首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cronartium ribicola, the causal agent of white pine blister rust, has been devastating to five-needled white pines in North America since its introduction nearly a century ago. However, dynamic and complex interactions occur among C. ribicola, five-needled white pines, and the environment. To examine potential evolutionary influences on genetic structure and diversity of C. ribicola in western United States, population genetic analyses of C. ribicola were conducted using amplified fragment length polymorphism (AFLP) molecular markers. The fungus was sampled at six sites. Collections for two of the six sites were from separate plantings of resistant-selected western white pine and sugar pine. Heterozygosity based on polymorphic loci among populations ranged from 0.28 to 0.40, with resistant-selected plantations at the extremes. Genetic differentiation was also highest between these two populations. Principal coordinates analysis and Bayesian assignment placed most isolates that are putative carriers of virulence to major-gene resistance into a discernable cluster, while other isolates showed no clustering by site or host species. These results indicate that C. ribicola in western North America is not genetically uniform, despite its presumed single site of introduction and relatively brief residence. Moreover, major-gene resistance appears to have imposed strong selection on the rust, resulting in reduced genetic diversity. In contrast, no evidence of selection was observed in C. ribicola from hosts that exhibit only multigenic resistance.  相似文献   

2.
ABSTRACT The genetic structure of populations of Cronartium ribicola was studied by sampling nine populations from five provinces in eastern Canada and generating DNA profiles using nine random amplified polymorphic DNA markers. Most of the total gene diversity (H(t) = 0.386) was present within populations (H(w) = 0.370), resulting in a low level of genetic differentiation among populations in northeastern North America (F(st) = 0.062). A hierarchical analysis of genetic structure using an analysis of molecular variance (AMOVA) revealed no statistically significant genetic differentiation among provinces or among regions. Yet, genetic differentiation among populations within regions or provinces was small (AMOVA phi(st) = 0.078) but statistically significant (P < 0.001) and was several orders of magnitude larger than differentiation among provinces. This is consistent with a scenario of subpopulations within a metapopulation, in which random drift following migration and new colonization are major evolutionary forces. A phenetic analysis using genetic distances revealed no apparent correlation between genetic distance and the province of origin of the populations. The hypothesis of isolation-by-distance in the eastern populations of C. ribicola was rejected by computing Mantel correlation coefficients between genetic and geographic distance matrices (P > 0.05). These results show that eastern Canadian provinces are part of the same white pine blister rust epidemiological unit. Nursery distribution systems are controlled provincially, with virtually no seedling movement among provinces; therefore, infected nursery material may not play an important role in the dissemination of this disease. Long-distance spore dispersal across provincial boundaries appears to be an epidemiologically important factor for this pathogen.  相似文献   

3.
ABSTRACT The presence of the European (EU) race of Gremmeniella abietina var. abietina, the causal agent of Scleroderris canker of conifers, was first reported in North America in 1975 in the northeastern United States and subsequently in southern Quebec and Newfoundland during the late 1970s, where it quickly became established. We analyzed DNA profiles in samples from a historic collection of G. abietina var. abietina that included some of the first isolates of the EU race reported in the United States to test hypotheses concerning the G. abietina var. abietina epidemic in North America. Genetic diversity was partitioned by an analysis of molecular variance with haplotype frequencies and distances. Genetic differentiation was high between populations in continental North America and Newfoundland (between region differentiation, Phi(ct) = 0.665, P < 0.001). This result was not consistent with the hypothesis of a single introduction of the pathogen into the northeastern United States followed by secondary spread into northeastern Canada. In contrast, small levels of genetic differentiation were observed among continental North American populations (Phi(ct) = 0.047, P = 0.079), suggesting gene flow among these populations. A single haplotype of G. abietina var. abietina dominated the continental populations (80% of the isolates) but was absent from Newfoundland and Europe. Five haplotypes were found in the New-foundland population, all of which were either absent or very rare on the continent. Populations from continental North America clustered together and were distinct from a second cluster composed of European and Newfoundland populations. A phylogenetic analysis of the haplotypes indicated that some of the rare haplotypes may have derived from somatic mutations, whereas others probably occurred as the result of new introductions. The results are consistent with a scenario of distinct primary introductions of this pathogen into Newfoundland and continental eastern North America followed by secondary asexual propagation.  相似文献   

