首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Tomato chlorotic mottle virus (ToCMoV) is an emerging begomovirus species widely distributed throughout tomato-growing regions of Brazil. ToCMoV appears to have expanded its geographic range recently, invading tomato-growing areas that were free of begomovirus infection before 2004. We have determined the first complete genome sequence of an infectious ToCMoV genome (isolate BA-Se1), which is the first begomovirus species isolated in the northeast of Brazil. When introduced by particle bombardment into tomato, the cloned ToCMoV-[BA-Se1] DNA-A and DNA-B components caused typical chlorotic mottle symptoms. The cloned virus was whitefly-transmissible and, although it was infectious in hosts such as Nicotiana benthamiana, pepper, tobacco, and Nicandra physaloides, it was unable to infect Arabidopsis thaliana, bean, N. glutinosa, and Datura metel. Sequence and biological analyses indicate that ToCMoV-[BA-Se1] is a typical New World begomovirus sp. requiring both DNA-A and DNA-B components to establish systemic infections. Although evidence of multiple recombination events was detected within the ToCMoV-[BA-Se1] DNA-A, they apparently occurred relatively long ago, implying that recombination probably has not contributed to the recent emergence of this species.  相似文献   

2.
ABSTRACT Bean calico mosaic virus (BCMoV), a whitefly-transmitted geminivirus from Sonora, Mexico, was purified, and the genome components were cloned and sequenced. Purified viral fractions and cloned genome components were infectious by biolistic inoculation to bean, completing Koch's postulates for both. The B biotype of the whitefly Bemisia tabaci efficiently transmitted both native virus and progeny virus derived from cloned DNA inoculum. Host ranges of native virus and of progeny virus derived from cloned DNA were identical based upon whitefly and biolistic mediated transmission, respectively. BCMoV has a relatively wide experimental host range among begomoviruses known to infect bean, encompassing genera and species within the Fabaceae, Malvaceae, and Solanaceae. BCMoV has a bipartite genome, as do other New World begomoviruses. BCMoV DNA-A shared highest nucleotide sequence identities with squash leaf curl virus-E strain (SLCV-E) and cabbage leaf curl virus (CaLCV) at 80.1 and 80.7%, respectively. BCMoV DNA-B shared highest nucleotide sequence identity with SLCV-E at 70.7%. The common region (CR) sequences of BCMoV and SLCV-E are 73 to 76% identical; however, modular cis-acting elements within the CR involved in replication origin function and recognition are 100% conserved. Phy-logenetic analysis indicated that BCMoV DNA-A shares a most recent common ancestor with the DNA-A of two viruses that also occur in the Sonoran Desert, SLCV-E and Texas pepper virus (TPV-TAM), and CaLCV from Florida. In contrast, a phylogenetic analysis indicated that BCMoV DNA-B shares a most recent common ancestor with SLCV-E; whereas DNA-B of CaLCV clustered in a separate clade with pepper hausteco virus. Collectively, biological and molecular characteristics indicate that BCMoV is a distinct begomovirus species with the northernmost distribution of any begomovirus isolated from bean in the Americas. Furthermore, the phylogenetic relationships of begomovirus cognate components are not necessarily identical, suggesting that DNA-A and DNA-B of some begomoviruses may have different evolutionary histories.  相似文献   

3.
ABSTRACT Three isolates of the bipartite begomovirus Pepper golden mosaic virus (PepGMV) were characterized for genomic and biological properties. The complete nucleotide sequences of the DNA-A and DNA-B components were determined from infectious clones of PepGMV-Serrano (PepGMV-Ser), PepGMV-Mosaic (PepGMV-Mo), and PepGMV-Distortion (PepGMV-D). Nucleotide sequence identity among PepGMV components ranged from 91 to 96% for DNA-A and from 84 to 99% for DNA-B, with each PepGMV component most closely related to the corresponding component of Cabbage leaf curl virus (CaLCV). However, phylogenetic relationships among begomovirus components were incongruent because DNA-A of PepGMV and CaLCV share an inferred evolutionary history distinct from that of DNA-B. The cloned components of PepGMV-Ser, -Mo, and -D were infectious by biolistic inoculation to pepper but differed in symptom expression: PepGMV-Ser exhibited a bright golden mosaic, PepGMV-Mo produced a yellow-green mosaic, and PepGMV-D caused only a mild mosaic and foliar distortion followed by a "recovery" phenotype in which leaves developing after initial symptom expression appeared normal. Differences in symptoms also were observed on tomato, tobacco, and Datura stramonium. Progeny virus derived from clones of PepGMV-Ser and -Mo were transmitted from pepper to pepper by the B biotype of Bemisia tabaci; progeny virus derived from PepGMV-D clones was not transmissible by the B biotype. Reassortant genomes derived from heterologous DNA components of the three isolates were infectious in all possible pairwise combinations, with symptom phenotype in pepper determined by the DNA-B component. Collectively, these results indicate that the three virus isolates examined may be considered distinct strains of PepGMV that have the capacity to exchange genetic material.  相似文献   

