首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil drench and stem puncture inoculation were compared as methods for selecting cocoa cultivars with resistance to Verticillium dahliae. Disease progress was more rapid and induced symptoms were more severe following stem puncture and, under glasshouse conditions, differences between cultivars were detected 15 days after inoculation. Moreover, using stem puncture, inoculum densities of 104 conidia/ml were sufficient to differentiate resistant and susceptible cultivars, whereas with the soil drench method, inoculum densities of 107 conidia/ml were necessary. Although a substantially higher proportion of plants were affected by stem puncture inoculation, the resistance of cultivar Pound-7 remained effective at high inoculum densities of 108 conidia/ml. With either method, older seedlings were more susceptible to V. dahliae than younger ones. However, with stem puncture, 15-day-old seedlings were sufficiently susceptible for a valid disease assessment. In contrast, with soil inoculation, 60-day-old plants were required. In a nursery trial with 15-day-old seedlings, seven cocoa genotypes previously selected as resistant, moderately resistant or susceptible to Verticillium dahliae , on the basis of root inoculation, were ranked in the same order when stem punctured. Stem puncture inoculation of young seedlings is cost-effective in terms of time and space, and is therefore recommended for screening of cocoa for wilt resistance, especially in large-scale breeding programmes.  相似文献   

2.
ABSTRACT Potato early dying (PED), also known as Verticillium wilt, caused by Verticillium dahliae, is a seasonal yield-limiting disease of potato worldwide, and PED-resistant cultivars currently represent only a small percentage of potato production. In this study, we developed a real-time quantitative polymerase chain reaction (Q-PCR) approach to detect and quantify V. dahliae. The efficiency of the designed primer pair VertBt-F/VertBt-R, derived from the sequence of the beta-tubulin gene, was greater than 95% in monoplex Q-PCR and duplex (using Plexor technology) procedures with primers PotAct-F/PotAct-R, obtained from the sequence of the actin gene, designed for potato. As few as 148 fg of V. dahliae DNA were detected and quantified, which is equivalent to five nuclei. Q-PCR detected V. dahliae in naturally infected air-dried potato stems and fresh stems of inoculated plants. Spearman correlations indicated a high correlation (upward of 80%) between V. dahliae quantifications using Q-PCR and the currently used plating assays. Moreover, Q-PCR substantially reduced the variability compared with that observed in the plating assay, and allowed for the detection of V. dahliae in 10% of stem samples found to be pathogen free on the culture medium. The described Q-PCR approach should provide breeders with a more sensitive and less variable alternative to time-consuming plating assays to distinguish response of breeding lines to colonization by V. dahliae.  相似文献   

3.
Xiao CL  Subbarao KV 《Phytopathology》2000,90(9):995-1004
ABSTRACT Cauliflower root and plant growth and Verticillium wilt development were evaluated under different moisture regimes in the presence or absence of V. dahliae. Treatments included two main plots (V. dahliae-infested and fumigated), two subplots (furrow and subsurface drip irrigation), and three sub-subplots (deficit, moderate, and excessive regimes) that were arranged in a split-split-plot design in the field. Soil cores with roots were periodically sampled at 5 and 25 cm distance from plants. Total roots in each soil core were extracted with a hydropneumatic root elutriator, and root length from each sample was determined with a digital image analysis system. Incidence and severity of Verticillium wilt, plant height, number of leaves, and dry weights of leaves and roots were determined on 10 plants sampled at 7- to 10-day intervals 1 month after cauliflower transplanting and continued until harvest. To evaluate the effects of Verticillium wilt-induced stress on cauliflower plants, stomatal resistance was measured in upper healthy and lower (or diseased) leaves. Root length density at 5 and 25 cm from plant was significantly (P < 0.05) higher in subsurface drip than in furrow irrigation. Root length density was significantly higher in excessive irrigation regime than in the other regimes. Concomitantly, there was higher wilt incidence and severity in excessive and moderate regimes than deficit regime regardless of the irrigation method. Plant height was affected by irrigation methods and deficit regime. Neither the method of irrigation nor the quantity of water affected the other variables. Stomatal resistance in lower diseased leaves was significantly higher in infested than in fumigated plots but it was not in the upper healthy leaves. In this study, cauliflower yield was not affected by V. dahliae and irrigation method, but the deficit irrigation regime resulted in reduced yield even though it suppressed wilt in cauliflower. Thus, higher moisture levels resulted in higher root length density in V. dahliae-infested plots that in turn lead to greater incidence of Verticillium wilt and severity. The pathogen also affected physiological processes such as hydraulic conductance of cauliflower leaves, but not shoot growth or yield under these experimental conditions.  相似文献   

