and a subsequent slower elimination phase with a mean half-life of 87.8 minutes in 5 of 6 mares. In the remaining mare, a rapid disposition phase was not observed, and the half-life of the elimination phase was slower (172 minutes). The mean residence time of probenecid averaged 116 minutes for all 6 mares and 89.2 minutes for the 5 mares with biphasic disposition. The total plasma clearance of probenecid averaged 1.18 +/- 0.49 ml/min/kg, whereas renal clearance accounted for 42.6 +/- 9.3% of the total clearance. The steady-state volume of distribution of probenecid averaged 116 +/- 28.2 ml/kg. Plasma protein binding of probenecid was extensive, with 99.9% of the drug bound at plasma probenecid concentrations of 10 micrograms/ml. The maximum plasma probenecid concentration after 10 mg/kg orally averaged nearly 30 micrograms/ml. The half-life of probenecid after oral administration was approximately 120 minutes. Oral bioavailability was good with greater than 90% of the dose absorbed. The effect of probenecid on tubular secretion of organic anions was evaluated by determining the pharmacokinetics of IV cefazolin (11 mg/kg) administered alone and 15 minutes after probenecid (10 mg/kg orally). Treatment with probenecid did not affect pharmacokinetic values of cefazolin. This failure of probenecid to alter the pharmacokinetics of cefazolin may be caused by insufficient plasma probenecid concentrations after the oral dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号