首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Fusarium oxysporum f. sp. lactucae, causal agent of Fusarium wilt of lettuce, is a serious pathogen recently reported in Arizona. Sequence analysis of the mitochondrial small subunit (mtSSU), translation elongation factor 1-alpha (EF-1alpha) gene, and the nuclear ribosomal DNA intergenic spacer (IGS) region was conducted to resolve relationships among f. sp. lactucae isolates, F. oxysporum isolates from other hosts, and local non-pathogenic isolates. Analysis of mtSSU sequences provided limited phylogenetic resolution and did not differentiate the lactucae isolates from 13 other F. oxysporum isolates. Analysis of EF-1alpha sequences resulted in moderate resolution, grouping seven formae speciales with the lactucae isolates. Analysis of the IGS region revealed numerous sequence polymorphisms among F. oxysporum formae speciales consisting of insertions, deletions, and single nucleotide transitions and substitutions. Repeat sequence analysis revealed several duplicated subrepeat units that were distributed across much of the region. Based on analysis of the IGS sequence data, lactucae race 1 isolates resolved as a monophyletic group with three other formae speciales of F. oxysporum. In all analyses, lactucae race 2 isolates composed a separate lineage that was phylo-genetically distinct and distantly related to the lactucae race 1 isolates.  相似文献   

2.
A polymerase chain reaction (PCR)-based method was developed to detect DNA of Fusarium solani f. sp. glycines , the cause of soybean sudden death syndrome. Two pairs of primers, Fsg1/Fsg2 designed from the mitochondrial small subunit ribosomal RNA gene, and FsgEF1/FsgEF2 designed from the translation elongation factor 1-α gene, produced PCR products of 438 and 237 bp, respectively. Primer specificity was tested with DNA from 82 F. solani f. sp. glycines , 55 F. solani non-SDS isolates, 43 isolates of 17 soybean fungal pathogens and the oomycete Phytophthora sojae , and soybean. The sensitivity of primer Fsg1/Fsg2 was 10 pg while that of FsgEF1/FsgEF2 was 1 ng when using F. solani f. sp. glycines total genomic DNA or down to 103 macroconidia g−1 soil. Nested PCR increased the sensitivity of the PCR assay 1000-fold to 10 fg using primers Fsg1/Fsg2, and 1 pg using primers FsgEF1/FsgEF2. F. solani f. sp. glycines DNA was detected in field-grown soybean roots and soil by PCR using either single pairs of primers or the combination of two pairs of primers. The occurrence of F. solani f. sp. glycines was determined using nested PCR for 47 soil samples collected from soybean fields in 20 counties of Illinois in 1999. F. solani f. sp. glycines was detected in soil samples from all five Illinois Agricultural Statistic Districts including 100, 89, 50, 92 and 50% of the samples from East, Central, North-east and West Districts, respectively.  相似文献   

3.
Xing L  Westphal A 《Phytopathology》2006,96(7):763-770
ABSTRACT Sudden death syndrome (SDS) of soybean is caused by the soilborne Fusarium solani f. sp. glycines (synonym F. virguliforme). In a sequential approach, two multifactor factorial-design microplot experiments were conducted to investigate the effects of fungal infestation levels and soil moisture on both root necrosis and foliar SDS severity, and the interaction between F. solani f. sp. glycines and Heterodera glycines in fumigated versus nonfumigated soil. In 2003, soybean cv. Spencer was grown in nonfumigated or methyl bromide-fumigated soil and infested with increasing levels of F. solani f. sp. glycines, either under rainfall or irrigated after growth stage V6/R1. In 2004, interactions between F. solani f. sp. glycines and H. glycines were explored in a factorial inoculation design in fumigated or nonfumigated soil, planted to Williams 82 or Cyst-X20-18. In both years, higher levels of foliar SDS severity and root necrosis were found in F. solani f. sp. glycines-infested soils with H. glycines than in soils without the nematode on the soybean cultivars susceptible to both pathogens. Both natural infestations of H. glycines in 2003 and artificially amended populations of H. glycines in 2004 contributed to higher foliar SDS severity. More severe foliar SDS symptoms always were associated with more root necrosis, but elevated levels of root necrosis did not predict severe leaf symptoms. In contrast to the critical role of H. glycines, increasing fungal infestation levels had no significant effects on increasing either foliar SDS symptoms or root necrosis. Effects of moisture regime and fungal infestation levels also were examined in factorial greenhouse and growth chamber experiments. High soil moisture resulted in higher levels of SDS root necrosis. In the greenhouse, root necrosis increased at a higher rate in low soil moisture than the rate in high soil moisture. The two pathogens acted as a complex and the disease development was strongly dependent on high soil moisture.  相似文献   

