首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Mazzola M  Gu YH 《Phytopathology》2000,90(2):114-119
ABSTRACT Studies were conducted to assess the impact of short-term rotations of wheat on microbial community composition and growth of apple in soils from replant orchard sites. Soils from two orchards were cultivated with three successive 28-day growth cycles of 'Eltan', 'Penewawa', or 'Rely' wheat in the greenhouse and subsequently planted to 'Gala' apple seedlings. Cultivation of orchard replant soils with any of the three wheat cultivars enhanced growth of apple relative to that achieved in untreated soils. Improved growth was associated with a marked reduction in apple root infection by species of Rhizoctonia and Pythium. Populations of plant-parasitic nematodes were below damage threshold levels in these orchard soils; however, apple seedlings grown in wheat-cultivated soils had significantly lower root populations of Pratylenchus spp. than did seedlings grown in untreated soils. Growth of apple in 'Penewawa'-cultivated soils often was superior to that observed in soils planted with 'Eltan' or 'Rely'. In untreated orchard soils, fluorescent pseudomonad populations isolated from soil and the apple rhizosphere were dominated by Pseudomonas fluorescens biotype C and Pseudomonas syringae. Cultivation of replant soils with wheat induced a characteristic transformation of the fluorescent pseudomonad population, and Pseudomonas putida dominated the population of this bacterial group recovered from wheat-cultivated replant orchard soils. Results from this study suggest that use of short-term wheat cropping sequences during orchard renovation could be useful in management of replant disease and that this disease-control option may operate, in part, through modification of the fluorescent pseudomonad community.  相似文献   

2.
Mazzola M 《Phytopathology》1999,89(10):920-927
ABSTRACT Changes in the composition of soil microbial communities and relative disease-suppressive ability of resident microflora in response to apple cultivation were assessed in orchard soils from a site possessing trees established for 1 to 5 years. The fungal community from roots of apple seedlings grown in noncultivated orchard soil was dominated by isolates from genera commonly considered saprophytic. Plant-pathogenic fungi in the genera Phytophthora, Pythium, and Rhizoctonia constituted an increasing proportion of the fungal community isolated from seedling roots with increasing orchard block age. Bacillus megaterium and Burkholderia cepacia dominated the bacterial communities recovered from noncultivated soil and the rhizosphere of apple seedlings grown in orchard soil, respectively. Populations of the two bacteria in their respective habitats declined dramatically with increasing orchard block age. Lesion nematode populations did not differ among soil and root samples from orchard blocks of different ages. Similar changes in microbial communities were observed in response to planting noncultivated orchard soil to five successive cycles of 'Gala' apple seedlings. Pasteurization of soil had no effect on apple growth in noncultivated soil but significantly enhanced apple growth in third-year orchard block soil. Seedlings grown in pasteurized soil from the third-year orchard block were equal in size to those grown in noncultivated soil, demonstrating that suppression of plant growth resulted from changes in the composition of the soil microbial community. Rhizoctonia solani anastomosis group 5 (AG 5) had no effect on growth of apple trees in noncultivated soil but significantly reduced the growth of apple trees in soil from third-year orchard soil. Changes in the ability of the resident soil microflora to suppress R. solani AG 5 were associated with reductions in the relative populations of Burkholderia cepacia and Pseudomonas putida in the rhizosphere of apple.  相似文献   

