首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In June 1989, the water column along a transect in the north-central Gulf of St Lawrence was thermally stratified (10–14oC at the surface; 0-loC at 30 m). In the surface layer, nitrate and chlorophyll concentrations were very low; the mean concentration of chlorophyll a > 5 μm in the subsurface maximum was 0.26 μg1-1. Autotrophic and (presumably) heterotrophic flagellates and dinoflagellates were the most abundant micro-plankton. In this system, redfish (Sebastes spp.) larvae and the planktonic copepod Calanus finmarchicus overwhelmingly dominated the ichthyoplankton and zoo-plankton, respectively. Redfish larvae, Calanus females and Calanus eggs were most abundant in the surface layer (0–25 m) day and night. Daily specific egg production rates of Calanus, calculated from shipboard incubations of females, approached the predicted maximal level for this species at the ambient temperature of the surface layer, indicating no or little food limitation. The redfish larvae were feeding almost exclusively on the Calanus eggs and were found in greatest abundance along the transect where Calanus egg production rates (eggs m-2 day-1), calculated from the product of the specific egg production rate and female concentration, were highest. The mono-specificity of the larval redfish diet and the codom-  相似文献   

2.
Two species of codlet (Bregmacerotidae) larvae were collected during nine survey cruises conducted in the south-eastern Brazilian Bight between 23oS and 30oS in 1985-91. Of 4846 codlet larvae collected during nine cruises, 99.2% were identified as Bregmaceros canton and only 0.8% were B. athanticus. The two species were more abundant during winter in the neritic region (60–135 m depth). Vertical distribution of codlet larvae was studied using the BIOMOC net, and vertical profiles of temperature/salinity and chlorophyll a concentration were recorded by CTD and fluorescent sonde. Only 9.0% of larvae were collected in the upper 30 m and 91.0% were found deeper (> 40 m). The depths of highest density of larvae bore a close relationship to the subsurface chlorophyll maximum layer. Some B. canton larvae were found in the upper 30 m layer at night, but no larva was found during the day. Water temperatures where B. canton larvae occurred ranged from 16 to 23oC, but most larvae were found at 18–20oC and in salinities of 35.5–36.5 psu.  相似文献   

3.
Larvae of the common wolffish. Anarhichas lupus L., hatched from artificially inseminated eggs incubated in the laboratory, were reared on live foods at temperatures ranging from 2 to 10oC. Temperatures over 8oC were too high for newly hatched larvae, but after rearing for 17 days at an average temperature of 6.5oC, the young could tolerate 11oC. The maximum growth rate was observed in the process of keeping of fish during the first 5 months of growing at a temperature gradually increasing up to 14oC. At an age of 577days the average weight of the young in two size groups was 160 and 248 g. A stocking density or five fish 1?1 is satisfactory for young at weight less than 0.2 g. Subsequent growth during 2 months at density of 3-4 fish 1?1 was delayed, compared with that at density of one fish1?1, and all fish reared at high density were infected by Trichodina sp. The growth rate in captivity is compared with that in nature.  相似文献   

4.
The combined effects of stocking density and microalgae ration on survival and size of Saccostrea echinata larvae were studied in two‐factor experiments for the major developmental stages: D‐veliger (1‐day posthatch [dph], Experiment 1), umbonate (12 dph, Experiment 2), and eyed (19 dph, Experiment 3) larvae. Larvae were stocked into replicate sets of four 10‐L aquaria with ambient 1‐μm filtered sea water (28 ± 1.5°C and 36 ppt) and cultured for four days at densities of 0.5, 2, 5, 7, or 10 larvae/mL and provided with microalgae rations at each of five densities (cells larvae?1 day?1); 0, 1, 3, 5, or 8 × 103 (D‐veliger larvae, Experiment 1); 0, 5, 12, 18, or 25 × 103 (umbonate larvae, Experiment 2); and 0, 15, 30, 40, or 60 × 103 (eyed larvae, Experiment 3). Microalgae rations for each larval life stage were selected on the basis of increasing food requirement with larval size and comprised a 2:1:1 mixture of Chaetoceros calcitrans, Tisochrysis lutea, and Pavlova spp., calculated on an equal dry‐weight basis. Contour plots were generated from larval survival and larval size (dorso‐ventral measurement [DVM]) data to determine optimal culture conditions. Larvae showed high survival (54–100%) over a wide range of both treatment parameters across all life stages, confirming broad tolerance limits for this species. The interaction effects of larval stocking density and microalgae ration on larval size were significant (p < 0.001) across all life stages. Results indicate that maximum larval size (DVM) is achieved when S. echinata are cultured at: 6–8 larvae/mL and fed 5–6 × 103 cells larvae?1 day?1 for D‐veligers (mean DVM >80 μm), at 2–8 larvae/mL and fed 11–25 × 103 cells larvae?1 day?1 for umbonate larvae (mean DVM > 190 μm), and at 1–4 larvae/mL and fed 15–40 × 103 cells larvae?1 day?1 for eyed larvae (mean DVM >230 μm). Results will help refine current hatchery methods for S. echinata supporting further development toward commercial aquaculture production of this species.  相似文献   