4.
ABSTRACT The biological and molecular properties of Tomato leaf curl Gujarat virus from Varanasi, India (ToLCGV-[Var]) were characterized. ToLCGV-[Var] could be transmitted by grafting and through whitefly transmission in a persistent manner. The full-length genome of DNA-A and DNA-B of ToLCGV-[Var] was cloned in pUC18. Sequence analysis revealed that DNA-A (AY190290) is 2,757 bp and DNA-B (AY190291) is 2,688 bp in length. ToLCGV-[Var] could infect and cause symptoms in tomato, pepper, Nicotiana benthamiana, and N. tabacum when partial tandem dimeric constructs of DNA-A and DNA-B were co-inoculated by particle bombardment. DNA-A alone also is infectious, but symptoms were milder and took longer to develop. ToLCGV-Var virus can be transmitted through sap inoculation from infected tomato plants to the above-mentioned hosts causing the same symptoms. Open reading frames (ORFs) in both DNA-A and DNA-B are organized similarly to those in other begomoviruses. DNA-A and DNA-B share a common region of 155 bp with only 60% sequence identity. DNA-B of ToLCGV-[Var] shares overall 80% identity with DNA-B of Tomato leaf curl New Delhi virus-Severe (ToLCNDV-Svr) and 75% with ToLCNDV-[Lucknow] (ToLCNDV-[Luc]). Comparison of DNA-A sequence with different begomoviruses indicates that ToLCGV-[Var] shares 84% identity with Tomato leaf curl Karnataka virus (ToLCKV) and 66% with ToLCNDV-Svr. ToLCGV-[Var] shares a maximum of 98% identity with another isolate of the same region (ToLCGV-[Mir]; AF449999) and 97% identity with one isolate from Gujarat (ToLCGV-[Vad]; AF413671). All three viruses belong to the same species that is distinct from all the other geminivirus species described so far in the genus Begomovirus of the family Geminiviridae. The name Tomato leaf curl Gujarat virus is proposed because the first sequence was taken from an isolate of Gujarat, India.  相似文献   

5.
Euphorbia mosaic virus (EuMV), a tentative species within the genus Begomovirus, was isolated from Euphorbia heterophylla plants growing in the Yucatan Peninsula, Mexico. The complete bipartite genome was cloned from total DNA extracts and the nucleotide (nt) sequence was determined. The DNA-A sequence of the EuMV-Yucatan Peninsula (EuMV-YP) isolate shared 95% nt identity with the partially characterized type EuMV isolate from Puerto Rico. The EuMV-YP genome organization was like that of other New World, bipartite begomoviruses. The DNA-A component was 2613 nt in size, while the DNA-B component was 2602 nt long. The 165-nt common region (CR) sequence for the DNA-A and DNA-B components shared a lower than expected nt identity of 86%. The organization and iterons of the putative AC1 binding site of EuMV-YP were similar to those of begomoviruses in the Squash leaf curl virus (SLCV) clade. Characteristic disease symptoms were reproduced in E. heterophylla plants inoculated at the seedling stage using the cloned viral DNA-A and DNA-B components, confirming disease aetiology. Results of an experimental host-range study for EuMV-YP indicated that it infected at least five species in three plant families, including the Euphorbiaceae ( E. heterophylla ), Solanaceae ( Datura stramonium , pepper, tomato) and Fabaceae (bean). Phylogenetic analysis of the DNA-A and DNA-B components indicated that EuMV-YP is a New World begomovirus and that it is a new member of the SLCV clade.  相似文献   