3.
ABSTRACT Apple replant disease typically is managed through pre-plant application of broad-spectrum soil fumigants including methyl bromide. The impending loss or restricted use of soil fumigants and the needs of an expanding organic tree fruit industry necessitate the development of alternative control measures. The microbial community resident in a wheat field soil was shown to suppress components of the microbial complex that incites apple replant disease. Pseudomonas putida was the primary fluorescent pseudomonad recovered from suppressive soil, whereas Pseudomonas fluorescens bv. III was dominant in a conducive soil; the latter developed within 3 years of orchard establishment at the same site. In greenhouse studies, cultivation of wheat in replant orchard soils prior to planting apple suppressed disease development. Disease suppression was induced in a wheat cultivar-specific manner. Wheat cultivars that enhanced apple seedling growth altered the dominant fluorescent pseudo-monad from Pseudomonas fluorescens bv. III to Pseudomonas putida. The microbial community resident in replant orchard soils after growing wheat also was suppressive to an introduced isolate of Rhizoctonia solani anastomosis group 5, which causes root rot of apple. Incorporation of high glucosinolate containing rapeseed ('Dwarf Essex') meal also enhanced growth of apple in replant soils through suppression of Rhizoc-tonia spp., Cylindrocarpon spp., and Pratylenchus penetrans. Integration of these methods will require knowledge of the impact of the biofumigant component on the wheat-induced disease-suppressive microbial community. Implementation of these control strategies for management of apple replant disease awaits confirmation from ongoing field validation trials.  相似文献   

4.
ABSTRACT The effect of seed meals derived from Brassica juncea, B. napus, or Sinapis alba on suppression of soilborne pathogens inciting replant disease of apple was evaluated in greenhouse trials. Regardless of plant source, seed meal amendment significantly improved apple growth in all orchard soils; however, relative differences in pathogen suppression were observed. All seed meals suppressed root infection by native Rhizoctonia spp. and an introduced isolate of Rhizoctonia solani AG-5, though B. juncea seed meal often generated a lower level of disease control relative to other seed meal types. When introduction of the pathogen was delayed until 4 to 8 weeks post seed meal amendment, disease suppression was associated with proliferation of resident Streptomyces spp. and not qualitative or quantitative attributes of seed meal glucosinolate content. Using the same experimental system, when soils were pasteurized prior to pathogen infestation, control of R. solani was eliminated regardless of seed meal type. In the case of B. juncea seed meal amendment, the mechanism of R. solani suppression varied in a temporal manner, which initially was associated with the generation of allylisothiocyanate and was not affected by soil pasteurization. Among those tested, only B. juncea seed meal did not stimulate orchard soil populations of Pythium spp. and infection of apple roots by these oomycetes. Although application of B. napus seed meal alone consistently induced an increase in Pythium spp. populations, no significant increase in Pythium spp. populations was observed in response to a composite B. juncea and B. napus seed meal amendment. Suppression of soil populations and root infestation by Pratylenchus spp. was dependent upon seed meal type, with only B. juncea providing sustained nematode control. Collectively, these studies suggest that use of a composite B. juncea and B. napus seed meal mixture can provide superior control of the pathogen complex inciting apple replant disease relative to either seed meal used alone.  相似文献   

5.
ABSTRACT The impact of Brassica napus seed meal on the microbial complex that incites apple replant disease was evaluated in greenhouse trials. Regardless of glucosinolate content, seed meal amendment at a rate of 0.1% (vol/vol) significantly enhanced growth of apple and suppressed apple root infection by Rhizoctonia spp. and Pratylenchus penetrans. High glucosinolate B. napus cv. Dwarf Essex seed meal amendments did not consistently suppress soil populations of Pythium spp. or apple root infection by this pathogen. Application of a low glucosinolate containing B. napus seed meal at a rate of 1.0% (vol/vol) resulted in a significant increase in recovery of Pythium spp. from apple roots, and a corresponding reduction in apple seedling root biomass. When applied at lower rates, B. napus seed meal amendments enhanced populations of fluorescent Pseudomonas spp., but these bacteria were not recovered from soils amended with seed meal at a rate of 2% (vol/vol). Seed meal amendments resulted in increased soil populations of total bacteria and actinomycetes. B. napus cv. Dwarf Essex seed meal amendments were phytotoxic to apple when applied at a rate of 2% (vol/vol), and phytotoxicity was not diminished when planting was delayed for as long as 12 weeks after application. These findings suggest that B. napus seed meal amendments can be a useful tool in the management of apple replant disease and, in the case of Rhizoctonia spp., that disease control operates through mechanisms other than production of glucosinolate hydrolysis products.  相似文献   