4.
Sanogo S 《Phytopathology》2007,97(1):37-43
ABSTRACT Phytophthora capsici and Verticillium dahliae are two mycelial microorganisms associated with wilt symptoms on chile pepper (Capsicum annuum). Both pathogens occur in the same field and can infect a single plant. This study examined the nature of the co-occurrence of P. capsici and V. dahliae. Chile pepper plants were inoculated with each pathogen separately or with both pathogens concomitantly or sequentially. In concomitant inoculations, plants were inoculated with a mixture of zoospores of P. capsici and conidia of V. dahliae. In sequential inoculations, plants were inoculated with zoospores of P. capsici 4 days prior to inoculation with conidia of V. dahliae, or plants were inoculated with conidia of V. dahliae 4 days prior to inoculation with zoospores of P. capsici. Stem necrosis and leaf wilting were visible 3 to 4 days earlier in plants inoculated with both P. capsici and V. dahliae than in plants inoculated with P. capsici alone. Stem necrosis and generalized plant wilting were observed in plants inoculated with P. capsici alone, and stem necrosis, generalized plant wilting, and vascular discoloration were observed in plants inoculated with both P. capsici and V. dahliae by 21 days after inoculation. These symptoms were not observed in control plants or plants inoculated with V. dahliae alone. The frequency of recovery of V. dahliae from stems was approximately 85 to 140% higher across inoculum levels when plants were inoculated with both P. capsici and V. dahliae than when plants were inoculated by V. dahliae alone. Similarly, the frequency of recovery of V. dahliae from roots was approximately 13 to 40% higher across inoculum levels when plants were inoculated with both P. capsici and V. dahliae than when plants were inoculated by V. dahliae alone. There was no apparent antagonism between the two pathogens when they were paired on growth media. In general, when P. capsici and V. dahliae were paired on growth media, mycelial growth of each pathogen grown alone was not significantly different from mycelial growth when the pathogens were paired. Results suggest that wilt development is hastened by the presence of both P. capsici and V. dahliae in the same plants. The presence of P. capsici and V. dahliae in the same inoculum court enhanced infection and colonization of chile pepper by V. dahliae.  相似文献   

5.
土壤大丽轮枝菌微菌核的快速定量检测   总被引:4,自引:0,他引:4  
 微菌核是大丽轮枝菌在土壤中的主要存活结构和黄萎病的初侵染来源。对土壤中大丽轮枝菌微菌核进行定量是黄萎病监测和预警的基础。本研究以大丽轮枝菌Internal Transcribed Spacer (ITS)区特异性引物对P1/P2扩增产物的重组质粒为标准品,构建SYBR Green I实时荧光定量PCR反应的标准曲线,结合土样水筛法建立了土壤大丽轮枝菌微菌核定量检测体系。同时,建立了土壤中微菌核数量与棉花黄萎病发病率的关系模型。结果表明,实时定量PCR检测灵敏度比常规PCR高10倍,检测下限为1个微菌核/克土,在5.54×102~5.54×107copies范围内,DNA拷贝数的对数值与Ct值具有良好的线性关系。建立的土壤中微菌核个数n与Ct值之间的关系为n=e7.3-Ct/3.905。温室人工接种微菌核数量与棉花黄萎病发病率间的线性关系为y=2.710n+0.251。  相似文献   

6.
Mechanism of broccoli-mediated verticillium wilt reduction in cauliflower   总被引:2,自引:0,他引:2  
ABSTRACT Broccoli is resistant to Verticillium dahliae infection and does not express wilt symptoms. Incorporation of broccoli residues reduces soil populations of V. dahliae. The effects of broccoli residue were tested on the colonization of roots by V. dahliae, plant growth response, and disease incidence of both broccoli and cauliflower in soils with different levels of V. dahliae inoculum and with or without fresh broccoli residue amendments. The three soils included a low-Verticillium soil, a high-Verticillium soil, and a broccoli-rotation soil (soil from a field after two broccoli crops) with an average of 13, 38, and below-detectable levels of microsclerotia per g of soil, respectively. Cauliflower plants in broccoli-amended high-Verticillium soil had significantly (P 相似文献   