6.
ABSTRACT Macroptilium lathyroides, a perennial weed in the Caribbean region and Central America, is a host of Macroptilium yellow mosaic Florida virus (MaYMFV) and Macroptilium mosaic Puerto Rico virus (MaMPRV). The genomes of MaYMFV and MaMPRV were cloned from M. lathyroides and/or field-infected bean and the DNA sequences were determined. Cloned A and B components for both viruses were infectious when inoculated to M. lathyroides and common bean. Comparison of the DNA sequences for cloned A and B components with well-studied begomovirus indicated that MaMPRV (bean and M. lathyroides) and MaYMFV (M. lathyroides) are unique, previously undescribed begomo-viruses from the Western Hemisphere. Phylogenetic analysis of viral A components indicated that the closest relative of MaYMFV are members of the Bean golden yellow mosaic virus (BGYMV) group, at 76 to 78% nucleotide identity, whereas the closest relative for the A component of MaMPRV was Rhynchosia golden mosaic virus at 78% nucleotide identity. In contrast, BGYMV is the closest relative for the B component of both MaYMFV and MaMPRV, with which they share approximately 68.0 and approximately 72% identity, respectively. The incongruent taxonomic placement for the bipartite components for MaMPRV indicates that they did not evolve entirely along a common path. MaYMFV and MaMPRV caused distinctive symptoms in bean and M. lathyroides and were transmissible by the whitefly vector and by grafting; however, only MaYMFV was mechanically transmissible. The experimental host range for the two viruses was similar and included species within the families Fabaceae and Malvaceae, but only MaYMFV infected Malva parviflora and soybean. These results collectively indicate that MaMPRV and MaYMFV are new, previously undescribed species of the BGYMV group, a clade previously known to contain only strains and isolates of BGYMV from the Caribbean region that infect Phaseolus spp. Both MaYMFV and MaMPRV may pose an economic threat to bean production in the region.  相似文献   

7.
Idris AM  Brown JK 《Phytopathology》2004,94(10):1068-1074
ABSTRACT The bipartite DNA genome of Cotton leaf crumple virus (CLCrV), a whitefly-transmitted begomovirus from the Sonoran Desert, was cloned and completely sequenced. The cloned CLCrV genome was infectious when biolistically delivered to cotton or bean seedlings and progeny virus was whitefly-transmissible. Koch's postulates were completed by the reproduction of characteristic leaf crumple symptoms in cotton seedlings infected with cloned CLCrV DNA, thereby verifying the etiology of leaf crumple disease, which has been known in the southwestern United States since the 1950s. Sequence comparisons confirmed that CLCrV has a genome organization typical of yet sufficiently divergent from all other bipartite begomoviruses to justify recognition as a distinct species. Phylogenetic analyses indicated that CLCrV has a complex evolutionary history probably involving both recombination and reassortment. The relatively low nucleotide sequence identity (77%) of the common region shared by the CLCrV DNA-A and DNA-B components and the distinct phylogenetic relationships of each component are consistent with component reassortment. Sequence analyses indicated that the CLCrV DNA-A component was likely derived by recombination among ancestors of two divergent clades (e.g., the Squash leaf curl virus [SLCV] clade and the Abutilon mosaic virus clade) of Western Hemisphere begomoviruses. The CLCrV DNA-B component also may have originated by recombination among an ancestor of the SLCV clade and another distantly related but unknown Western Hemisphere begomovirus.  相似文献   

8.
Geminivirus defective interfering DNAs arise spontaneously in mechanically inoculated test plants, and have previously been found with DNA-B of the bipartite cassava mosaic geminiviruses, but not DNA-A. Reported here for the first time is the cloning and characterization of a naturally occurring truncated form of cassava mosaic geminivirus DNA-A, which at 1525 nt is around half the expected full size. Sequence analysis has shown it to be a defective (df) form of East African cassava mosaic virus (EACMV) DNA-A that has retained its cis elements essential for replication by the helper virus, and it has been termed df DNA-A 15. Phylogenetic comparisons placed the df DNA-A 15 molecule close to mild and severe isolates of EACMV-UG2. Biolistic inoculation of Nicotiana benthamiana with infectious df DNA-A 15 clone and East African cassava mosaic Cameroon virus (EACMCV) resulted in symptom amelioration as compared with EACMCV singly inoculated plants, and there was an accumulation of df DNA-A 15 in systemically infected leaves. In addition, the level of EACMV DNA-B accumulation was reduced in the coinoculated plants compared with those inoculated with EACMCV alone. PCR and sequence analysis confirmed the helper virus as EACMV.  相似文献   