4.
Zhang N  Blackwell M 《Phytopathology》2002,92(12):1276-1283
ABSTRACT Dogwood anthracnose, caused by Discula destructiva, affects several native dogwood species in North America, especially flowering dogwood in the east and Pacific dogwood in the west. The fungus behaves as a recently introduced plant pathogen under episodic selection. Two distinct disjunct groups of fungal isolates corresponding to eastern and western groups were detected by amplified fragment length polymorphisms and sequences of the intergenic spacer (IGS) of the nuclear ribosomal DNA, translation elongation factor-1alpha, and beta-tubulin genes. Of 20 genotypes identified among 72 isolates, 17 genotypes were from the eastern United States (n = 50), but only three were present among the western isolates (n = 22), indicating that the eastern population may be more diverse. Most eastern and western isolates belonged to a few widespread clones, and the genetic variability of this apparently asexual fungus was remarkably low compared with that of many other asexual fungi. We conclude that D. destructiva is still under intense selection pressure and that episodic selection may still be in effect. The New York City area, a possible epidemic center in the east, had relatively higher genetic variability than samples from other areas.  相似文献   

5.
6.
Lee S  Hamelin RC  Six DL  Breuil C 《Phytopathology》2007,97(9):1177-1185
ABSTRACT The sapstaining fungal pathogen Ophiostoma clavigerum is associated with the mountain pine beetle (Dendroctonus ponderosae), which is currently the most destructive forest pest in North America. The genetic diversity of O. clavigerum populations collected from five sites in Canada and two sites in the United States was estimated with amplified fragment length polymorphism (AFLP) analysis. Genomic DNA from 170 O. clavigerum isolates was digested with EcoRI and PstI and amplified with six primer sets. A total of 469 AFLP markers consisting of 243 monomorphic and 226 polymorphic loci were scored. The overall genetic diversity of the O. clavigerum population was low (Hs = 0.0531) and the differentiation of the seven O. clavigerum populations was moderate (Phi = 0.143). Genetic distances among the populations were not significantly correlated with geographic distance (r = 0.3235, P = 0.074). Two genetically distinct groups in the O. clavigerum populations were shown by unique AFLP profiles and the unweighted pair group method with arithmetic averages. Further work to characterize biological differences between the two groups will be needed to confirm whether cryptic species are present in the O. clavigerum population.  相似文献   

7.
Lee SH  Neate SM 《Phytopathology》2007,97(8):938-944
ABSTRACT The genetic structure of Septoria passerinii from nine field populations was examined at several scales (within lesions, among lesions in a leaf, among leaves in a field, and among fields in North Dakota and western Minnesota) by using amplified fragment length polymorphism (AFLP) markers. A total of 390 isolates were sampled from seven barley fields located in North Dakota and two barley fields located nearby in western Minnesota in 2003 and 2004. Based on 57 polymorphic AFLP markers, AFLP DNA fingerprints identified 176 different genotypes among 390 (non-clone-corrected) isolates in nine different fields. In two intensively sampled sites, ND16 (Williston, ND) and ND17 (Langdon, ND), only one to four different genotypes were found within a lesion. A higher level of genetic and genotypic diversity was found within a leaf in which six to nine different genotypes were found from lesions on a leaf. The genetic diversity within a leaf was similar to the genetic diversity within a field. The average genetic diversity (H) within a field across all AFLP loci was approximately 0.3, except at site ND12 (Carrington, ND) where it was 0.16. Genotypic diversity was high in all populations, and with the exception of ND15 (Rothsay, MN), very low multilocus linkage disequilibrium values ( r(d)) were found in all populations. The population differentiation, G(ST), was relatively high (G(ST) = 0.238) among the nine populations due to the high G(ST) in ND12, ND14 (Twin Valley, MN), and ND15. Population differentiation without those three populations was 0.09. A lack of correlation between geographical distance and genetic distance was found, suggesting the potential for a high level of gene flow between different geographical regions. The population genetic structure described in this study for S. passerinii in North Dakota and western Minnesota is consistent with that of a sexually reproducing fungus.  相似文献   