7.
Verticillium dahliae is a soilborne fungus that causes Verticillium wilt on multiple crops in central coastal California. Although spinach crops grown in this region for fresh and processing commercial production do not display Verticillium wilt symptoms, spinach seeds produced in the United States or Europe are commonly infected with V. dahliae. Planting of the infected seed increases the soil inoculum density and may introduce exotic strains that contribute to Verticillium wilt epidemics on lettuce and other crops grown in rotation with spinach. A sensitive, rapid, and reliable method for quantification of V. dahliae in spinach seed may help identify highly infected lots, curtail their planting, and minimize the spread of exotic strains via spinach seed. In this study, a quantitative real-time polymerase chain reaction (qPCR) assay was optimized and employed for detection and quantification of V. dahliae in spinach germplasm and 15 commercial spinach seed lots. The assay used a previously reported V. dahliae-specific primer pair (VertBt-F and VertBt-R) and an analytical mill for grinding tough spinach seed for DNA extraction. The assay enabled reliable quantification of V. dahliae in spinach seed, with a sensitivity limit of ≈1 infected seed per 100 (1.3% infection in a seed lot). The quantification was highly reproducible between replicate samples of a seed lot and in different real-time PCR instruments. When tested on commercial seed lots, a pathogen DNA content corresponding to a quantification cycle value of ≥31 corresponded with a percent seed infection of ≤1.3%. The assay is useful in qualitatively assessing seed lots for V. dahliae infection levels, and the results of the assay can be helpful to guide decisions on whether to apply seed treatments.  相似文献   

8.
刘海洋  王伟  张仁福  姚举 《植物保护》2023,49(4):276-283
为了解北疆棉花黄萎病的发生情况及发病与土壤中黄萎病菌微菌核数量的关系和病原菌种群类型, 2021年对北疆石河子?奎屯?博乐等8市(县)棉田棉花黄萎病发病率?土壤中黄萎病菌的微菌核数量?菌株种群类型进行了抽样调查?结果表明, 北疆未发生棉花黄萎病的棉田占49.2%, 0%<发病率<5.0%的棉田占32.7%, 发病率≥5.0%的棉田占18%?与2013年?2015年相比, 2021年无病田率分别增加17.7和12.7百分点, 发病率≥5%的棉田分别减少15.7和21.6百分点?从棉田黄萎病发病率与土壤中微菌核数量的关系来看, 整体上北疆棉田棉花黄萎病发病率与微菌核数量相关性不显著(r=0.119 1); 分区域看, 石河子-沙湾片区?奎屯-乌苏片区?精河-博乐片区棉田黄萎病发病率与微菌核数量的相关系数分别为0.033 2?0.007 6?0.062 3, 均无显著相关性; 而呼图壁-玛纳斯片区棉田黄萎病发病率与微菌核数量的相关系数为0.635 7, 呈中度正相关?土壤中的黄萎病菌菌株以菌核型为主, 占57.9%, 菌丝型占23.2%, 中间型占18.9%?用特异性引物进行PCR检测表明, 土壤中黄萎病菌落叶型菌株占97.6%, 占绝对优势?本研究将为北疆棉区棉花黄萎病的综合防控提供理论依据?  相似文献   

9.
Interactions between lettuce and a green fluorescent protein (GFP)-expressing, race 1 isolate of Verticillium dahliae, were studied to determine infection and colonization of lettuce cultivars resistant and susceptible to Verticillium wilt. The roots of lettuce seedlings were inoculated with a conidial suspension of the GFP-expressing isolate. Colonization was studied with the aid of laser scanning confocal and epi-fluorescence microscopes. Few differences in the initial infection and colonization of lateral roots were observed between resistant and susceptible cultivars. Hyphal colonies formed on root tips and within the root elongation zones by 5 days, leading to the colonization of cortical tissues and penetration of vascular elements regardless of the lettuce cultivar by 2 weeks. By 8 to 10 weeks after inoculation, vascular discoloration developed within the taproot and crown regions of susceptible cultivars well in advance of V. dahliae colonization. Actual foliar wilt coincided with the colonization of the taproot and crown areas and the eruption of mycelia into surrounding cortical tissues. Advance colonization of stems, pedicels, and inflorescence, including developing capitula and mature achenes was observed. Seedborne infection was limited to the maternal tissues of the achene, including the pappus, pericarp, integument, and endosperm; but the embryo was never compromised. Resistant lettuce cultivars remained free of disease symptoms. Furthermore, V. dahliae colonization never progressed beyond infected lateral roots of resistant cultivars. Results indicated that resistance in lettuce may lie with the plant's ability to shed infected lateral roots or to inhibit the systemic progress of the fungus through vascular tissues into the taproot.  相似文献   