9.
The molecular and biological characterization of a begomovirus infecting the common weed Macroptilium lathyroides from Jamaica are reported. The virus showed 92% sequence identity to an isolate of Macroptilium yellow mosaic virus (MaYMV) from Cuba, but was distinct from the two other begomoviruses isolated from M. lathyroides , namely Macroptilium yellow mosaic Florida virus (80% identity) and Macroptilium mosaic Puerto Rico virus (68% identity). Hence, the Jamaican begomovirus was considered an isolate of MaYMV and called Macroptilium yellow mosaic virus -[Jamaica] (MaYMV-[JM]). In infectivity studies using cloned DNA-A and DNA-B genomic components, MaYMV-[JM] infected red kidney bean ( Phaseolus vulgaris ) and produced mild symptoms in Scotch Bonnet pepper ( Capsicum chinense ), but did not infect cabbage ( Brassica oleracea ). This information has implications for the development of strategies to control begomovirus diseases in Jamaica and elsewhere.  相似文献   

10.
为明确南瓜叶片上卷、黄化的症状是否由病毒侵染引起,本研究采用小RNA深度测序对采集自陕西地区的南瓜叶片样品进行了鉴定。结果显示,侵染南瓜样品的病毒可能是中国南瓜曲叶病毒(squash leaf curl China virus, SLCCNV)。经PCR扩增并且克隆测序获得了病毒的DNA-A和DNA-B组分的全基因组序列。序列比对发现,所克隆的DNA-A组分与SLCCNV海南分离物(SLCCNV-Hn61)DNA-A的一致性最高,为99.1%;DNA-B组分与SLCCNV-Hn61和三亚分离物SLCCNV-SY的DNA-B组分一致性最高,为96.8%。系统进化树分析发现所克隆的DNA-A和DNA-B组分分别与SLCCNV-Hn61和SLCCNV-SY的亲缘关系最近。以上研究结果表明侵染陕西南瓜叶片的病毒是SLCCNV的分离物。这是首次报道SLCCNV在陕西地区的危害,研究结果为当地经济作物南瓜的病害防控提供参考。  相似文献   

11.
ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.  相似文献   

12.
The virus causing horsegram (Macrotyloma uniflorum) yellow mosaic disease has been shown to be a typical Old World bipartite begomovirus. The viral origin of the disease has been established through agroinoculation of horsegram using partial tandem repeat clones of both DNA-A and DNA-B. The DNA-A genome shows less than 89% identity with the corresponding sequences of all the begomoviruses in the databases earlier to this sequence submission (AJ627904). Therefore Horsegram yellow mosaic virus (HgYMV-[IN:Coi]) can be considered to be a new species of the genus Begomovirus (family Geminiviridae). Phylogenetic analysis shows that this virus is part of the cluster of mungbean yellow mosaic viruses of legumes from South and South East Asia.  相似文献   

13.
Genomic characterization using nonradioactive probes, polymerase chain reaction with degenerate primers for whitefly transmitted geminiviruses and nucleotide sequencing were used to describe a new bipartite geminivirus, associated with dwarfing and leaf curling of tomatoes and peppers in Jamaica. Partial DNA-A and DNA-B clones were obtained. DNA sequence analysis showed that tomato and pepper samples have a similar geminivirus associated with them. Nucleotide sequence identity > 92% between the common regions of DNA-A and DNA-B confirmed the bipartite nature of the Jamaican geminivirus isolates. Nucleotide sequence comparisons of DNA-A and DNA-B with those of geminiviruses representing the major phylogenetic groups of Western Hemisphere geminiviruses showed the greatest similarity to potato yellow mosaic virus and members of the Abutilon mosaic virus cluster of geminiviruses. This new virus is given the name tomato dwarf leaf curl virus (TDLCV) because of the dwarfing and leaf curling symptoms associated with infected tomato plants. Polymerase chain reaction and Southern hybridization showed mixed infections of TDLCV with tomato yellow leaf curl virus from Israel in 16% of the field samples of tomatoes and peppers.  相似文献   