8.
ABSTRACT Randomly amplified polymorphic DNA (RAPD) markers and mating type were used to examine regional population structure of Setosphaeria turcica in the eastern United States. Of 251 maize-infecting isolates studied, 155 multilocus haplotypes were identified using 21 RAPD markers. Twelve isolates of the most common haplotype were identified from seven states and represented 5.2% of the sample. Although variation in genetic diversity was greatest within states rather than between either regions or states within regions, multidimensional scaling based on average taxonomic distances among state samples showed a close association of samples from IL, OH, IN, IA, MN, MI/WI, and NC. Isolates from GA/SC, VA/TN, PA/NY, and FL were distant from this core group that included midwestern states and NC and were distinct from one another. The high genotypic diversity, near equal mating type frequencies, and gametic phase equilibrium in samples from several states are inconsistent with a strictly clonal population. The population genetic structure of S. turcica is likely the result of both asexual and sexual reproduction. It is not clear whether sexual recombination actually occurs in the eastern United States or occurs elsewhere in tropical America and recombinant genotypes migrate to North America.  相似文献   

9.
ABSTRACT Four populations of Sclerotinia sclerotiorum in North America were inferred previously, based on analyses of both rapidly evolving markers (DNA fingerprint and mycelial compatiblity), and multilocus DNA sequence spanning the range between fast and slow evolution. Each population was defined as an interbreeding unit of conspecific individuals sharing a common recent ancestor and arising in a unique evolutionary event. The present study applies this standard to extend characterization of S. sclerotiorum populations to the Western United States. Isolates of S. sclerotiorum (N = 294) were determined to represent three genetically differentiated populations: California (CA, lettuce), Washington (WA, pea/lentil), and Ontario (ON, lettuce). CA was the most diverse population yet sampled in North America. Clonality was detected in ON and WA. No DNA fingerprints were common among the populations. The index of association (I(A)), based on fingerprint, was closer to zero (0) for CA than it was for the other populations. High diversity and lack of association of markers in California are consistent either with genetic exchange and recombination, or with large population size and high standing genetic variation. Intra- and interlocus conflict among three DNA sequence loci was consistent with recombination. The coalescent IGS genealogy confirmed subdivision and showed CA to be older than WA or ON. The Nearest Neighbor statistic on combined data confirmed subdivision among all present and previously defined populations. All isolates had both MAT1-1 and MAT1-2, consistent with uniform homothallism.  相似文献   

10.
ABSTRACT Isolates of Puccinia triticina collected from durum wheat from Argentina, Chile, Ethiopia, France, Mexico, Spain, and the United States were analyzed with 11 simple sequence repeat (SSR) markers in order to determine the genetic relationship among isolates. These isolates also were compared with P. triticina isolates from common wheat from North America, and an isolate collected from Aegilops speltoides from Israel, to determine genetic relationships among groups of P. triticina found on different telial hosts. The large majority of isolates from durum wheat were identical for SSR markers or had <8% genetic dissimilarity, except for isolates from Ethiopia, which had 55% dissimilarity with respect to the other durum isolates. Isolates from common wheat had >70% genetic dissimilarity from isolates from durum wheat, and the isolate from A. speltoides was >90% dissimilar from all isolates tested. Analysis of molecular variance tests showed significant levels (P = 0.001) of genetic differentiation among regions and among isolates within countries. Isolates of P. triticina from durum wheat from South America, North America, and Europe were closely related based on SSR genotypes, suggesting a recent common ancestor, whereas P. triticina from Ethiopia, common wheat, and A. speltoides each had distinct SSR genotypes, which suggested different origins.  相似文献   