6.
Mazzola M 《Phytopathology》1997,87(6):582-587
ABSTRACT Rhizoctonia spp. were isolated from the roots of apple trees and associated soil collected in orchards located near Moxee, Quincy, East Wenatchee, and Wenatchee, WA. The anastomosis groups (AGs) of Rhizoctonia spp. isolated from apple were determined by hyphal anastomosis with tester strains on 2% water agar and, where warranted, sequence analysis of the rDNA internal transcribed spacer region and restriction analysis of an amplified fragment from the 28S ribosomal RNA gene were used to corroborate these identifications. The dominant AG of R. solani isolated from the Moxee and East Wenatchee orchards were AG 5 and AG 6, respectively. Binucleate Rhizoctonia spp. were recovered from apple roots at three of four orchards surveyed and included isolates of AG-A, -G, -I, -J, and -Q. In artificial inoculations, isolates of R. solani AG 5 and AG 6 caused extensive root rot and death of 2- to 20-week-old apple transplants, providing evidence that isolates of R. solani AG 6 can be highly virulent and do not merely exist as saprophytes. The effect of binucleate Rhizoctonia spp. on growth of apple seedlings was isolate-dependent and ranged from growth enhancement to severe root rot. R. solani AG 5 and AG 6 were isolated from stunted trees, but not healthy trees, in an orchard near Moxee, WA, that exhibited severe symptoms of apple replant disease, suggesting that R. solani may have a role in this disease complex.  相似文献   

7.
Anaerobic soil disinfestation (ASD) has been shown to be effective in the control of a wide range of soil–borne plant pathogens but has not been examined as a means for disease control in perennial fruit crops such as apple. Since ASD has demonstrated a broad spectrum of biological activity, it may be well suited as an alternative to current fumigation–based control of apple replant disease (ARD) which is caused by a diverse pathogen complex. The efficacy of ASD for control of ARD pathogens was evaluated in growth chamber experiments using soils from two orchard sites having a history of the disease. Suppression of Pratylenchus penetrans apple root densities was dependent upon carbon source utilized during the ASD process. Volatiles emitted during the anaerobic phase from soils treated with ethanol, grass residues, or Brassica juncea seed meal as the carbon input effectively retarded growth of Rhizoctonia solani AG–5, Pythium ultimum and Fusarium oxysporum. Each carbon amendment generated a unique volatile profile produced in the treated orchard soil during ASD. Allyl isothiocyanate (AITC) and dimethyl trisulphide (DMTS) were emitted from B. juncea SM treated soils whereas the latter and 2–ethyl–1–hexanol were detected in soils treated with grass residues. When assayed individually using pure standards, Decanal, DMTS, and AITC retarded in vitro growth of all three fungal/oomycete pathogens. Nonanal was inhibitory toward only P. ultimum and R. solani AG–5, whereas 2–ethyl–1–hexanol only suppressed growth of P. ultimum. AITC and DMTS caused significantly higher mortality of P. penetrans compared to other tested volatiles. These findings demonstrate that carbon source–dependent volatile chemistries contribute significantly but not exclusively to suppression of certain ARD pathogens during the ASD process.  相似文献   