5.
Myxozoan parasites are known pathogens of cultured finfish. Kudoa neurophila n. comb. (Grossel, Dyková, Handlinger & Munday) has historically infected hatchery‐produced striped trumpeter, Latris lineata (Forster in Bloch and Schneider), a candidate species for seacage aquaculture in Australia. We examined the efficacy of four water treatment methods to prevent K. neurophila infection in post‐larval (paperfish) and juvenile striped trumpeter. Treatments included dose‐controlled ultraviolet irradiation [hydro‐optic disinfection (HOD)], ozone with conventional UV (ozone), mechanical filtration at 25 μm and then foam fractionation (primary filtration), and 50‐μm‐filtered sea water (control). In post‐larvae (initially 10.3 ± 2.7 g, mean ± SD, 259 days post‐hatching, dph), the infection prevalence (PCR test) after 51 days was 93 ± 12% in the control, 100 ± 0% in primary filtration and 0 ± 0% in both ozone and HOD. Likewise, in juveniles (initially 114 ± 18 g, 428 dph), prevalence was 100 ± 0% in the control and primary filtration treatments with no infection detected in ozone and HOD. Concurrently, there was a 50–100% reduction in heterotrophic bacteria and 100% reduction in presumptive Vibrio sp. in sea water HOD and ozone treatments. HOD with a dose of ≥44 mJ cm?2 UV was as effective as ozonation at >700 mV ORP for 10 min, in preventing K. neurophila infection.  相似文献   

6.
Atlantic halibut, Hippoglossus hippoglossus (L.), eggs originating from one female were evenly distributed between four silos (4.8 m3) shortly prior to hatching. At days 30, 35, 40 and 44 after hatching [i.e. 200, 230, 260 and 290 day-degrees (dayso)], the larvae were successively collected and transferred to indoor start feeding tanks, and larvae were offered a diet of instar II Artemia nauplii which had been enriched short time (24 h). A significant correlation was found between the age of the larvae and onset of first feeding. The larvae transferred to start-feeding incubators at 290 dayso were able to capture Artemia only a few hours after transfer, whereas it took 6 days for the larvae transferred at 200 dayso to reach a corresponding ingestion level. Larval growth was also positively correlated to both larval age and prey consumption. However, there were no differences in survival between the larval groups.  相似文献   

7.
Artemia franciscana was studied under in vitro conditions, and fed with five different microalgae species, two organic diets and one mixed diet to evaluate the nutritional profile and growth performance. The A. franciscana instar‐I nauplii were stocked at a density of 100 per litre of ground borewell water with a salinity of 70 ppt in a plastic container and the culture continued for 12 days. The A. franciscana was fed with five microalgal species, such as Tetraselmis sp., Chaetoceros sp., Isochrysis sp., Thalassiosira sp. and Nannochloropsis sp., and organic diets of rice bran, soybean meal, and a mixture of Tetraselmis sp. and Chaetoceros sp. with rice bran, giving a total of eight experiments. The growth of A. franciscana was measured by length, and was observed to be the greatest (10,850 μm) in the group that was fed the mixed algae combination, and the lowest (7,290 μm) in the group that was fed Nannochloropsis sp. Among the different treatments, the highest survival value of 76% was seen in the group that was fed Chaetoceros sp. The fecundity was higher in A. franciscana that were fed with algae Chaetoceros sp., while the lower rate was observed with the group that was fed Nannochloropsis sp. Analysis of proximate composition showed increased levels in the animals fed with Chaetoceros sp. (lipid, 19.40%; eicosapentaenoic acid, 6.70 mg; docosahexaenoic acid, 10.20 mg; amino acids: proline, 2.06 μg; histidine, 0.77 μg, arginine, 0.65 μg, glycine, 0.80 μg, glutamic acid, 1.75 μg; threonine, 1.42 μg) and the mixed diet (protein, 58.59%; carbohydrate, 21.30%; amino acids: asparagine, 0.90 μg; serine, 1.65 μg; tryptophan, 1.66 μg; leucine, 1.50 μg; phenylalanine, 1.14 μg; valine, 0.66 μg). All components showed the lowest level in the diet fed with Tetraselmis species. These A. franciscana populations showed better survival, higher fecundity and biochemical profiles when cultured with microalgae Chaetoceros sp. These data are useful to improve A. franciscana culture in aquaculture to produce quality cysts and biomass, especially in feeding larvae of marine species.  相似文献   