11.
The genetic diversity of specific Fusarium oxysporum f.sp. lini from six provinces in China was investigated using molecular markers, inter-simple sequence repeats (ISSR). Based on the morphological features and the internal transcribed spacer (ITS) sequences, 96 isolates were identified as Fusarium oxysporum. The 96 isolates were amplified by PCR with 12 ISSR primers. The number of bands amplified by each primer ranged from 43 to 142, with sizes ranging from 250 to 4,500 bp. A total of 800 bands were observed, out of which 797 were polymorphic (99.62%). The percentage of polymorphic loci varied from 17.25% in Gansu and Inner Mongolia to 33.75% in Sinkiang. Nei’s gene diversity index (h) ranged from 0.0428 in Gansu to 0.0666 in Sinkiang, and Shannon’s information index (I) ranged from 0.0675 in Gansu to 0.1117 in Sinkiang. The genetic identity using the Nei’s genetic identity varied from 0.9643 between the populations from Hebei and Gansu to 0.9844 between the populations from Sinkiang and Shanxi. Unweighted pair group mean analysis (UPGMA) cluster analysis, as indicated by the Nei’s genetic distance, showed the distances ranging from 0.0158 between the populations from Sinkiang and Shanxi to 0.0364 between the populations from Hebei and Gansu. The six populations were clustered into three subgroups. The Gansu population was clustered into one subgroup, the same as the Inner Mongolia population. The four other populations were clustered into the third subgroup. The Nei’s GST (0.2972) and gene flow among populations (Nm =1.1825) revealed large gene exchanges among populations.  相似文献   

12.
Ceratocystis cacaofunesta (=  Ceratocystis fimbriata ) causes a lethal wilt disease of cacao ( Theobroma cacao ) in Latin America. Polymorphic microsatellite markers, (CAT)5 nuclear DNA fingerprints and Hae III mitochondrial DNA fingerprints were used to compare genetic diversity among isolates of C. cacaofunesta collected from populations in western Ecuador, Costa Rica, Colombia, and Rondônia and Bahia in Brazil. Microsatellite markers and nuclear DNA fingerprints separated Ecuadorian isolates from isolates of the other four populations, and these two major groups correspond to genetic lineages already identified from ITS-rDNA sequences and intersterility groupings. Mitochondrial DNA fingerprints also demonstrated substantial diversity and split the Ecuadorian isolates into two groups. All marker types showed limited variation in the Colombian, Costa Rican and Bahian populations, as might be expected for introduced populations that have gone through recent genetic bottlenecks. In contrast, the Rondonian and western Ecuadorian populations showed gene diversity values similar to natural populations of other Ceratocystis species. The Rondonian population was the only sampled population in the native range of T. cacao (the Upper Amazon), and the putatively introduced populations were more closely related to the Rondonian population than to the western Ecuadorian population. The Ecuadorian population is in an area with other native Theobroma species, which may serve as natural hosts.  相似文献   

13.
近20年来,在北美、西欧、南美、菲律宾等20多个国家大面积商业化应用Bt玉米防治欧洲玉米螟Ostrinia nubilalis(Hübner)等鳞翅目害虫的实践证明,其不可避免地胁迫靶标害虫产生遗传分化,出现新的抗性种群。研究精准有效的抗性检测方法,将为抗性监测和抗性治理策略的有效性提供科学依据。本研究基于高通量测序获得的亚洲玉米螟Ostrinia furnacalis(Guenée)转录组数据,应用MISA (MicroSAtellite)软件搜索SSR位点,从61 622条EST(Expressed Sequence Tag)序列中获得了3 467个SSR位点。通过设计、筛选,共获得3 316对特异性引物,从中挑选了150对引物进行PCR扩增,共有51对扩增出目的条带,对亚洲玉米螟敏感种群(ACB-BtS)及5个Bt毒素抗性种群(ACB-AbR、ACB-AcR、ACB-AhR、ACB-FR、ACB-IeR)进行多态性检测,最终得到20条高多态性引物。利用这20对微卫星引物共检测到126个等位基因,平均每个位点6.3个。不同Bt抗性种群间产生了一定程度的遗传分化,种群间的平均遗传分化系数(F_(st))为0.195 9,即说明种群间的遗传变异为19.6%。根据遗传距离建立了UPGMA系统发育树,显示6个种群的相似度,即ACB-AbR与ACB-AcR相似度高。种群变异相似度规律与已报道的亚洲玉米螟对各Bt毒素的交互抗性规律相一致。本研究发现的SSR位点可作为亚洲玉米螟不同Bt毒素抗性种群的分子检测方法。  相似文献   