10.
ABSTRACT Experiments were conducted in field plots to evaluate the effects of broccoli residue on population dynamics of Verticillium dahliae in soil and on Verticillium wilt development on cauliflower under furrow and subsurface-drip irrigation and three irrigation regimes in 1994 and 1995. Treatments were a factorial combination of three main plots (broccoli crop grown, harvested, and residue incorporated in V.dahliae-infested plots; no broccoli crop or residue in infested plots; and fumigated control plots), two subplots (furrow and subsurface-drip irrigation), and three sub-subplots (deficit, moderate, and excessive irrigation regimes) arranged in a split-split-plot design with three replications. Soil samples collected at various times were assayed for V. dahliae propagules using the modified Anderson sampler technique. Incidence and severity of Verticillium wilt on cauliflower were assessed at 7- to 10-day intervals beginning a month after cauliflower transplanting and continuing until harvest. Number of propagules in all broccoli plots declined significantly (P < 0.05) after residue incorporation and continued to decline throughout the cauliflower season. The overall reduction in the number of propagules after two broccoli crops was approximately 94%, in contrast to the fivefold increase in the number of propagules in infested main plots without broccoli after two cauliflower crops. Disease incidence and severity were both reduced approximately 50% (P < 0.05) in broccoli treatments compared with no broccoli treatments. Differences between furrow and subsurface-drip irrigation were not significant, but incidence and severity were significantly (P < 0.05) lower in the deficit irrigation regime compared with the other two regimes. Abundance of microsclerotia of V. dahliae on cauliflower roots about 8 weeks after cauliflower harvest was significantly (P < 0.05) lower in treatments with broccoli compared with treatments without broccoli. Rotating broccoli with cauliflower and incorporating broccoli residues into the soils is a novel means of managing Verticillium wilt on cauliflower and perhaps on other susceptible crops. This practice would be successful regardless of the irrigation methods or regimes followed on the susceptible crops.  相似文献   

11.
ABSTRACT Verticillium dahliae is responsible for Verticillium wilt on a wide range of hosts, including strawberry, on which low soil inoculum densities can cause significant crop loss. Determination of inoculum density is currently done by soil plating but this can take 6 to 8 weeks to complete and delay the grower's ability to make planting decisions. To provide a faster means for estimating pathogen populations in the soil, a multiplexed TaqMan real-time polymerase chain reaction (PCR) assay based on the ribosomal DNA (rDNA) intergenic spacer (IGS) was developed for V. dahliae. The assay was specific for V. dahliae and included an internal control for evaluation of inhibition due to the presence of PCR inhibitors in DNA extracted from soil samples. An excellent correlation was observed in regression analysis (R(2) = 0.96) between real-time PCR results and inoculum densities determined by soil plating in a range of field soils with pathogen densities as low as 1 to 2 microsclerotia/g of soil. Variation in copy number of the rDNA was also evaluated among isolates by SYBR Green real-time PCR amplification of the V. dahliae-specific amplicon compared with amplification of several single-copy genes and was estimated to range from ≈24 to 73 copies per haploid genome, which translated into possible differences in results among isolates of ≈1.8 cycle thresholds. Analysis of the variation in results of V. dahliae quantification among extractions of the same soil sample indicated that assaying four replicate DNA extractions for each field sample would provide accurate results. A TaqMan assay also was developed to help identify colonies of V. tricorpus on soil plates.  相似文献   

12.
大丽轮枝菌是引起棉花、马铃薯等重要作物黄萎病的土传病原真菌,其分泌的胞外蛋白是侵染寄主的重要毒力因子,因此研究胞外蛋白与寄主的相互作用具有重要意义.本研究旨在构建高效的棉花酵母双杂交cDNA文库,并通过已知大丽轮枝菌效应子VCR1互作蛋白的筛选来评价构建文库的质量.分别采用大丽轮枝菌及茉莉酸甲酯、水杨酸和乙烯处理海岛棉...  相似文献   

13.
The susceptibility of the Greek melon cvs Kokkini Banana, Thraki, Peplos and Amynteou to Verticillium dahliae and Fusarium oxysporum f. sp. melonis was tested, by inoculating seedlings of the four cultivars by root immersion in a Verticillium and Fusarium inoculum suspension for 1 h. After 35 days, disease incidence was estimated from a disease index calculated as the product of the'leaf symptom index'and'vascular discoloration index'of each plant. In addition, plant height, main stem diameter, above-ground fresh and dry weight and root fresh and dry weight were measured. The disease severity of verticillium and fusarium wilts on plants was estimated by the correlation coefficient ( r ) between the disease index and the other characteristics. Both fungi had a significant negative effect on all the measured characteristics independently of the tested cultivar. Finally, the four melon cultivars showed different degrees of susceptibility to Verticillium and Fusarium indicating that tolerant selections can be achieved.  相似文献   