8.
Under controlled conditions of food density and temperature, larval performances (ingestion, growth, survival and settlement success) of the flat oyster, Ostrea edulis, were investigated using a flow‐through rearing system. In the first experiment, oyster larvae were reared at five different phytoplankton densities (70, 500, 1500, 2500 and 3500 μm3 μL?1: ≈1, 8, 25, 42 and 58 cells μL?1 equivalent TCg), and in the second, larvae were grown at four different temperatures (15, 20, 25 and 30°C). Overall, larvae survived a wide range of food density and temperature, with high survival recorded at the end of the experiments. Microalgae concentration and temperature both impacted significantly larval development and settlement success. A mixed diet of Chaetoceros neogracile and Tisochrysis lutea (1:1 cell volume) maintained throughout the whole larval life at a concentration of 1500 μm3 μL?1 allowed the best larval development of O. edulis at 25°C with high survival (98%), good growth (16 μm day?1) and high settlement success (68%). In addition, optimum larval development (survival ≥97%; growth ≥17 μm day?1) and settlement (≥78%) were achieved at 25 and 30°C, at microalgae concentrations of 1500 μm3 μL?1. In contrast, temperature of 20°C led to lower development (≤10 μm day?1) and weaker settlement (≤27%), whereas at 15°C, no settlement occurred. The design experiments allowed the estimation of the maximum surface‐area‐specific ingestion rate  = 120 ± 4 μm3 day?1 μm?2, the half saturation coefficient {XK} = 537 ± 142 μm3 μL?1 and the Arrhenius temperature TA = 8355 K. This contribution put a tangible basis for a future O. edulis Dynamic Energy Budget (DEB) larval growth model.  相似文献   

9.
ABSTRACT

One of the major challenges of culturing of red snapper, Lutjanus campechanus, is providing an appropriate food source at onset of feeding. Ciliates are abundant in marine waters but their significance as a first food for fish larvae is poorly understood as many have no lorica to facilitate their identification in the gut of a larval fish. Fabrea salina is a naked heterotrich ciliate that can be mass cultured at densities up to 84 ± 10 ciliates/mL in 7 days. Its appropriateness as a first food for red snapper larvae was evaluated in a green-water setting using 1-m3 tanks. Larvae were stocked at 10/L, 36 h post-hatch, before first-feeding commenced. Larvae were fed either (1) copepod nauplii, 20–75 μm, only from days 1 to 10; (2) copepod nauplii from days 1 to 10 plus F. salina from days 1 to 5; or, (3) F. salina only from days 1 to 3 plus copepod nauplii from days 4 to 10. Copepod nauplii were added at 2/mL and ciliates were added at 5/mL. Survival after 28 days was 0.28 ± 0.15% for larvae given only copepod nauplii and 2.39 ± 2.75% for those given F. salina and copepod nauplii. Larvae given only F. salina did not survive past 4 days post-stocking. Larvae were more actively feeding in the tanks given F. salina and copepods as first foods with 34.6 ± 8.5% mean daily reduction in copepod nauplii compared to 15.8 ± 16.2% reduction when only nauplii were provided.  相似文献   