8.
Several species of fungi and oomycetes including Fusarium, Rhizoctonia, Phytophthora and Pythium have been reported as root pathogens of apple where they contribute to a phenomenon known as apple replant disease. In South Africa, little is known about specific species in these genera and their pathogenicity toward apple. Therefore, these aspects were investigated along with the development and optimization of qPCR tests for detection and quantification of the most virulent oomycete species. In eight investigated orchards, the oomycete Phythophthora cactorum was widely distributed, while nine Pythium species were differentially distributed among the orchards. Pythium irregulare was the most widely distributed and the most virulent species along with P. sylvaticum, P. vexans and Ph. cactorum. Seven binucleate Rhizoctonia anastomosis groups (AGs) were also differentially distributed among the orchards, with the majority appearing to be non-pathogenic while certain AG-I and AG-F isolates exhibited low virulence on apple. In the genus Fusarium, F. oxysporum was widely distributed, but isolates were non-pathogenic. Fusarium solani and F. avenaceum were less frequently encountered, with only some isolates having low virulence. qPCR data obtained from seedling roots inoculated with the most virulent Pythium species (P. irregulare, P. sylvaticum and P. vexans) and the genus Phytophthora were not always reproducible between trials, or isolates of the same species. In general, seedling growth inhibition was associated with the presence of a low amount of pathogen DNA (±40 fg μl−1 to 2 pg μl−1) in roots. Pythium irregulare, although having the lowest DNA concentrations in roots, was the only species for which a significant negative correlation was found between seedling weight and pathogen DNA concentration.  相似文献   

9.
Soil plating, with a specially devised selective medium, gave estimates of Phytophthora cactorum in an East Mailing Research Station apple orchard soil up to three times those obtained by dilution and baiting with apple seedlings or cotyledons and using the most probable number analysis.
When the same techniques were applied to a range of soils from apple orchards in south-east England with a history of P. cactorum diseases the plating method failed in most instances, mainly because Pythium spp. rapidly swamped the plates. The dilution/baiting method was applicable to all soils though there was a tendency to underestimate because of anomalous results at lower soil dilutions.
Oospores were the only propagules which could be confirmed as sources of P. cactorum colonies on soil isolation plates.  相似文献   

10.
Mazzola M  Gu YH 《Phytopathology》2002,92(12):1300-1307
ABSTRACT The induction of disease-suppressive soils in response to specific cropping sequences has been demonstrated for numerous plant-pathogen systems. The role of host genotype in elicitation of the essential transformations in soil microbial community structure that lead to disease suppression has not been fully recognized. Apple orchard soils were planted with three successive 28-day cycles of specific wheat cultivars in the greenhouse prior to infestation with Rhizoctonia solani anastomosis group (AG)-5 or AG-8. Suppressiveness to Rhizoctonia root rot of apple caused by the introduced isolate of R. solani AG-5 was induced in a wheat cultivar-specific manner. Pasteurization of soils after wheat cultivation and prior to pathogen introduction eliminated the disease suppressive potential of the soil. Wheat cultivars that induced disease suppression enhanced populations of specific fluorescent pseudomonad genotypes with antagonistic activity toward R. solani AG-5 and AG-8, but cultivars that did not elicit a disease suppressive soil did not modify the antagonistic capacity of this bacterial community. When soils were infested prior to the initial wheat planting, all cultivars were uniformly susceptible to R. solani AG-8. However, when pathogen inoculum was added after three growth-cycles, wheat root infection during the fourth growth-cycle varied in a cultivar specific manner. The same wheat cultivar-specific response in terms of transformation of the fluorescent pseudomonad community and subsequent suppression of Rhizoctonia root rot of apple was observed in three different orchard soils. These results demonstrate the importance of host genotype in modification of indigenous saprophytic microbial communities and suggest an important role for host genotype in the success of biological control.  相似文献   

11.
This study aimed to elucidate the relationship between plant hosts and root‐colonizing fungi recovered from apple orchard soils that had been replanted over multiple generations. Functional relationships of three groups of filamentous fungi (Ceratobasidium sp., Cylindrocarpon‐like group and Fusarium acuminatum) with apple rootstocks were evaluated in plant growth bioassays. The Cylindrocarpon‐like group and Ceratobasidium sp. showed a relationship with the host plant varying from pathogenic to commensal through to mutualistic for the latter group, while that of F. acuminatum tended to be mutualistic. Seven fungal isolates of each group, which induced the highest plant growth in bioassays, were evaluated for auxin (IAA) and gibberellin (GA3 and GA4) production in culture filtrate. All isolates of F. acuminatum as well as most of those of the Ceratobasidium sp. and Cylindrocarpon‐like groups produced IAA in culture filtrate. IAA production was evaluated for additional isolates of endophytic fungal species from fruit tree orchards and the functionality of IAA was confirmed by growing in vitro micropropagated plantlets of apple rootstock on MS medium supplemented with fungal culture filtrate. Findings from this study may explain the difficulty in defining the precise role of diverse root‐colonizing fungal populations in replant disease aetiology of fruit tree orchards. However, the results demonstrate the presence of a positive and widely available biotic component of the orchard soil biology that may be exploited for the benefit of tree growth and production.  相似文献   