14.
Morin C  Breuil C  Bernier L 《Phytopathology》2004,94(12):1323-1330
ABSTRACT Genomic DNA was extracted from 129 isolates of Ceratocystis resinifera, a species belonging to the C. coerulescens complex, and 19 polymorphic random amplified polymorphic DNA markers were used to study the population genetic structure of this fungus. The analysis suggested a moderate value for genetic diversity (H(S) = 0.209). However, when monomorphic markers and rare alleles, representing 89 markers, also were included in the calculation, the genetic diversity of Canadian populations of C. resinifera appeared to be much lower (H(S) = 0.045). This could be explained by two hypotheses: (i) recent introduction of this species into North America and (ii) clonal reproduction (by selfing). No specialization by C. resinifera for coniferous tree species was observed based on genetic differentiation index between isolates sampled from Pinus and Picea spp. and on phylogenetic analysis using Dice coefficient of association. In spite of a low genetic diversity, a very high genetic differentiation was observed among the nine geographical populations studied (F(ST) = 20.8%). The genetic differences were especially striking when populations from Eastern Canada were compared with populations from Western Canada (phiST = 0.27%; P < 0.001), suggesting that a geographic reproductive barrier occurs in Central Canada. This barrier may be the consequence of a weak migration of insect vectors of C. resinifera due to reduced presence of hosts in the Canadian Great Plains, where extensive agriculture occurs. However, results from pairwise F(ST) matrix and phylogeny of haplotypes suggest that the barrier is not totally impenetrable because some gene flow occurred from the west and from the east in the Big River (Saskatchewan) population located in the middle of the Great Plains.  相似文献   

15.
Ninety-six isolates of sunflower Sclerotinia sclerotiorum (Lib.) de Bary from Inner Mongolia (IM) in China, from Canada and the United Kingdom (UK) were sampled to investigate the genetic diversity and structure using Sequence-Related Amplified Polymorphism. A total of 123 polymorphic bands were obtained, ranging in size from 100 to 500 base pairs. The five populations of S. sclerotiorum isolated from the three countries showed various levels of genetic variability. The percentage of polymorphic loci varied from 30.89% in the UK population to 97.56% in the Middle IM population. The values of Shannon index (i) varied from 0.1876 in the UK population to 0.5301 in the West IM population. The heterozygosity of the five geographic populations obtained by estimating allele frequency varied from 12.91% in the UK population to 35.44% in the West IM population. The genetic identity, as indicated by the Nei unbiased identity index, ranged from 0.9744 between populations from Canada and East IM to 0.6477 between populations from West IM and UK. UPGMA cluster analysis using Nei’s genetic distance gave distances ranging from 0.0259 to 0.4343. The rates of gene flow among five geographic populations ranged from 1.5406 between West IM and UK populations to 18.4149 between West IM and Middle IM populations. The four populations from West IM, Middle IM, East IM and Canada were clustered into one subgroup in which the isolates from West and Middle IM belonged to one population, whereas those from East IM and Canada essentially were another population. The isolates from the UK formed a population that was significantly distinct from other populations.  相似文献   

