首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
High populations of Pseudomonas solanacearum were detected in some, but not all stems of bacterial wilt resistant ('CRA 66', 'Hawaii 7996' and 'Caraibo') and susceptible ('Floradel') tomatoes. Latent infection, i.e. spread of P. solanacearum into xylem vessels, was confirmed in Caraibo, Hawaii 7996 and 'CRA 66' (the resistant parent of Caraibo). None of the plants within the resistant cultivars wilted and those cultivars were characterized by tolerance of the vascular tissues to high bacterial densities. In contrast, plants of cultivar Floradel showed consistent symptoms and wilted rapidly, with higher mean bacterial density than resistant cultivars. Bacterial wilt resistance was not associated with resistance to bacterial root invasion but with the capability of the plant to limit P. solanacearum colonization in the stem. The extent of bacterial colonization is proposed as a criterion to quantify tolerance, complementary to absence of external wilt symptoms used in breeding programmes for resistance.  相似文献   

2.
Ten tomato cultivars, from the USA, Taiwan and French Antilles, were compared for resistance to bacterial wilt as measured by disease and pathogen population invasiveness and density in the stem at the collar and midstem regions. On the basis of disease incidence, cultivars ranked from highly susceptible to totally resistant. By contrast, no significant difference was observed in bacterial population in wilting plants, regardless of the cultivar. All symptomless plants were latently infected at the collar level. Percentage of symptomless plants with bacteria at the midstem level was significantly correlated with the degree of resistance; the more resistant, the lower the stem colonization. Restriction of Pseudomonas solanacearum invasiveness in the vascular tissues of the stem is associated with resistance properties in tomato. This observation may be useful in developing improved criteria for selecting stable resistance to the disease.  相似文献   

3.
Interactions between lettuce and a green fluorescent protein (GFP)-expressing, race 1 isolate of Verticillium dahliae, were studied to determine infection and colonization of lettuce cultivars resistant and susceptible to Verticillium wilt. The roots of lettuce seedlings were inoculated with a conidial suspension of the GFP-expressing isolate. Colonization was studied with the aid of laser scanning confocal and epi-fluorescence microscopes. Few differences in the initial infection and colonization of lateral roots were observed between resistant and susceptible cultivars. Hyphal colonies formed on root tips and within the root elongation zones by 5 days, leading to the colonization of cortical tissues and penetration of vascular elements regardless of the lettuce cultivar by 2 weeks. By 8 to 10 weeks after inoculation, vascular discoloration developed within the taproot and crown regions of susceptible cultivars well in advance of V. dahliae colonization. Actual foliar wilt coincided with the colonization of the taproot and crown areas and the eruption of mycelia into surrounding cortical tissues. Advance colonization of stems, pedicels, and inflorescence, including developing capitula and mature achenes was observed. Seedborne infection was limited to the maternal tissues of the achene, including the pappus, pericarp, integument, and endosperm; but the embryo was never compromised. Resistant lettuce cultivars remained free of disease symptoms. Furthermore, V. dahliae colonization never progressed beyond infected lateral roots of resistant cultivars. Results indicated that resistance in lettuce may lie with the plant's ability to shed infected lateral roots or to inhibit the systemic progress of the fungus through vascular tissues into the taproot.  相似文献   

4.
The distribution and multiplication of Ralstonia solanacearum in tomato plants of 11 resistant cultivars derived from different genetic sources and susceptible cultivar Ponderosa were examined. Bacterial multiplication in stems of resistant tomato plants was suppressed owing to the limitation of pathogen movement from the protoxylem or the primary xylem to other xylem tissues. The limitation was most conspicuous in Hawaii 7996. Grafting experiments indicated that the percentage of wilting of Ponderosa scions was less on Hawaii 7996 rootstocks than that on the most resistant rootstock (LS-89) used in Japan. Hawaii 7996 could be an alternative genetic source for breeding for resistance to bacterial wilt.  相似文献   