12.
ABSTRACT Previously, the zoosporicidal activity and control of Pythium root rot of flower bulbs by Pseudomonas fluorescens SS101 was attributed, in part, to the production of the cyclic lipopeptide surfactant massetolide A. The capacity of strain SS101 and its surfactant-deficient massA mutant 10.24 to suppress populations and root infection by complex Pythium spp. communities resident in orchard soils was assessed on apple and wheat seedlings and on apple rootstocks. Both strains initially became established in soil and persisted in the rhizosphere at similar population densities; however, massA mutant 10.24 typically was detected at higher populations in the wheat rhizosphere and soil at the end of each experiment. Both strains effectively suppressed resident Pythium populations to an equivalent level in the presence or absence of plant roots, and ultimately suppressed Pythium root infection to the same degree on all host plants. When split-root plant assays were employed, neither strain suppressed Pythium spp. infection of the component of the root system physically separated from the bacterium, suggesting that induced systemic resistance did not play a role in Pythium control. Strain SS101 only marginally suppressed in vitro growth of Pythium spp. and growth was not inhibited in the presence of mutant 10.24. When incorporated into the growth medium, the cyclic lipopeptide massetolide A significantly slowed the rate of hyphal expansion for all Pythium spp. examined. Differences in sensitivity were observed among species, with Pythium heterothallicum, P. rostratum, and P. ultimum var. ultimum exhibiting significantly greater tolerance. Pythium spp. populations indigenous to the two soils employed were composed primarily of P. irregulare, P. sylvaticum, and P. ultimum var. ultimum. These Pythium spp. either do not or rarely produce zoospores, which could account for the observation that both SS101 and mutant 10.24 were equally effective in disease control. Collectively, the results showed that (i) Pseudomonas fluorescens SS101 is very effective in controlling diverse Pythium populations on different crops grown in different soils and (ii) production of the cyclic lipopeptide massetolide A does not play a significant role in disease suppression. Other, as yet undefined mechanisms appear to play a significant role in the interaction between P. fluorescens SS101 and soilborne Pythium spp. communities.  相似文献   

13.
Rhizoctonia spp. cause substantial yield losses in direct-seeded cereal crops compared with conventional tillage. To investigate the mechanisms behind this increased disease, soils from tilled or direct-seeded fields were inoculated with Rhizoctonia spp. at population densities from 0.8 to 250 propagules per gram and planted with barley (Hordeum vulgare). The incidence and severity of disease did not differ between soils with different tillage histories. Both R. solani AG-8 and R. oryzae stunted plants at high inoculum densities, with the latter causing pre-emergence damping-off. High inoculum densities of both species stimulated early production of crown roots in barley seedlings. Intact soil cores from these same tilled and direct-seeded fields were used to evaluate the growth of Rhizoctonia spp. from colonized oat seeds. Growth of R. oryzae was not affected by previous tillage history. However, R. solani AG-8 grew more rapidly through soil from a long-term direct-seeded field compared to tilled soils. The differential response between these two experiments (mixed, homogenized soil versus intact soil) suggests that soil structure plays a major role in the proliferation of R. solani AG-8 through soils with different tillage histories.  相似文献   