4.
ABSTRACT The soybean cyst nematode, Heterodera glycines, and the fungus that causes sudden death syndrome (SDS) of soybean, Fusarium solani f. sp. glycines, frequently co-infest soybean (Glycine max) fields. The interactions between H. glycines and F. solani f. sp. glycines were investigated in factorial greenhouse experiments with different inoculum levels of both organisms on a soybean cultivar susceptible to both pathogens. Measured responses included root and shoot dry weights, H. glycines reproduction, area under the SDS disease progress curve, and fungal colonization of roots. Both H. glycines and F. solani f. sp. glycines reduced the growth of soybeans. Reproduction of H. glycines was suppressed by high inoculum levels but not by low levels of F. solani f. sp. glycines. The infection of soybean roots by H. glycines did not affect root colonization by the fungus, as determined by real-time polymerase chain reaction. Although both pathogens reduced the growth of soybeans, H. glycines did not increase SDS foliar symptoms, and statistical interactions between the two pathogens were seldom significant.  相似文献   

5.
ABSTRACT Sudden death syndrome of soybean, caused by Fusarium solani f. sp. glycines, is a disease of increasing economic importance in the United States. Although the ecology of sudden death syndrome has been extensively studied in relation to crop management practices such as tillage, irrigation, and cultivar selection, there is no information on the effects of herbicides on this disease. Three herbicides (lactofen, glyphosate, and imazethapyr) commonly used in soybean were evaluated for their effects on the phenology of F. solani f. sp. glycines and the development of sudden death syndrome in four soybean cultivars varying in resistance to the disease and in tolerance to glyphosate. Conidial germination, mycelial growth, and sporulation in vitro were reduced by glyphosate and lactofen. In growth-chamber and greenhouse experiments, there was a significant increase in disease severity and frequency of isolation of F. solani f. sp. glycines from roots of all cultivars after application of imazethapyr or glyphosate compared with the control treatment (no herbicide applied). Conversely, disease severity and isolation frequency of F. solani f. sp. glycines decreased after application of lactofen. Across all herbicide treatments, severity of sudden death syndrome and isolation frequency were lower in disease-resistant than in susceptible cultivars. Results suggest that glyphosate-tolerant and -nontolerant cultivars respond similarly to infection by F. solani f. sp. glycines after herbicide application.  相似文献   

6.
ABSTRACT The evolutionary relationships of fungi in the Fusarium redolens-F. hostae clade were investigated by constructing nuclear and mitochondrial gene genealogies for 37 isolates representing the known genetic and pathogenic diversity of this lineage, together with 15 isolates from putative sister groups that include the Gibberella fujikuroi and F. oxysporum species complexes and related species. Included in the analyses were 29 isolates of F. redolens from Asparagus, Convallaria, Dianthus, Fritillaria, Hebe, Helleborus, Hordeum, Linum, Pisum, Pseudotsuga, and Zea spp., and from soil. Isolates of F. hostae analyzed included two reference isolates from Hosta spp. and six isolates from Hyacinthus spp. that originally were classified as F. oxysporum f. sp. hyacinthi. DNA sequences from a portion of the nuclear translation elongation factor 1alpha (EF-1alpha) gene and the mitochondrial small subunit (mtSSU) ribosomal RNA (rRNA) were analyzed individually and as a combined data set based on results of the nonparametric Wilcoxon signed ranks Templeton combinability test. Maximum parsimony analysis of the combined data set identified the F. redolens-F. hostae clade as a sister group to a phylogenetically diverse clade in which the G. fujikuroi species complex formed the most basal lineage. Also included in this latter clade were two unnamed Fusarium spp. that are morphologically similar to F. oxysporum and putative sister taxa comprising the F. oxysporum complex and a F. nisikadoi-F. miscanthi clade. Phylogenetic diversity in F. redolens was small; all isolates were represented by only three EF-1alpha and two mtSSU rDNA haplotypes. Both the isolates of F. redolens f. sp. asparagi and those of F. redolens f. sp. dianthi were nearly evenly distributed in the combined molecular phylogeny between the two major subclades within F. redolens.  相似文献   