16.
Multiple families of pathogenesis-related (PR) proteins are believed to contribute to plant quantitative resistance to various pathogens. Along with other host PR proteins, PR3 chitinase is one protein component participating in genetic resistance of western white pine (Pinus monticola) to the white pine blister rust (WPBR) pathogen (Cronartium ribicola). In the present study, we characterized a novel P. monticola class IV chitinase gene (PmCh4B) and further analyzed its nucleotide variations in the open-pollinated seed families of diverse geographical distribution and variable levels of quantitative resistance to C. ribicola infection. PmCh4B showed high haplotype diversity (Hd=0.94) and nucleotide diversity (π=0.00965), similar to those of other conifer genes related to environmental stresses. A low level of intragenic linkage disequilibrium (LD) (but most of the levels with statistical significance) was found within a distance of ≈800 bp. Based on PmCh4B haplotype frequency, moderate to high levels of population structure were observed among P. monticola seed families currently used in breeding programs for WPBR resistance (average FST=0.163, P<0.001). Association analysis revealed that allelic variants and multiple single-nucleotide polymorphisms of PmCh4B were significantly associated with quantitative levels of P. monticola resistance against C. ribicola. This work represents the first association study for quantitative resistance in western white pine pathosystem and provides a potential for marker-assisted selection in white pine breeding.  相似文献   

17.
Gibberella zeae, the principal cause of Fusarium head blight (FHB) of barley, contaminates grains with several mycotoxins, which creates a serious problem for the malting barley industry in the United States, China, and Europe. However, limited studies have been conducted on the trichothecene profiles and population genetic structure of G. zeae isolates collected from barley in the United States. Trichothecene biosynthesis gene (TRI)-based polymerase chain reaction (PCR) assays and 10 variable number tandem repeat (VNTR) markers were used to determine the genetic diversity and compare the trichothecene profiles of an older population (n = 115 isolates) of G. zeae collected in 1997 to 2000 with a newer population (n = 147 isolates) collected in 2008. Samples were from across the major barley-growing regions in North Dakota and Minnesota. The results of TRI-based PCR assays were further validated using a subset of 32 and 28 isolates of G. zeae by sequence analysis and gas chromatography, respectively. TRI-based PCR assays revealed that all the G. zeae isolates in both populations had markers for deoxynivalenol (DON), and the frequencies of isolates with a 3-acetyldeoxynivalenol (3-ADON) marker in the newer population were ≈11-fold higher than those among isolates in the older population. G. zeae populations from barley in the Midwest of the United States showed no spatial structure, and all the isolates were solidly in clade 7 of G. zeae, which is quite different from other barley-growing areas of world, where multiple species of G. zeae are commonly found in close proximity and display spatial structure. VNTR analysis showed high gene diversity (H = 0.82 to 0.83) and genotypic diversity but low linkage disequilibrium (LD = 0.02 to 0.07) in both populations. Low genetic differentiation (F(ST) = 0.013) and high gene flow (Nm = 36.84) was observed between the two populations and among subpopulations within the same population (Nm = 12.77 to 29.97), suggesting that temporal and spatial variations had little influence on population differentiation in the Upper Midwest. Similarly, low F(ST) (0.02) was observed between 3-ADON and 15-acetyldeoxynivalenol populations, indicating minor influence of the chemotype of G. zeae isolates on population subdivision, although there was a rapid increase in the frequencies of isolates with the 3-ADON marker in the Upper Midwest between the older collection made in 1997 to 2000 and the newer collection made in 2008. This study provides information to barley-breeding programs for their selection of isolates of G. zeae for evaluating barley genotypes for resistance to FHB and DON accumulation.  相似文献   