5.
Yang CH  Ho GD 《Phytopathology》1998,88(4):330-334
ABSTRACT Tomato bacterial wilt caused by Ralstonia solanacearum is a model system for studying plant-bacterial interactions, because it is genetically one of the best characterized plant diseases. We demonstrate here that four different strains of R. solanacearum, two from radishes (Rd4 and Rd15) and two from tomato (Ps21 and Ps95), can infect 27 different ecotypes of Arabidopsis thaliana, causing different responses. All ecotypes tested were highly susceptible to strain Rd15, which caused symptoms similar to those observed in tomato plants. For example, leaf drooping and discoloration developed just 3 days after inoculation, and plants completely wilted within 1 week. Strains Rd4 and Ps95 were less infectious than Rd15. With these two strains, a variety of disease responses were observed among different ecotypes at 2 weeks after inoculation; both susceptible and resistant ecotypes of A. thaliana were identified. Ps21 was the least infectious of the four strains and caused almost no symptoms in any of the ecotypes of Arabidopsis tested. Direct bacterial isolation and plant skeleton hybridization analysis from infected plants indicated that bacterial colonization was correlated with the severity of symptoms. Growth of bacteria was limited to the infection site in resistant plants, whereas the bacteria spread throughout susceptible plants by 1 week after inoculation.  相似文献   

6.
ABSTRACT The burrowing nematode Radopholus similis is one of the most damaging pathogens on banana plantations. The role of phenolics in plant defense responses to the nematode was histochemically and ultrastructurally investigated in susceptible and partially resistant cultivars. Histochemical observations of healthy roots revealed that high levels of lignin, flavonoids, dopamine, cafeic esters, and ferulic acids were associated with a very low rate of nematode root penetration in the resistant cultivar. The presence of lignified and suberized layers in endodermal cells contributed to limit invasion of the vascular bundle by the pathogen. After infection, flavonoids were seen to accumulate early in walls of cells close to the nematode-migrating channel in both cultivars and in all tissues of the infected resistant roots including the vascular tissues. The labeling pattern obtained with the gold-complexed laccase and with anti-pectin monoclonal antibodies showed that phenolics were distributed in a loosened pectin-rich material surrounding the nematode. This study provides indications that constitutive phenolics in banana roots are associated with the limitation of host penetration and colonization by R. similis. Accumulation of flavonoids in response to infection was detected in the vascular tissues of susceptible plants and in all root tissues in the partially resistant plants.  相似文献   

7.
 本文论述了不同抗性番茄品种在接种了TMV之后体内过氧化物酶及其同工酶的变化趋势。不同品种番茄幼苗接种TMV之后30天内病毒含量、过氧化物酶活性及其同工酶的测定结果表明:所有接种的番茄幼苗与健株对照相比均表现酶活性的增强及酶带数目的增多;但不同抗性品种,酶活性交化曲线及同工酶谱带的变化趋势有所不同:感性品种北京早红(+/+)及耐病品种强力米寿接种TMV之后,病毒含量迅速上升,在第15天达到最高峰,同时植株开始显症,其酶活性曲线呈现出1个增值高峰,即酶活性只在显症之后迅速上升于第24天达到最高峰,病株在症状发展过程中产生2条健株所没有的具高迁移率的同工酶谱带A与B。抗性品种Tm-2(Tm-2/+)抑制TMV在体内的增殖,在接种之后30天内植株不表现典型外部症状,其酶活性曲线具有2个增酶高峰,即在接种后第12天达到最高峰,并在第21天有1个新的高峰;在酶活性高峰期,接种植株也产生同工酶谱A与B,与感性品种不同的是谱带A与B形成较早,同时,抗性品种还产生感病品种所没有的1条同工酶谱带F。上述过氧化物酶活性及同工酶的变化趋势可以成为鉴定品种抗性一个有价值的生化指标。  相似文献   

8.
Ralstonia solanacearum causes bacterial wilt in numerous plant species worldwide. Although biovar 2 mostly affects solanaceous crops, identification of new hosts remains a matter of concern since there is still no clear-cut distinction between host and nonhost plants. In this work we provide data based on histological studies on the status of 20 plant species, most of them of potential interest in crop rotation. Plants were watered with a beta-glucuronidase-expressing derivative of R. solanacearum biovar 2, and after a month of incubation, sections of roots and stems were analyzed to localize the pathogen on surface, in cortex and/or xylem. Depending on whether the xylem was colonized or not, plants were classified as hosts or nonhosts, respectively. Hosts generally affected in a few xylem vessels or occasionally in all xylem bundles were classified as tolerant. These included some cabbage, kidney bean, and rutabaga cultivars, and the weed bittersweet nightshade (Solanum dulcamara). Nonhosts were the cultivars tested of alfalfa, barley, black radish, carrot, celery, colocynth, fennel, fiber flax, field bean, field pea, horseradish, maize, and zucchini. However, barley and maize, though nonhosts, may act as reservoirs for the pathogen. The present work constitutes a basis for further studies on cropping systems in fields where R. solanacearum has been detected.  相似文献   