7.
ABSTRACT Fusarium wilt of cotton is a serious fungal disease responsible for significant yield losses throughout the world. Evolution of the causal organism Fusarium oxysporum f. sp. vasinfectum, including the eight races described for this specialized form, was studied using multigene genealogies. Partial sequences of translation elongation factor (EF-1alpha), nitrate reductase (NIR), phosphate permase (PHO), and the mitochondrial small subunit (mtSSU) rDNA were sequenced in 28 isolates of F. oxysporum f. sp. vasinfectum selected to represent the global genetic diversity of this forma specialis. Results of a Wilcoxon Signed-Ranks Templeton test indicated that sequences of the four genes could be combined. In addition, using combined data from EF-1alpha and mtSSU rDNA, the phylogenetic origin of F. oxysporum f. sp. vasinfectum within the F. oxysporum complex was evaluated by the Kishino-Hasegawa likelihood test. Results of this test indicated the eight races of F. oxysporum f. sp. vasinfectum appeared to be nonmonophyletic, having at least two independent, or polyphyletic, evolutionary origins. Races 3 and 5 formed a strongly supported clade separate from the other six races. The combined EF-1alpha, NIR, PHO, and mtSSU rDNA sequence data from the 28 isolates of F. oxysporum f. sp. vasinfectum recovered four lineages that correlated with differences in virulence and geographic origin: lineage I contained race 3, mostly from Egypt, and race 5 from Sudan; lineage II contained races 1, 2, and 6 from North and South America and Africa; lineage III contained race 8 from China; and lineage IV contained isolates of races 4 and 7 from India and China, respectively.  相似文献   

8.
Brazilian Fusarium isolates causing soybean sudden death syndrome (SDS) were characterized by comparing them with other Fusarium isolates associated with soybean root rot, as well as F. solani f.sp. glycines isolates associated with the disease in the USA, using molecular (mitochondrial and nuclear rDNA), morphological, cultural and pathogenic characteristics. On the basis of pathogenicity data, and restriction fragment length polymorphism and sequence analysis of the rDNA internal transcribed spacer (ITS) regions, isolates formed a group distinct from nonSDS F. solani isolates, as well as other Fusarium species. ITS sequence analysis also revealed that Brazilian isolates were distinct from the majority of SDS pathogens from the USA ( Fusarium virguliforme ) and conformed to Fusarium tucumaniae .  相似文献   

9.
ABSTRACT The soilborne fungus Cylindrocarpon destructans (teleomorph: Neonectria radicicola) causes root rot in a wide range of plant hosts; the disease is of particular concern in ginseng production, and in conifer and fruit tree nurseries. beta-Tubulin gene and rRNA gene internal transcribed spacer (ITS) sequence data and pathogenicity assays were used to characterize isolates of C. destructans from ginseng and other hosts. The results of these studies demonstrated a high amount of sequence divergence among strains identified as C. destructans or N. radicicola, suggesting the existence of several phylogenetic species in this complex. Accordingly, we propose that the two varieties of N. radicicola be raised to species status. Certain highly aggressive ginseng isolates from Ontario, Korea, and Japan have identical ITS and beta-tubulin sequences, and form a monophyletic clade (designated "clade a"); these strains are identified as C. destructans f. sp. panacis. Other ginseng strains clustered in monophyletic groups with strains from angiosperm and conifers. A subtractive hybridization method was used to isolate genomic DNA sequences with diagnostic potential from the aggressive C. destructans Ontario ginseng isolate 1640. One of these sequences was similar to the rRNA gene intergenic spacer from a Fusarium oxysporum isolate from Pinus ponderosa, and hybridized to DNA from F. oxysporum and all C. destructans isolates tested. Primers were designed that could be used to amplify this sequence specifically from the highly aggressive, ginsengadapted C. destructans isolates from Ontario and Korea and other members of clade a.  相似文献   