14.
从水稻旱育秧病苗上分离到67个菌株 ,经鉴定分属于镰刀菌58个、腐霉菌7个、丝核菌2个。经回接测定其致病性 ,结果表明致病的镰刀菌主要是串珠镰刀菌 (Fusarium moniliforme) ;腐霉菌中主要是盐腐霉 (Pythium salinum)、间生腐霉 (P .interedium)和顶生腐霉 (P .acrogenum) ;丝核菌为立枯丝核菌 (Rhizoctonia solani)。接种试验表明串珠镰刀菌在6~8d龄幼苗的根中部侵染发病率最高 ,腐霉菌和丝核菌在一叶一心期茎基部侵染发病率最高。药剂试验表明以浸种灵(二硫氰基甲烷)、土菌消(hymexazol)、甲霜灵(metalaxyl)等种子处理加土壤处理 ,防效优于单独种子处理或土壤处理。  相似文献   

15.
Kim DS  Cook RJ  Weller DM 《Phytopathology》1997,87(5):551-558
ABSTRACT Strain L324-92 is a novel Bacillus sp. with biological activity against three root diseases of wheat, namely take-all caused by Gaeumannomyces graminis var. tritici, Rhizoctonia root rot caused by Rhizoctonia solani AG8, and Pythium root rot caused mainly by Pythium irregulare and P. ultimum, that exhibits broad-spectrum inhibitory activity and grows at temperatures from 4 to 40 degrees C. These three root diseases are major yieldlimiting factors for wheat in the U.S. Inland Pacific Northwest, especially wheat direct-drilled into the residue of a previous cereal crop. Strain L324-92 was selected from among approximately 2,000 rhizosphere/rhizoplane isolates of Bacillus species isolated from roots of wheat collected from two eastern Washington wheat fields that had long histories of wheat. Roots were washed, heat-treated (80 degrees C for 30 min), macerated, and dilution-plated on (1)/(10)-strength tryptic soy agar. Strain L324-92 inhibited all isolates of G. graminis var. tritici, Rhizoctonia species and anastomosis groups, and Pythium species tested on agar at 15 degrees C; provided significant suppression of all three root diseases at 15 degrees C in growth chamber assays; controlled either Rhizoctonia root rot, takeall, or both; and increased yields in field tests in which one or more of the three root diseases of wheats were yield-limiting factors. The ability of L324-92 to grow at 4 degrees C probably contributes to its biocontrol activity on direct-drilled winter and spring wheat because, under Inland Northwest conditions, leaving harvest residues of the previous crop on the soil surface keeps soils cooler compared with tilled soils. These results suggest that Bacillus species with desired traits for biological control of wheat root diseases are present within the community of wheat rhizosphere microorganisms and can be recovered by protocols developed earlier for isolation of fluorescent Pseudomonas species effective against take-all.  相似文献   

16.
为揭示木美土里复合微生物菌肥(Kimidori microbial manure,KMM)促进再植苹果树的生长及减缓苹果再植病的作用机制,采用土壤常规农业化学分析法和Illumma MiSeq高通量测序技术比较分析KMM和常规有机肥(对照)处理后再植苹果树的生长指标、理化因子、根际土壤酶活性以及细菌群落结构和功能的变化。结果表明,施用KMM后,果树的株高增长率、干径增长率、叶绿素含量、分枝个数和分枝长度等生长指标均显著升高,有机质含量显著增加,中性磷酸酶、脲酶、蔗糖酶和过氧化氢酶活性均显著提高,同时增加了再植土壤细菌群落的丰富度和多样性。从采集土壤中分离得到51株细菌并进行盆栽试验,其中经KMM-15、KMM-37和KMM-50菌株处理后海棠苗叶绿素含量、株高、茎粗均显著提高,经鉴定这3株菌株为贝莱斯芽胞杆菌Bacillus velezensis。表明春秋2次施用KMM提高了土壤有机质含量和酶活性,并重塑了根际土壤中细菌群落结构,进而缓解苹果再植病害发生程度,促进果树生长。  相似文献   