14.
ABSTRACT Seven crop and eight weed species from 12 agricultural locations in Trinidad and Tobago were assayed for the presence of whitefly-transmitted geminiviruses (WTGs) by using dot blot hybridization and polymerase chain reaction (PCR) amplification of the N-terminal coat protein sequence with degenerate primers. The amplified fragments were cloned and analyzed by restriction enzyme digestion to determine fragment length polymorphism among the cloned fragments. Representative clones were then sequenced and subjected to phylogenetic analysis to determine the sequence similarity to known WTGs. WTGs were found in every location sampled and in 10 of the 15 species investigated: Lycopersicon esculentum(tomato), Capsicum annuum (pepper), Capsicum frutescens (sweet pepper), Abelmoschus esculentus (okra), Phaseolus vulgaris (beans), Alternanthera tenella, Desmodium frutescens, Euphorbia heterophylla, Malva alceifolia, and Sida acuta. The geminiviruses infecting these plants were closely related to potato yellow mosaic virus from Venezuela (PYMV-VE) and tomato leaf curl virus from Panama (ToLCV-PA). However, in pepper, sweet pepper, okra, Alternanthera tenella, Euphorbia heterophylla, Des-modium frutescens, and in one sample of tomato, a PYMV-VE-related virus was found in mixed infections with a virus related to pepper huasteco virus. Full-length infectious DNA-A and DNA-B of a tomato-infecting geminivirus from Trinidad and Tobago were cloned and sequenced. DNA-A appears to be a recombinant derived from PYMV-VE or ToLCV-PA, and Sida golden mosaic from Honduras. The implications of these findings in the control of WTGs are discussed.  相似文献   

15.
ABSTRACT Coevolution of the angular leaf spot pathogen, Phaeoisariopsis griseola, with its common bean host has been demonstrated, and P. griseola isolates have been divided into Andean and Mesoamerican groups that correspond to defined bean gene pools. Recent characterization of P. griseola isolates from Africa has identified a group of isolates classified as Andean using random amplified polymorphic DNA (RAPD), but which are able to infect some Mesoamerican differential varieties. These isolates, designated Afro-Andean, have been identified only in Africa. Random amplified microsatellites, RAPD, and restriction digestion of amplified ribosomal intergenic spacer region were used to elucidate the relationships among the Afro-Andean, Andean, and Mesoamerican groups of P. griseola. Cluster and multiple correspondence analysis of molecular data separated isolates into Andean and Meso-american groups, and the Afro-Andean isolates clustered with Andean isolates. Analysis of molecular variance ascribed 2.8% of the total genetic variation to differences between Afro-Andean and Andean isolates from Africa. Gene diversity analysis revealed no genetic differentiation (G(ST) = 0.004) between Afro-Andean and Andean isolates from Africa. However, significant levels of genetic differentiation (G(ST) = 0.39) were observed between Afro-Andean or Andean isolates from Africa and Andean isolates from Latin America, revealing significant geographical differentiation within the Andean lineage. Results from this study showed that Afro-Andean isolates do not constitute a new P. griseola group and do not represent long-term evolution of the pathogen genome, but rather are likely the consequents of point mutations in genes for virulence. This finding has significant implications in the deployment of resistant bean genotypes.  相似文献   

16.
During the spring of 2001, approximately 10 000 yellow passion flower plants, from two orchards in the county of Livramento de Nossa Senhora, Bahia State, Brazil, exhibited intense yellow mosaic symptoms and drastic reduction of the leaf lamina and plant development. A large population of whiteflies ( Bemisia tabaci ) was also found colonizing the plants. All field samples collected tested positive for Passion fruit woodiness virus in DAS-ELISA. Five out of 20 passion flower plants inoculated with adult whiteflies collected from diseased plants in the field developed symptoms 20–30 days after inoculation. Two of these plants gave a positive reaction in TAS-ELISA using antiserum against a begomovirus. Degenerated PCR primers amplified viral DNA fragments from the DNA-A and DNA-B components of a begomovirus infecting these plants. The fragment corresponding to the core region of the coat protein (DNA-A) was cloned and sequenced. A phylogenetic analysis placed this begomovirus isolated from passion flower in the same clade of the New World begomoviruses as several other species from Brazil. Based on the symptoms induced by this virus alone, the disease was tentatively named passion flower little leaf mosaic.  相似文献   