10.
Fusarium oxysporum f. sp. vanillae is considered the most important fungus affecting vanilla crops around the world, causing rot on vanilla roots and stems. Previous studies showed that the ability to infect vanilla plants is a polyphyletic trait among strains of the Fusarium oxysporum species complex (FOSC). The same studies proposed a single origin for F. oxysporum f. sp. vanillae isolates sampled from Mexico, the centre of origin and distribution of vanilla. The aim of this work was to test the hypothesis of the monophyletic origin of a wider sample of isolates of F. oxysporum f. sp. vanillae infecting Mexican vanilla and estimate nucleotide diversity of pathogen isolates from the main vanilla‐producing countries. Sequence data for the TEF1α gene from 106 isolates was assembled. The phylogenetic analyses suggest that some Mexican isolates of F. oxysporum f. sp. vanillae belong in two well‐supported clades, mixed with isolates from Madagascar, Indonesia, Réunion and Comoros. The phylogenetic position of other Indonesian and Mexican isolates is unresolved. Estimations of nucleotide diversity showed that the population from Mexico is genetically more diverse than the other three populations from Madagascar, Indonesia and Réunion. The results support a polyphyletic origin of vanilla‐infecting isolates of F. oxysporum worldwide, and also reject the proposition that Mexican isolates have a single origin. The phylogenetic optimizations over the strict consensus tree of the ability to infect vanilla plants suggest that pathogenic strains around the world are the product of multiple shifts of pathogenesis and dispersion events.  相似文献   

11.
Asparagus decline is a disease associated with several species of Fusarium . In order to assess the relative significance of causative species, single-stranded conformational polymorphism (SSCP) analysis of the ITS2 (internal transcribed sequence) region of the ribosomal DNA was used to rapidly and objectively identify the fusarial populations associated with the roots of two intensively sampled asparagus crops, one in the UK and the other in Spain. Over 360 fusarial isolates were obtained from fields showing symptoms of asparagus decline, and most were easily differentiated by SSCP into four principal species, F. oxysporum f. sp. asparagi , F. proliferatum , F. redolens and F. solani . Fusarium oxysporum f. sp. asparagi (Foa) was most frequently isolated from the UK site (69%), whilst Foa and F. proliferatum were found in similar proportions overall (40 and 39%, respectively) from the Spanish site, although individual fields showed considerable intraregional variation. Other minor populations, such as F. culmorum , were also found. Most isolates were highly pathogenic to asparagus in vitro , although F. solani isolates comprised both pathogenic and nonpathogenic populations. Two populations of Foa were distinguished by a single ITS2 base transition, and the dominance of these two populations differed between Europe and the USA. Fusarium proliferatum was more abundant in Spain than in the UK. Phylogenetic analysis using EF1α sequences indicated that isolates of F. oxysporum pathogenic to asparagus are spread across a number of clades within the species complex, supporting the hypothesis that pathogenicity to asparagus in this species is a relatively unspecialized trait.  相似文献   

12.
山东省大豆根腐病病原菌及其生物学研究   总被引:10,自引:2,他引:10  
 1988-1989年采集山东大豆根腐病标样553个,经分离接种证明,致病菌有茄病镰刀菌[Fusarium solani(Mart.)Sacc.]、尖孢镰刀菌(F.oxysporum Schl.)和木贼镰刀菌[F.equiseti(Corda)Sacc.]三种,以茄病镰刀菌的分离频率最高,致病力最强,为主要致病菌。并对其培养特性、形态特征、寄主范围和光照、温度及pH对生长的影响进行了研究,根据这些研究结果,将大豆根腐病主要致病菌定名为茄病镰刀菌大豆专化型[Fusarium solani(Mart.)Sacc.f.sp.glycines Li et Luo],本专化型过去没有报告。  相似文献   