18.
ABSTRACT Gibberella zeae, causal agent of Fusarium head blight (FHB) of wheat and barley and Gibberella ear rot (GER) of corn, may be transported over long distances in the atmosphere. Epidemics of FHB and GER may be initiated by regional atmospheric sources of inoculum of G. zeae; however, little is known about the origin of inoculum for these epidemics. We tested the hypothesis that atmospheric populations of G. zeae are genetically diverse by determining the genetic structure of New York atmospheric populations (NYAPs) of G. zeae, and comparing them with populations of G. zeae collected from seven different states in the northern United States. Viable, airborne spores of G. zeae were collected in rotational (lacking any apparent within-field inoculum sources of G. zeae) wheat and corn fields in Aurora, NY in May through August over 3 years (2002 to 2004). We evaluated 23 amplified fragment length polymorphism (AFLP) loci in 780 isolates of G. zeae. Normalized genotypic diversity was high (ranging from 0.91 to 1.0) in NYAPs of G. zeae, and nearly all of the isolates in each of the populations represented unique AFLP haplotypes. Pairwise calculations of Nei's unbiased genetic identity were uniformly high (>0.99) for all of the possible NYAP comparisons. Although the NYAPs were genotypically diverse, they were genetically similar and potentially part of a large, interbreeding population of G. zeae in North America. Estimates of the fixation index (G(ST)) and the effective migration rate (Nm) for the NYAPs indicated significant genetic exchange among populations. Relatively low levels of linkage disequilibrium in the NYAPs suggest that outcrossing is common and that the populations are not a result of a recent bottleneck or invasion. When NYAPs were compared with those collected across the United States, the observed genetic identities between the populations ranged from 0.92 to 0.99. However, there was a significant negative correlation (R = -0.59, P < 0.001) between genetic identity and geographic distance, suggesting that some genetic isolation may occur on a continental scale. The contribution of long-distance transport of G. zeae to regional epidemics of FHB and GER remains unclear, but the diverse atmospheric populations of G. zeae suggest that inoculum may originate from multiple locations over large geographic distances. Practically, the long-distance transport of G. zeae suggests that management of inoculum sources on a local scale, unless performed over extensive production areas, will not be completely effective for the management of FHB and GER.  相似文献   

19.
Solidago canadensis is native to North America, but has become a noxious invasive plant in China. We know only a little about its invasion history and the effects of introductions on its genetic composition. Here, we investigated genetic variation and structure between 15 North American and 13 Chinese populations of S. canadensis using AFLP makers. Four AFLP loci suggested relatively high genetic diversity of this weed and similar genetic variation between the invasive range and the native range. Most genetic variation was within populations across two ranges, but the Chinese range had a higher degree of among‐population variation than the North American range. Multiple tests, including Bayesian assignment, UPGMA analysis, PCoA and analysis of ‘isolation by distance’, showed that the Chinese populations originated from at least two distinct native sources and that secondary introduction or dispersal should be common in China. Also, North American populations were possibly a single genetic group. Overall, S. canadensis in China was probably founded from multiple introductions and then spread through long‐distance dispersal associated with human activities. Genetic variability in the species in the invaded range appears to have favoured establishment and spread and may well provide a challenge to successful control.  相似文献   

20.
ABSTRACT In order to characterize the genetic variation of the poplar pathogen Mycosphaerella populorum (anamorph Septoria musiva), we have studied seven North American populations using the polymerase chain reaction random amplified polymorphic DNA (RAPD) technique. The fungal populations were sampled in 2001 and 2002 by obtaining 352 isolates from cankers and leaf spots in hybrid poplar plantations and adjacent eastern cottonwood (Populus deltoides). A total of 21 polymorphic RAPD markers were obtained with the six RAPD primers used. A fine-level scale analysis of the genetic structure within the populations revealed that subpopulations sampled on P. deltoides and on hybrid trees were not significantly differentiated. In contrast, analyses performed on the entire data set showed high levels of haplotypic diversity and moderate to high genetic differentiation, with 20% of the expected genetic diversity found at the interpopulation level. Moreover, a high and significant correlation between genetic and geographic distances among populations was found, suggesting isolation by distance of the sampled populations. Although the occurrence of the sexual stage of this fungus remained unclear in field populations, five of the six populations were at gametic equilibrium for RAPD loci, suggesting the occurrence of recombination episodes in Septoria musiva populations. Overall, S. musiva appears to consist of differentiated subpopulations, with both asexual and sexual recombination contributing to the local level of genetic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号