10.
The free-living nematode, Panagrellus redivivus, was tested as live food for grouper Epinephelus coioides larvae during the first feeding stage. A series of experiments were conducted to determine the acceptability of the free-living nematodes in grouper larvae at first feeding, the optimum nematode density and the response of the larvae to nutritionally enriched nematode. All experiments were conducted in 200-L conical tanks filled with 150-L filtered seawater and stocked at 15 larvae L−1. Duration of feeding experiments was up to day 21 (experiment 1) and 14 days (experiment 2 and 3). Brachionus plicatilis and Artemia (experiment 1) and Brachionus plicatilis alone (experiment 2 & 3) was used as the control treatment. Observations indicated that the grouper larvae readily fed on free-living nematodes as early as 3 days posthatching, the start of exogenous feeding. Optimum feeding density for the larvae was 75 nematodes ml−1. The enrichment of cod liver oil or sunflower oil influenced the total lipids and n-3 highly unsaturated fatty acids of P. redivivus, which in turn influenced those of the grouper larvae, however, growth and survival of the larvae were not affected (P > 0.05). The results from this investigation showed that the nematode, P. redivivus, can be used as first live food for grouper larvae from the onset of exogenous feeding until they could feed on Artemia nauplii.  相似文献   

11.
High mortality is common when culturing most marine fish larvae, especially during the transition from endogenous to exogenous feeding. In aquaculture, many species of marine fish are not able to survive when only fed enriched rotifers and Artemia spp. nauplii. Ciliates are a potential alternative live food organism for first‐feeding larvae, because they can grow to high population densities, accept inert diets, and are natural prey organisms of marine fish larvae. The range of culture parameters to optimize population growth of the ciliate Euplotes sp. are unknown. Five experiments were conducted to determine the effects of food concentration and abiotic factors including salinity, aeration rate, temperature and photoperiod on population growth of the ciliate Euplotes sp. Results indicated the optimal ranges for population growth of Euplotes sp. was a temperature between 26 and 32°C, salinities from 20 and 35 g/L, food (Protein Selco®) concentrations of 250 and 500 mg/million ciliates, absence of or low aeration (8.5 cm3/min) and the photoperiod 0L:24D. Euplotes sp. can tolerate high ammonia and very low dissolved oxygen concentrations, and population growth can occur in these conditions for at least 7 days.  相似文献   

12.
During a series of experiments, bacteriological elements in scallop larval rearing were investigated: larvae susceptibility to pathogens as a function of their age, and the use of probiotic bacteria during larviculture. Younger larvae (d5 PF) were highly more susceptible to pathogenic‐challenge than their older siblings, which were challenged at an older age (d15 PF). A challenge with 104 CFU mL?1 of V. pectenicida killed 100% of d5 PF larvae 7 days following challenge, yet killed only 9% of d15 PF larvae 9 days following challenge. Use of the probiotics Phaeobacter gallaeciensis, Alteromonas macleodii 0444 and Neptunomonas sp. 0536, provided for larger larvae, a high yield of competent larvae and, perhaps more importantly, protection against pathogen‐challenge similar to levels achieved from antibiotic use. When challenged with V. pectenicida, d29 survivals were 20.3%, 85.1% and 75.0% respectively for control (no probiotic), antibiotic treated, and ‘probiotic mix’ administered larvae. Use of potential probiotic Pseudoalteromonas sp. D41 appeared to hinder scallop larvae. Future use of probiotics in scallop larval rearing would benefit from combined use of P. gallaeciensis, A. macleodii 0444 and Neptunomonas sp. 0536.  相似文献   

13.
The geoduck clam, Panopea generosa, is a species from the west coast of Baja California, Mexico, and the optimization of seed production systems is still a limiting factor for its aquaculture. In this study, a flow‐through culture system was designed and tested in P. generosa larvae. Survival and growth was compared in triplicate 45‐L fiberglass tanks using three larval densities (5, 10 and 15 larvae/ml). A head tank kept constant the water inflow, with a daily renewal rate of 1.8× tank volume. The food (Isochrysis spp.) was dosed according to the ingestion rate of larvae and the dilution rate. Survival decreased linearly during the first 10 days and reached asymptotic values of ca. 20% (15 larvae/ml) and 50% (densities of 5 and 10 larvae/ml) afterwards. Mean shell length at the end of the experiment (243 ± 1.8 to 270 ± 0.7 μm) was not statistically different among treatments, even though a trend towards higher gross growth rate was observed in the treatment with the lowest density (9.5 μm/day) relative to the rest of the treatments (8.5 μm/day). It is concluded that P. generosa larvae can be successfully grown in flow‐through systems at maximum densities of 10 larvae/ml without significantly affecting their survival and growth rates. The system design was reliable, kept a constant water flow with reduced maintenance, and may represent an important option in the laboratory for increasing the stocking density of Panopea species during the larval phase.  相似文献   