13.
Fusarium yellows, caused by the soil‐borne fungus Fusarium oxysporum f. sp. betae (Fob), can lead to significant yield losses in sugar beet. This fungus is variable in pathogenicity, morphology, host range and symptom production, and is not a well characterized pathogen on sugar beet. From 1998 to 2003, 86 isolates of F. oxysporum and 20 other Fusarium species from sugar beet, along with four F. oxysporum isolates from dry bean and five from spinach, were obtained from diseased plants and characterized for pathogenicity to sugar beet. A group of sugar beet Fusarium isolates from different geographic areas (including nonpathogenic and pathogenic F. oxysporum, F. solani, F. proliferatum and F. avenaceum), F. oxysporum from dry bean and spinach, and Fusarium DNA from Europe were chosen for phylogenetic analysis. Sequence data from β‐ tubulin, EF1α and ITS DNA were used to examine whether Fusarium diversity is related to geographic origin and pathogenicity. Parsimony and Bayesian MCMC analyses of individual and combined datasets revealed no clades based on geographic origin and a single clade consisting exclusively of pathogens. The presence of FOB and nonpathogenic isolates in clades predominately made up of Fusarium species from sugar beet and other hosts indicates that F. oxysporum f. sp. betae is not monophyletic.  相似文献   

14.
Isolates of Fusarium oxysporum from lily were screened for pathogenicity, vegetative compatibility and DNA restriction fragment length polymorphisms, and compared to reference isolates of F. oxysporum f.sp. gladioli and F. oxysporum f.sp. tulipae to justify the distinction of F. oxysporum f.sp. lilii. Twenty-four isolates from different locations in The Netherlands (18 isolates), Italy (4 isolates), Poland and the United States (1 isolate each) shared unique RFLP patterns with probes D4 and pFOM7, while hybridization did not occur with a third probe (F9). Except for a self-incompatible isolate, these 24 isolates all belonged to a single vegetative compatibility group (VCG 0190). Isolates belonging to VCG 0190 were highly pathogenic to lily, but not to gladiolus or tulip, except for a single nonpathogenic isolate. Six saprophytic isolates of F. oxysporum from lily were nonpathogenic or only slightly aggressive to lily, gladiolus and tulip, belonged to unique VCGs and had distinct RFLP patterns. Three pathogenic isolates previously considered to belong to F. oxysporum f.sp. lilii were identified as F. proliferatum var. minus; all three belonged to the same VCG and shared unique RFLP patterns. These three isolates were moderately pathogenic to lily and nonpathogenic to gladiolus and tulip. The reference isolates of F. oxysporum f.sp. tulipae were pathogenic to tulip, but not to lily and gladiolus; they shared a distinct RFLP pattern, different from those encountered among pathogenic and saprophytic isolates from lily, and formed a separate new VCG (VCG 0230). Reference isolates of F. oxysporum f.sp. gladioli belonging to VCG 0340 proved pathogenic to both gladiolus and lily, but not to tulip. These isolates, as well as isolates belonging to VCGs 0341, 0342 and 0343 of F. oxysporum f.sp. gladioli, had RFLP patterns different from those encountered among the isolates from lily or tulip. These findings identify F. oxysporum f.sp. lilii as a single clonal lineage, distinct from F. oxysporum f.sp. gladioli and f.sp. tulipae.  相似文献   

15.
ABSTRACT Specific primers and polymerase chain reaction (PCR) assays that identify Fusarium oxysporum f. sp. ciceris and each of the F. oxysporum f. sp. ciceris pathogenic races 0, 1A, 5, and 6 were developed. F. oxysporum f. sp. ciceris- and race-specific random amplified polymorphic DNA (RAPD) markers identified in a previous study were cloned and sequenced, and sequence characterized amplified region (SCAR) primers for specific PCR were developed. Each cloned RAPD marker was characterized by Southern hybridization analysis of Eco RI-digested genomic DNA of a subset of F. oxysporum f. sp. ciceris and nonpathogenic F. oxysporum isolates. All except two cloned RAPD markers consisted of DNA sequences that were found highly repetitive in the genome of all F. oxysporum f. sp. ciceris races. F. oxysporum f. sp. ciceris isolates representing eight reported races from a wide geographic range, nonpathogenic F. oxysporum isolates, isolates of F. oxysporum f. spp. lycopersici, melonis, niveum, phaseoli, and pisi, and isolates of 47 different Fusarium spp. were tested using the SCAR markers developed. The specific primer pairs amplified a single 1,503-bp product from all F. oxysporum f. sp. ciceris isolates; and single 900- and 1,000-bp products were selectively amplified from race 0 and race 6 isolates, respectively. The specificity of these amplifications was confirmed by hybridization analysis of the PCR products. A race 5-specific identification assay was developed using a touchdown-PCR procedure. A joint use of race 0- and race 6-specific SCAR primers in a single-PCR reaction together with a PCR assay using the race 6-specific primer pair correctly identified race 1A isolates for which no RAPD marker had been found previously. All the PCR assays described herein detected up to 0.1 ng of fungal genomic DNA. The specific SCAR primers and PCR assays developed in this study clearly identify and differentiate isolates of F. oxysporum f. sp. ciceris and of each of its pathogenic races 0, 1A, 5, and 6.  相似文献   