14.
A mathematical equation was developed that describes the inoculum densities of microsclerotia of Verticillium dahliae in the soil over a long time span. The equation was based on measurable parameters and ecologically meaningful principles. In the model, the number of systemic infections of plant roots during crop growth was related to soil inoculum density. In turn, formation of microsclerotia in debris and reduction of the amount of crop growth were related to the number of systemic infections. Finally, a gradual release and mortality of microsclerotia in the soil were included to calculate subsequent inoculum densities in the soil.
Fitting the function to experimental data of potato cvs Element, Ostara, Mirka and Astarte, flax, pea, barley, sugar beet, onion and faba bean gave a very high correlation between observed and predicted soil inoculum densities. The clear differences in inoculum production among potato cultivars and other crops were expressed in quantitative terms. The highest inoculum density after incorporation of the debris of a susceptible crop was estimated to occur at 2.3 thermal time units of 3600 degree days (base 0°C). Ten per cent of the initial input of inoculum was still present after 4.5 thermal time units. The model was used to predict the dynamics of soil inoculum densities for V. dahliae under various cropping frequency schemes and performed satisfactorily.  相似文献   

15.
Experiments were conducted under growth-chamber conditions to determine if Pratylenchus penetrans systemically alters light use efficiency (LUE) of Russet Burbank potato infected by Verticillium dahliae. Pathogen separation was achieved by inoculating potato roots with the nematode prior to injecting fungal conidia into the stem vasculature. Treatments were P. penetrans alone, V. dahliae alone, nematode and fungus together, and a no-pathogen control. Gas exchange was repeatedly and nondestructively measured on the fifth-youngest leaf with a Li-Cor LI-6200 portable photosynthesis system. By 16 and 20 days after stem injection with the fungus, LUE was synergistically impaired in jointly infected plants. Transpiration in plants infected with both pathogens was significantly reduced. However, the combined effect of nematode and fungus was synergistic in one experiment and additive in the other. Stems were destructively harvested when LUE was synergistically impaired. Coinfected potato plants contained more colony-forming units (CFU) of V. dahliae in stem sap than those infected by the fungus alone in one experiment. Evidence is provided that infection of Russet Burbank roots by P. penetrans systemically affects disease physiology associated with stem vascular infection by V. dahliae . The findings indicate that the role of the nematode in the fungus/host interaction is more than simply to facilitate extravascular and/or vascular entry of the fungus into potato roots.  相似文献   

16.
We used cover crops with demonstrated efficacy against Verticillium dahliae and Pratylenchus penetrans in combination with the biocidal practice of solarization to determine the importance of targeting both organisms for managing potato early dying, an issue relevant to the search for alternatives to soil fumigation. Two experiments were conducted in commercial fields using a split-plot design with cover crop treatments of rapeseed, marigold, forage pearl millet, sorghum-sudangrass, and corn as the main plot factor and solarization as the subplot factor. Cover crops were grown and solarization applied in year one, followed by potato in year two. The main effect of solarization was significant for reduced inoculum levels of both organisms in year two and increased tuber yields. The main effect of cover crop was also significant with lower population densities of P. penetrans following the marigold and millet treatments and of V. dahliae following rape and sorghum-sudangrass. The cover crop treatments influenced yield in only one of the experiments in the absence of solarization. The combinatorial effect of cover crops and solarization resulted in a wide range of pathogen population densities. Mean soil inoculum levels were negatively related to yield for V. dahliae in experiment 1, and for P. penetrans and the P. penetrans × V. dahliae interaction in both experiments.  相似文献   