17.
Virulence on a standard set of 12 common bean differential varieties, DNA sequence of repetitive-elements (Rep-PCR) and random amplified microsatellites (RAMS) were used to assess the genetic variability of 200 Colletotrichum lindemuthianum isolates collected from Andean and Mesoamerican bean varieties and regions. High levels of pathotypic (90 pathotypes) and genetic diversity (0.97) were identified among 200 isolates, revealing that C. lindemuthianum is a highly diverse pathogen. Although a significant number of pathotypes were common to Andean and Mesoamerican regions, many more were only found in the Mesoamerican region. Cluster analysis of virulence and molecular data did not separate isolates into groups that were structured with common bean gene pools. No genetic differentiation (G ST=0.03) was apparent between Andean and Mesoamerican isolates of C. lindemuthianum. The diversity exhibited by C. lindemuthianum does not appear to cluster according to common bean gene pools, and the high diversity found in the Mesoamerican region seems to indicate that C. lindemuthianum originated and was disseminated from this region. Due to the high genetic variation exhibited by C. lindemuthianum, stacking major resistance genes appears to be the best option for developing cultivars with durable anthracnose resistance.  相似文献   

18.
 2012年,江苏南京菜豆上出现了一种新的病毒病害,病株表现明显的叶片皱缩、植株矮化等症状。根据其症状及介体发生状况,对其伴随的病毒种类进行了研究,结果从中检测到一种粉虱传双生病毒,对其基因组DNA-A组分克隆测序后发现其全长2 781 bp,编码6个ORF,BLAST及聚类分析结果显示该病毒与番茄黄化曲叶病毒同源性最高(99%),是番茄黄化曲叶病毒的一个分离物。这是江苏省番茄黄化曲叶病毒侵染菜豆的首次报道,暗示番茄黄化曲叶病毒可能是我国菜豆种植的重要潜在威胁。  相似文献   

19.
Leaf samples (five) from brinjal/eggplant fields showing upward leaf curling symptoms were collected from Varanasi, Uttar Pradesh state, India. The full length genome of begomovirus and associated betasatellite were amplified by PCR, cloned and sequenced. Sequences of homologous DNA-A and its betasatellite in all samples were the same. The samples failed to amplify DNA-B, suggesting that the begomovirus associated with leaf curl disease of eggplant was monopartite. The complete genome (homologous of DNA-A) consists of 2758 nts, whereas the betasatellite has 1352 nts and the genome organization is typical of Old World begomoviruses. The sequence analysis showed high levels of nucleotide sequence identity (79.8–91.7%) of virus with Tomato leaf curl Joydebpur virus (ToLCJoV) infecting chilli in India, suggesting it as a strain of ToLCJoV based on the current ICTV taxonomic criteria for begomovirus strain demarcation. However, the betasatellite associated was identified as a variant of Tomato leaf curl Bangladesh betasatellite (ToLCBDB), with which it shared highest sequence identity of 84.7–94.8%. Phylogenetic analyses of the genome further supported the above results. The recombination analyses of both genome and betasatellite showed that a major part of genome sequences are derived from begomoviruses (ToLCJoV, ChiLCuV, AEV) infecting chilli, tomato, ageratum and betasatellite from PaLCuB as the foremost parents in evolution, suggesting this as a new recombinant virus strain. This is the first report of a monopartite begomovirus and a betasatellite molecule associated with the leaf curl disease of eggplant.  相似文献   

20.
2019年山东种植的西葫芦上广泛发生病毒病,症状与之前常发症状有差异,发病植株叶片向下卷曲、黄化,植株矮化。为明确引起此次西葫芦病毒病的病原,我们以田间采集的10份西葫芦病叶为材料,进行PCR扩增并测序。测序结果显示扩增片段核苷酸序列与我国广东的中国南瓜曲叶病毒(SLCCNV)南瓜分离物(MW389917.1)一致性最高。根据同源序列设计引物,经PCR扩增获得SLCCNV全长序列,DNA-A 全长为2 730 bp(OM692270.1)、DNA-B 全长为2 711 bp(OM692269.1),经序列比对发现DNA-A序列与已登录的SLCCNV一致性为89.65%~99.42%,其中与我国广东的SLCCNV-GDHY南瓜分离物(MW389917.1)一致性最高,为99.42%;DNA-B序列与已登录的SLCCNV一致性范围为81.82%~97.29%,其中与我国广东的SLCCNV-GDHY南瓜分离物(MW389918.1)一致性最高,为97.29%。因此推测引发山东西葫芦病毒病的病原物是SLCCNV,由于该病毒是在山东西葫芦上首次发现,将其命名为SLCCNV-SD。前人已报道SLCCNV可侵染南瓜、甜瓜、烟草、番茄等作物,但SLCCNV可侵染西葫芦在国内未见报道。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号