9.
The multiplication of Soil-borne wheat mosaic virus (SBWMV) was studied in mixtures of two winter wheat (Triticum aestivum) cultivars, one susceptible (Soissons) and the other resistant (Trémie). Two seed mixtures of susceptible and resistant varieties in ratios of 1 : 1 and 1 : 3 and their component pure stands, i.e. each variety grown separately, were grown in a field infected with SBWMV. The presence of the virus was detected using DAS-ELISA from January to May. The resistant cultivar Trémie showed no foliar symptoms nor could the virus be detected in the leaves or roots. In May, about 88% of plants of susceptible cultivar Soissons grown in pure stands were infected. At this time, the disease reduction relative to pure stands was 32.2% in the 1 : 1 mixture and 39.8% in the 1 : 3 mixture. Optical density (OD) values from ELISA of the infected plants in the two mixtures were consistently lower than that of the infected plants in cultivar Soissons in pure stands. The ELISA index (EI) calculated using three scales of OD values was 65.5% in the susceptible cultivar in pure stands. The value for this index was 19.1% in the 1 : 1 mixture and 7.9% in the 1 : 3 mixture. The plants of the resistant cultivar Trémie infected in the same field and transferred in January to a growth cabinet at 15 °C multiplied the virus and produced viruliferous zoospores. These results show that the resistant cultivar Trémie plays a role in disease reduction in the cultivar mixtures in field conditions. Possible reasons for this are discussed.  相似文献   

10.
Fusarium root and stem rot caused by the fungus Fusarium oxysporum f. sp. radicis‐cucumerinum is a major disease in greenhouse cucumbers. Over the past decade, the disease has been documented in melon greenhouses in Greece, and recently it has been sporadically recorded in greenhouse melons in Israel. Variations in disease response were found among 41 melon accessions artificially inoculated with the pathogen: 10 accessions were highly susceptible (90–100% mortality), 23 exhibited an intermediate response (20–86%) and eight were resistant (0–4%). Two melon accessions – HEM (highly resistant) and TAD (partially resistant) – were crossed with the susceptible accession DUL. The responses of the three accessions and F1 crosses between the resistant and susceptible parents were evaluated. HEM contributed higher resistance to the F1 hybrid than TAD. Roots of susceptible and resistant accessions were 100 and 79% colonized, respectively, following artificial inoculation. However, only susceptible plants showed colonization of the upper plant tissues. Microscopic evaluation of cross sections taken from the crown region of the susceptible DUL revealed profuse fungal growth in the intercellular spaces of the parenchyma and in xylem vessels. In the resistant cultivar HEM, very little fungal growth was detected in the intercellular spaces of the parenchyma, and none in the xylem or any other vascular tissue. Finding resistant accessions may create an opportunity to study the genetics of resistance inheritance and to develop molecular markers that will facilitate breeding resistant melon cultivars.  相似文献   

11.
Fukui R  Fukui H  Alvarez AM 《Phytopathology》1999,89(11):1007-1014
ABSTRACT Effect of temperature on leaf colonization in anthurium blight was studied using a bioluminescent strain of Xanthomonas campestris pv. dieffenbachiae. In a susceptible cultivar, colonization of leaf tissues (monitored by detection of bioluminescence) and symptom development (assessed visually) advanced rapidly at higher temperatures. For a susceptible cultivar, there was a linear relationship between degree-days and percent leaf area colonized by the pathogen, indicating that leaf colonization in a susceptible cultivar was a direct function of the cumulative effect of temperature. The degree-day intercept of the regression line represented the time from inoculation to detection of bioluminescence, and the slope indicated the increase of leaf colonization per degree-day. There also was a linear relationship between the logarithm of degree-days and the logarithm of percent leaf area showing visible symptoms in a susceptible cultivar. The degree-day intercept of this relationship represented the incubation period (about 500 degree-days). The degree-days required to detect bioluminescence was not considerably different between susceptible and resistant cultivars. However, the subsequent rates of leaf colonization were significantly lower for a resistant cultivar than for a susceptible cultivar in all temperature regimes. The results suggest that multiplication of the pathogen in the leaf tissues is optimized in the susceptible cultivar. In contrast, in the resistant cultivar, the defense mechanisms overshadow the temperature effect. The differential response to temperatures may be an additional indicator of cultivar susceptibility.  相似文献   