14.
The effects of varying water depths and temperature on the growth, feed utilization, mortality rates and body composition of Nile tilapia, Oreochromis niloticus (L.), were evaluated. Triplicate groups of 20 fish (mixed-sex) m-3 were stocked into 200-m2 freshwater earthen ponds maintaining four water depths: 50, 100, 200 and 300 cm. The fish were fed on commercial fish pellets (23% protein), twice a day for 10 months (May 1991-February 1992). Water temperatures ranged from 5 oC to 33 oC. Growth performance and survival were significantly affected by pond depth and water temperature. Fish weight gain was lowest (250 g per fish), feed conversion poorest (3.15), and mortality highest (41.5%) at 50 cm depth, whereas 100-200 cm depth produced the best growth rates at warm water temperatures (> 21 oC). At 100-200 cm depth, weight gain was significantly (P<0.001) increased to 348-362 g per fish, feed conversion improved to 2.53-2.59 (P<0.01) and mortality reduced to 21-27% (P<0.001). Fish growth was significantly reduced (P<0.001) below 21 oC. Below 10 oC, fish stopped feeding and developed severe stress, fungal infection and high mortality. However, mortality rate was significantly reduced at 300 cm depth. Body lipid and protein were sharply decreased (P<0.001) with decreasing water temperature and pond depth, whereas body ash showed irregular patterns.  相似文献   

15.
One of the major challenges in marine fish culture is how to provide live food of adequate size and nutritional quality for first‐feeding larvae. Commonly used live food organisms, rotifers and brine shrimp, may not always be the best option. To determine the suitability of different zooplankton in the larviculture of Elacatinus figaro, three diets were tested: RE – rotifers Brachionus sp. (10 ind mL?1)+ciliate Euplotes sp. (10 ind mL?1), enriched with fatty acids; RC – enriched rotifers (10 ind mL?1)+wild copepod nauplii (10 ind mL?1); and R – enriched rotifers (20 ind mL?1). Survival rates were estimated 10 days after hatch (DAH) for the three test groups, and growth rates were evaluated for RE and R at 10 and 20 DAH. Although survival rate was numerically higher for the RC diet (41.1±14.2%), no significant difference was detected between groups fed RE (20.5±18.1%), RC or R (32.1±16.5%). At 10 DAH, the growth rate was significantly higher in RC (5.7±0.6 mm) than in R (4.6±0.5 mm), a trend that was also observed at 20 DAH for RC (8.6±0.5 mm) and R (5.8±0.7 mm) (P<0.05). E. figaro larvae fed on ciliates did not show satisfactory results, whereas feeding copepod nauplii enhanced growth.  相似文献   

16.
The nematode Panagrolaimus sp. was tested as live feed to replace Artemia nauplii during first larval stages of whiteleg shrimp Litopenaeus vannamei. In Trial 1, shrimp larvae were fed one of four diets from Zoea 2 to Postlarva 1 (PL1): (A) Artemia nauplii, control treatment; (NC) nematodes enriched in docosahexaenoic acid (DHA) provided by the dinoflagellate Crypthecodinium cohnii; (N) non‐enriched nematodes; and (Algae) a mixture of microalgae supplemented in C. cohnii cells. In Trial 2, shrimp were fed (A), (NC) and a different treatment (NS) with nematodes enriched in polyunsaturated fatty acids (PUFAs) provided by the commercial product S.presso®, until Postlarva 6 (PL6). Mysis 1 larvae fed nematodes of the three dietary treatments were 300 μm longer (3.2 ± 0.3 mm) than control larvae. At PL1, control shrimp were 300 μm longer (4.5 ± 0.3 mm) than those fed DHA‐enriched or PUFAs‐enriched nematodes. No differences were observed in length and survival at PL6 between control larvae and those fed DHA‐enriched nematodes (5.1 ± 0.5 mm; 33.1%–44.4%). Shrimp fed microalgae showed a delay in development at PL1. This work is the first demonstration of Panagrolaimus sp. suitability as a complete substitute for Artemia in rearing shrimp from Zoea 2 to PL6.  相似文献   