17.
The incidence of wilt was recorded in runner and fruiting crops of 13 strawberry cultivars at 72 locations in southern England in 1989 and 1990, and soil samples from the sites were analysed for Verticillium dahliae . Linear regressions of wilt incidence on inoculum concentration in soil for runner crops of the susceptible cv. Elsanta in both years were significant whilst that for runner crops of the susceptible cv. Hapil in 1989 approached significance; the regression for cv. Elsanta fruiting crops in 1990 was not significant. The inclusion of sand content of soil in the regression model improved the fit for the cv. Hapil data but not for the cv. Elsanta data; neither clay nor silt content of soil significantly improved the fit of the models for any data set. There were insufficient data in either year for regression analysis for other cultivars, but the levels of wilt generally corresponded with the degree of soil infestation and broadly reflected known field resistance. The data were used to estimate an inoculum concentration which corresponds to 5% wilt incidence (IC5) for cv. Elsanta. It is suggested that this could be used as a yardstick for determining the risk of unacceptable levels of wilt in susceptible cultivars on the basis of pre-planting soil analysis.   For the 44 sites where the cropping history over the 15 years prior to soil analysis was available there was no clear association between any crop and soil infestation levels at or above the IC5. However, V.  dahliae was more common at sites with a history of vegetatively propagated crops than at sites which had only supported crops grown from true seed.  相似文献   

18.
ABSTRACT A precise real-time polymerase chain reaction (PCR) assay was developed for quantifying Verticillium albo-atrum DNA. The assay was used in a repeated experiment to examine the relationship between the quantity of pathogen DNA detected in infected leaves and shoots and the severity of Verticillium wilt symptoms in several alfalfa cultivars expressing a range of disease symptoms. Plants were visually inspected for symptoms and rated using a disease severity index ranging from 1 to 5, and the quantity of pathogen DNA present in leaves and stems was determined with real-time PCR. No significant differences in pathogen DNA quantity or disease severity index were observed for experiments or for cultivar-experiment interactions. Significant differences were observed between cultivars for the quantity of pathogen DNA detected with real-time PCR and also for disease severity index ratings. In both experiments, the highly resistant check cultivar Oneida VR had significantly less pathogen DNA, and significantly lower disease severity index ratings than the resistant cultivar Samauri, the moderately resistant cultivar Vernema, and the susceptible check cultivar Saranac. In both experiments, the Spearman rank correlation between the amount of V. albo-atrum DNA detected in leaves and stems with real-time PCR and disease severity index ratings based on visual examination of symptoms was positive (>0.52) and significant (P < 0.0001). These results suggest that resistance to Verticillium wilt in alfalfa is characterized by a reduced colonization of resistant genotypes by the fungus.  相似文献   

19.
Experiments were conducted in the Guadalquivir Valley of Andalucía, southern Spain, in 1986 and 1987, using field plots naturally infested with different inoculum densities of the defoliating and nondefoliating pathotypes of Verticillium dahliae to determine the influence of verticillium wilt epidemics on yield of cotton cultivar Coker 310. The total number of bolls, the number of open bolls, and seed cotton yield were related to the growth stage of plants at first appearance of foliar symptoms, and to inoculum density and virulence of the V. dahliae pathotype prevailing in the soil. For the three yield components, the greatest reduction was observed in plants showing symptoms before opening of first flowers (about 650 degree-days after sowing). Yield increased with delay in the development of foliar symptoms during the crop season, and the effect of the wilt epidemics on yield was small or nil for plants that developed symptoms after opening of the first bolls (1400–1500 degree-days after sowing). A multiple regression equation was derived that related yield reduction to the physiological time accumulated from the time of sowing until the appearance of foliar symptoms and to the rate of disease intensity increase over physiological time. This multiple point model explained about 70% of the variation in cotton yield loss due to verticillium wilt.  相似文献   

20.
ABSTRACT In a field trial in soil infested with Verticillium dahliae, we compared the yield, growth, incidence of symptoms of Verticillium wilt, and mortality of two interspecific hybrid pistachio tree rootstocks (UCBI and PGII) with the standard rootstocks: the V. dahliae-resistant and susceptible Pistacia integerrima and P. atlantica, respectively. After 10 years, the trees were destructively sampled for V. dahliae in the xylem at the graft union. The results indicate that trees on the (P. atlantica 'KAC' x P. integerrima) hybrid UCBI rootstock grew and yielded as well as those on P. integerrima. Trees on the hybrid PGII yielded the least. Analysis of variance and log-linear models indicate that in soil infested with V. dahliae, three associations significantly affect pistachio nut yield. Rootstock affects scion vigor and extent of infection. Third, the extent of infection and scion vigor are inversely associated. Although trees on the P. integerrima rootstock had the highest ratings in a visual assessment of vigor, 65% were infected with V. dahliae in the trunk in the graft region compared with 73% in P. atlantica and 25% in UCBI. Thus, P. integerrima and UCBI have at least one different mechanism for resistance to V. dahliae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号