12.
Verticillium wilt of cotton (Gossypium hirsutum) is a widespread and destructive disease caused by the soil-borne fungal pathogen Verticillium dahliae. In this study, a green fluorescent protein (GFP) labelled V. dahliae strain (TV7) was obtained by transforming gfp into defoliating strain V991. Strain TV7 was used to study infection and colonization of wilt resistant cotton cultivar Zhongzhimian KV1 and susceptible cultivar 861 with the aid of confocal laser scanning microscopy. The results showed that initial infection and colonization of V. dahliae in Zhongzhimian KV1 and 861 were similar. Conidia and hyphal colonies formed and penetrated in the root meristematic and elongation zones and in the conjunction of the lateral and main roots. The invaded conidia started to germinate by 2 hpi (hours post-inoculation), penetrated into the root cortex and vascular bundles, eventually colonized in the stem xylem vessels and grew restrictedly in the individual tracheae of both resistant and susceptible cultivars. Moreover, pathogen DNA could be detected by qPCR in roots and stems of both cultivars, but its content in the wilt susceptible cultivar 861 was much higher than that in the wilt resistant cultivar Zhongzhimian KV1. The results indicated that the resistant cultivar has ability to suppress V. dahliae reproduction.  相似文献   

13.
水稻白叶枯病成株抗性品种病理解剖研究   总被引:4,自引:1,他引:4  
 成株抗性品种(简称成抗品种)苗期感病阶段和感病品种接种后,病菌在叶片内扩展和繁殖速度快,叶片内部组织变态,导管内菌量多、菌体形态正常;成抗品种成株抗病阶段和全生育期抗病品种(简称全抗品种)与此相反,病菌在接种叶片内扩展和繁殖速度慢,叶片内部组织结构正常,导管内菌量较少.并出现了不同形态的物质,将病菌包围,菌体形状不规则,这些物质在健康叶片、成抗苗期接种叶片和感病品种病叶的导管中未观察到,其形成似乎与品种抗性表现有关系.  相似文献   

14.
ABSTRACT Ralstonia solanacearum is a soilborne plant pathogen that normally invades hosts through their roots and then systemically colonizes aerial tissues. Previous research using wounded stem infection found that the major factor in causing wilt symptoms was the high-molecular-mass acidic extracellular polysaccharide (EPS I), but the beta-1,4-endoglucanase (EG) also contributes to virulence. We investigated the importance of EPS I and EG for invasion and colonization of tomato by infesting soil of 4-week-old potted plants with either a wild-type derivative or genetically well-defined mutants lacking EPS I, EG, or EPS I and EG. Bacteria of all strains were recovered from surface-disinfested roots and hypocotyls as soon as 4 h after inoculation; that bacteria were present internally was confirmed using immunofluorescence microscopy. However, the EPS-minus mutants did not colonize stems as rapidly as the wild type and the EG-minus mutant. Inoculations of wounded petioles also showed that, even though the mutants multiplied as well as the wild type in planta, EPS-minus strains did not spread as well throughout the plant stem. We conclude that poor colonization of stems by EPS-minus strains after petiole inoculation or soil infestation is due to reduced bacterial movement within plant stem tissues.  相似文献   

15.
16.
Ralstonia solanacearum is the causative agent of bacterial wilt in many important crops. ?RSS1 is a filamentous phage that infects R. solanacearum strains. Upon infection, it alters the physiological state and the behavior of host cells. Here, we show that R. solanacearum infected by ?RSS1 becomes more virulent on host plants. Some virulence and pathogenicity factors, such as extracellular polysaccharide (EPS) synthesis and twitching motility, increased in the bacterial host cells infected with ?RSS1, resulting in early wilting. Tomato plants inoculated with ?RSS1-infected bacteria wilted 2 to 3 days earlier than those inoculated with wild-type bacteria. Infection with ?RSS1 induced early expression of phcA, the global virulence regulator. phcA expression was detected in ?RSS1-infected cells at cell density as low as 10(4) CFU/ml. Filamentous phages are assembled on the host cell surface and many phage particles accumulate on the cell surface. These surface-associated phage particles (phage proteins) may change the cell surface nature (hydrophobicity) to give high local cell densities. ?RSS1 infection also enhanced PilA and type IV pilin production, resulting in increased twitching motility.  相似文献   

17.
ABSTRACT Spread of Tomato spotted wilt virus (TSWV) and population development of its vector Frankliniella occidentalis were studied on the pepper accessions CPRO-1 and Pikante Reuzen, which are resistant and susceptible to thrips, respectively. Viruliferous thrips were released on plants of each accession (nonchoice tests) or on plants in a 1:1 mixture of both accessions (choice tests) in small cages containing 8 or 16 plants. Significantly fewer CPRO-1 plants became infected in the primary infection phase in both tests. In the nonchoice test, virus infection of the resistant plants did not increase after the initial infection, but all plants eventually became infected when mixtures of both cultivars were challenged in the secondary infection phase. Secondary spread of TSWV from an infected resistant or susceptible source plant was significantly slower to resistant plants than to susceptible plants, independent of source plant phenotype. The restricted introduction and spread of TSWV in the thrips-resistant cultivar was confirmed in a large-scale greenhouse experiment. The restricted and delayed TSWV spread to plants of the resistant accession in both the cage and the greenhouse experiment was explained by impeded thrips population development. The results obtained indicate that thrips resistance may provide a significant protection to TSWV infection, even when the crop is fully susceptible to the virus.  相似文献   