17.
Hilsa, Tenualosa ilisha has received much attention for culture due to decline of the natural population. Lack of knowledge on larval rearing is the bottleneck for its culture. This study was aimed at developing larval rearing protocols for hilsa shad. Hilsa larvae (4 days old, 4.76 ± 0.06 mm/0.49 ± 0.01 mg) were stocked in fibreglass‐reinforced plastic tanks (1.7 m3 water volume) at 300, 600 and 1,200 nos/m3 in triplicates in three experimental systems viz., E‐I (circular, 0.567 m water depth), E‐II (circular, 0.962 m water depth) and E‐III (rectangular, 0.567 m water depth) and reared for 46 days. The larvae were supplied with Chlorella vulgaris, Brachionus calyciflorus, mixed phytoplankton and mixed zooplankton during 4–50, 6–25, 8–50 and 26–50 days of their age respectively. In each system, higher (p < 0.05) fry survival at 300 nos/m3 than in higher densities indicates density dependent stress. Circular tanks showed higher survival (13.3%–61.31%) than in rectangular tanks (6.88%–27.26%) in each stocking density, indicating the importance of tank shape for rearing. Water depth affected fry survival in circular tanks (E‐I and E‐II) at 300 nos/m3; at 0.962 m depth, survival was higher (61.31%, p < 0.05) than that of 0.567 m depth (49.93%). Good fry survival was achieved through feeding the larvae initially with Chlorella followed by co‐feeding with Brachionus, mixed phytoplankton and zooplankton and rearing in circular tanks at 300 nos/m3 densities at 1 m depth. This first‐ever larval rearing protocol is useful for mass production of fry to support hilsa aquaculture in future.  相似文献   

18.

The Catarina scallop Argopecten ventricosus is a highly valued resource. Although its hatchery spat production has already been reported, the effects of initial larval stocking density have never been reported for production purposes. This study evaluates A. ventricosus growth and survival in triplicate using three stocking densities: low (LD; 2 larvae mL?1), medium (MD; 4 larvae mL?1), and high (HD; 6 larvae mL?1). Three-day old larvae were reared in 18-L plastic carboy at 25.6?±?0.5 °C and fed with a microalgal blend of Isochrysis galbana and Chaetoceros calcitrans (1:1 cell number ratio) for 7 days, equivalent to 10 post-fertilization days (PFD). Higher specific growth rate was recorded at LD (15.8?±?0.2%) after 8 PFD of culture compared to MD (1.6?±?0.5%) and HD (4.1?±?1.8%) densities. The least time required for 60% of the larvae to reach the pediveliger stage was recorded at LD condition (10 PFD). Higher survival was recorded at HD (58.8?±?3.1%) at 8 PFD compared to MD (53.5?±?3.1%) and LD (43.9?±?3.0%). After 8 PFD, stocking density was highly related to larval growth and survival. To increase production and growth, and reduce the time required to reach pediveliger stage, stocking density should start with 6 larvae mL?1 and be reduced to 2 larvae mL?1 at 7 PFD.

  相似文献   

19.
Storage of common carp, Cyprinus carpio L., eggs for short durations   总被引:1,自引:0,他引:1  
In this study, a short-term storage of pre-activated eggs of the Japanese ornamental (koi) carp, Cyprinus carpio L., at three different temperature regimes is reported. Koi eggs were stored at low temperatures (6-9oC), at variable or high temperatures (12-31C) and at moderate-stable temperatures (20-24.5oC). Survival of the developing embryos was examined at the first and the second day post-activation, and in hatch-out larvae. Survival was calculated for each treatment by linear regression Y = a-bX (P± 0.01), except for eggs incubated at temperature of about 20 C(P > 0.1).The specific mortality index (b/a 100), as a ratio between the mortality rate (b) and the fertilization rate (a), indicated that the highest mortality is associated with the high and unstable storage temperatures, while the lowest mortality is with the moderate and stable storage temperatures. Eggs can be stored at moderate and stable temperatures for a maximal duration of 6h, yielding survival of hatch-out larvae higher than 50%. In two trials, fertilization potency of sperm stored in a domestic refrigerator (5-9oC) for 5h, was compared with freshly stripped sperm and no differences in fertilization rates were found between the two treatments.  相似文献   

20.
Identifying nursery habitats is of paramount importance to define proper management and conservation strategies for flatfish species. Flatfish nursery studies usually report upon habitat occupation, but few attempted to quantify the importance of those habitats to larvae development. The reliance of two sympatric flatfish species larvae, the European flounder Platichthys flesus and the common sole Solea solea, on the estuarine food web (benthic versus pelagic), was determined through carbon and nitrogen stable isotope analysis. The organic matter sources supporting the production of Pflesus and Ssolea larvae biomass originates chiefly in the benthic food web. However, these species have significantly different δ13C and δ15N values which suggest that they prey on organisms that use a different mixture of sources or assimilate different components from similar OM pools (or both).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号