16.
ABSTRACT A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.  相似文献   

17.
烟草靶斑病菌菌丝融合群及ITS序列分析   总被引:1,自引:0,他引:1  
 烟草靶斑病是2006年我国新报道发生的一种叶部病害[1],其病原的无性世代为立枯丝核菌(Rhizoctonia solani Kühn),有性世代为瓜亡革菌(Thanatephorus cucumeris (Frank)Donk)。该病菌主要危害叶部形成病斑,对烟草的产量和品质影响显著,目前该病害主要分布在辽宁省丹东和铁岭地区,并呈现出迅速蔓延趋势。烟草靶斑病最早由巴西报道,此后,哥斯达黎加、美国、南非和津巴布韦也相继发生[2,3]。  相似文献   

18.
为明确辣椒根腐病致病菌腐皮镰孢Fusarium solani对咯菌腈的抗性风险,采用菌丝生长速率法测定了采自未使用过咯菌腈的5个省份的102株腐皮镰孢对咯菌腈的敏感性。结果表明:咯菌腈对102株腐皮镰孢的EC50范围为0.029 0~0.183 4 mg/L,平均EC50为(0.106 2±0.031 5)mg/L,敏感性频率分布为连续单峰曲线,所以可将其作为供试5个省份腐皮镰孢对咯菌腈的敏感基线。通过药剂驯化和紫外诱导并结合抗性遗传稳定性最终共获得4株腐皮镰孢抗咯菌腈突变体,抗性水平在6.94~32.43倍之间,突变频率分别为3.51×10-4(SDWF1914-Y336和SDWF1914-Y017)和7.41×10-9(SDWF1914-ZR717和JSXZ1906-ZR496)。腐皮镰孢抗咯菌腈突变体生物学性状的研究表明,抗性突变体在菌丝生长速率、产孢量与致病力方面与亲本菌株不存在显著差异。交互抗性测定结果显示,腐皮镰孢对咯菌腈与嘧菌酯、醚菌酯、多菌灵和福美双均无交互抗性。结果表明,供试腐皮镰...  相似文献   

19.
经分离、培养对不同菌种培养性状的观察,确定了侵染黄瓜、黑籽南瓜造成死秧的镰刀菌主要为尖镰孢菌黄瓜专化型、尖镰孢菌西瓜专化型、串珠镰刀菌和腐皮镰孢菌4种。经致病性测定,4种镰刀菌均能侵染黄瓜,引起发病造成死秧,可分为强致病类型和中强致病类型。经抗病性鉴定,黑籽南瓜种子只有南瓜4号为耐病品种;黄瓜种子也只有津优31号为耐病品种。  相似文献   

20.
K. ELENA  L. KRANIAS 《EPPO Bulletin》1996,26(2):407-411
Specimens of diseased asparagus (108) were selected from 17 fields in northern Greece. The asparagus crowns showed limited or widespread brown discoloration or extensive internal rot with fibrous tissues. A red-brown discoloration was also observed on the roots and, in a serious infection, most of the roots were totally destroyed and only their epidermis and ribbon-like central axis remained. 68 strains of Fusarium proliferatum , 25 of F. oxysporum , 19 of F. solani , and 1 strain of Rhizoctonia solani were isolated from crowns and roots. Single-spore isolates were subcultured from 50 strains of F. proliferatum , 21 of F. oxysporum and 7 of F. solani. These isolates were evaluated for pathogenicity by inoculating cultivar UC157F1 of asparagus in an in vitro agar test-tube assay for 21 days at 29–32°C, with a light period of 16 h. Isolates of F. proliferatum and F. oxysporum were found to be the most pathogenic. The pathogenic F. oxysporum isolates were characterized as f.sp. asparagi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号