18.
Xylella fastidiosa is a phytopathogenic bacterium that causes disease in many different crops worldwide. In Brazil, X. fastidiosa subsp. pauca causes citrus variegated chlorosis (CVC), which is a disease responsible for economic losses in the citrus agribusiness. Variable host responses to bacterial colonization and disease development have been observed. This work studies the colonization processes of a pathogenic GFP‐labelled X. fastidiosa citrus strain in sweet orange (susceptible) and tangor (resistant) parents and two resulting hybrids that exhibited contrasting responses to CVC. Xylella fastidiosa showed increased populations and movement in the susceptible genotypes, but slower compared to other hosts such as grapevine. Scanning electron microscopy revealed that the predominant pitted stem morphology in citrus makes the bacterial movement difficult. In susceptible genotypes X. fastidiosa can move from the primary to the secondary xylem, whilst it is confined to the primary xylem in resistant plants. Associated with this is an induction of lignification that occurs earlier in the resistant genotypes when in the presence of the pathogen, and represents a genetic mechanism that leads to formation of a physical barrier, impairing bacterial colonization.  相似文献   

19.
Initial experiment on the reactions of five Japanese cultivars of cucumber toColletotrichum orbiculare infection in the greenhouse revealed that cv Suyo and Gibai were susceptible and moderately susceptible, respectively, while cv Shogoin fushinari and Sagami hanjiro were resistant to infection byC. orbiculare; cv Ochiai fushinari was moderately resistant. The ability of 16 plant growth promoting fungi (some isolates belonged to species ofPhoma and some non-sporulating isolates) isolated from zoysiagrass rhizospheres to induce systemic resistance in the above five cucumber cultivars was tested by growing plants in potting medium infested with barley grain inocula of PGPF in the greenhouse. The second true leaves of 21-day-old plants were challenge inoculated withC. orbiculare and disease assessed. Nine, out of 16 isolates, caused significant reduction of disease caused byC. orbiculare in at least two cultivars.Phoma isolates (GS8-1 and GS8-2) and non-sporulating isolates (GU21-2, GU23-3, and GU24-3) significantly reduced the disease in all the five cultivars. The disease suppression in cucumber was due to the induction of systemic resistance, since the inducer(s) and the pathogen were separated spatially and that the inducer did not colonize aerial portions. The resistance induced by certain isolates in a susceptible cultivar was less than that in a resistant cultivar. Disease suppression caused by isolate GU21-2 was similar to theC. orbiculare induced control in certain cultivars. The average rate of expansion of lesion diameter on leaves due toC. orbiculare was slower due to induction with the selected plant growth promoting fungi compared to the uninduced control plants. Roots of four cultivars were colonized by only three isolates, however, roots of one cultivar (Suyo) was colonized by five isolates suggesting the cultivar-specific root colonization ability.Abbreviations cv cultivar(s) - PGPF plant growth promoting fungal isolates - PGPR plant growth promoting rhizobacteria  相似文献   

20.
ABSTRACT Leaf blotch, caused by Rhynchosporium secalis, was studied in a range of winter barley cultivars using a combination of traditional plant pathological techniques and newly developed multiplex and real-time polymerase chain reaction (PCR) assays. Using PCR, symptomless leaf blotch colonization was shown to occur throughout the growing season in the resistant winter barley cv. Leonie. The dynamics of colonization throughout the growing season were similar in both Leonie and Vertige, a susceptible cultivar. However, pathogen DNA levels were approximately 10-fold higher in the susceptible cultivar, which expressed symptoms throughout the growing season. Visual assessments and PCR also were used to determine levels of R. secalis colonization and infection in samples from a field experiment used to test a range of winter barley cultivars with different levels of leaf blotch resistance. The correlation between the PCR and visual assessment data was better at higher infection levels (R(2) = 0.81 for leaf samples with >0.3% disease). Although resistance ratings did not correlate well with levels of disease for all cultivars tested, low levels of infection were observed in the cultivar with the highest resistance rating and high levels of infection in the cultivar with the lowest resistance rating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号