17.
The superior growth of wheat following Brassica crops compared to that following non- Brassica crops may be due to the suppression of soilborne fungal pathogens by volatile isothiocyanates (ITCs) released in the soil during hydrolysis of glucosinolates contained in Brassica tissues. We investigated the effects of volatile compounds released from the root, shoot and seed meal tissues of canola ( Brassica napus ) and Indian mustard ( Brassica juncea ) on the mycelial growth of five soilborne pathogens of cereals— Gaeumannomyces graminis var . tritici, Rhizoctonia solani, Fusarium graminearum, Pythium irregulare and Bipolaris sorokiniana. Three isolates of each species, originally collected from the roots of wheat ( Triticum aestivum ) and barley grass ( Hordeum leporinum ) in southern Australia, were exposed to volatiles released in vitro when sterile water was added to freeze-dried Brassica tissues. The root and shoot tissues of both Brassica species were more suppressive at flowering than maturity and mustard tissues were generally more suppressive than canola. The degree of fungal suppression by the various Brassica tissues was related to the concentration and type of isothiocyanates released, which varied with Brassica species, tissue age and tissue type. There were significant differences in the sensitivity of the fungal species and among isolates of each species. Gaeumannomyces and Rhizoctonia were generally the most sensitive to the volatiles released, Pythium and Bipolaris the least. The results indicate that the effectiveness of fungal suppression by Brassica crops will depend upon the species, age and type of Brassica tissue, which influence the type and concentration of isothiocyanates evolved, and the sensitivity of the pathogen.  相似文献   

18.
Apple scab, caused by Venturia inaequalis, is one of the most important apple diseases worldwide. To investigate between- and within-orchard fungal variability, 212 isolates were sampled from two mixed orchards, one of 10?years of age and the other of 45?years of age, in the UK and genotyped with AFLP and SSR markers. Populations of isolates from the two orchards did not differ significantly in terms of allele frequencies at the screened AFLP and SSR loci. However, groups of isolates from individual cultivars differed significantly within each orchard and there were also significant differences between groups of isolates from individual trees of the same cultivar in the same orchard. These differences were less pronounced in the younger mixed orchard than in the older one. The existence of tree-to-tree fungal variability indicates a possible role for conidia as a source of primary inoculum. Non-random mating may be one of the factors causing the significant differences among fungal populations from different cultivars. These results suggest that apparently ??susceptible?? cultivars have different background genetic resistance factors, which can be exploited for disease management in mixtures.  相似文献   

19.
ABSTRACT The effects of three protoporphyrinogen oxidase inhibitor herbicides, azafenidin, flumioxazin, and sulfentrazone, on Pythium root rot of sugarcane and the soil microbial community were evaluated in greenhouse experiments. Herbicides were applied as foliar and soil treatments. There were no consistent effects on plant growth or disease parameters. However, some herbicide treatments affected the relative frequency of isolation of Pythium spp. from roots and reduced colonization by the pathogenic species Pythium arrhenomanes. A comparison of sole carbon source utilization profiles indicated that soil-applied herbicides altered the functional diversity of the soil microbial community, with some variation depending on herbicide used. All three herbicides inhibited the in vitro mycelial growth of P. arrhenomanes, P. aphanidermatum, and P. ultimum. Active ingredients were less inhibitory than formulated product for azafenidin and flumioxazin but not for sulfentrazone.  相似文献   

20.
苹果再植病及病原线虫种的研究   总被引:10,自引:0,他引:10  
 再植苹果苗表现典型的再植病,其症状为:根系分生能力差,生长缓慢,根组织尤其输导根上发生许多黑色病斑,地上部长势差,长梢抽生困难,定植成活率低。从再植苹果苗的根内分离到了线虫,经鉴定为草地根腐线虫(Pratylenchus pratensis(de Man, 1880) Filipjev,1936),并首次阐明为苹果再植病病因之一。不同栽培措施下,幼苗根内线虫密度不同:再植前土壤消毒比不消毒低,接种VA菌根比不接种低,清耕比覆草低,种植三叶草或万寿菊后线虫密度低。这4种栽培措施配套使用可能成为控制苹果再植病的潜在途径之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号