首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Strains of Pantoea agglomerans (synanamorph Erwinia herbicola) suppressed the development of basal kernel blight of barley, caused by Pseudomonas syringae pv. syringae, when applied to heads prior to the Pseudomonas syringae pv. syringae infection window at the soft dough stage of kernel development. Field experiments in 1994 and 1995 revealed 45 to 74% kernel blight disease reduction, whereas glasshouse studies resulted in 50 to 100% disease control depending on the isolate used and barley cultivar screened. The efficacy of biocontrol strains was affected by time and rate of application. Percentage of kernels infected decreased significantly when P. agglomerans was applied before pathogen inoculation, but not when coinoculated. A single P. agglomerans application 3 days prior to the pathogen inoculation was sufficient to provide control since populations of about 10(7) CFU per kernel were established consistently, while Pseudomonas syringae pv. syringae populations dropped 100-fold to 2.0 x 10(4) CFU per kernel. An application to the flag leaf at EC 49 (before heading) also reduced kernel infection percentages significantly. Basal blight decreased with increasing concentrations (10(3) to 10(7) CFU/ml) of P. agglomerans, with 10(7) CFU/ml providing the best control. For long-term preservation and marketability, the survival of bacterial antagonists in several wettable powder formulations was tested. Over all formulations tested, the survival declined between 10- to >100-fold over a period of 1.5 years (r = -0.7; P = 0.000). Although not significant, storage of most formulations at 4 degrees C was better for viability (90 to 93% survival) than was storage at 22 degrees C (73 to 79%). However, long-term preservation had no adverse effect on biocontrol efficacy.  相似文献   

2.
ABSTRACT Unmodified and low water activity (a(w))-tolerant cells of Candida sake CPA-1 applied before harvest were compared for ability to control blue mold of apples ('Golden Delicious') caused by Penicillium expansum under commercial storage conditions. The population dynamics of strain CPA-1 on apples were studied in the orchard and during storage following application of 3 x 10(6) CFU/ml of each treatment 2 days prior to harvest. In the field, the population size of the unmodified treatment remained relatively unchanged, while the population size of the low-a(w)-modified CPA-1 cells increased. During cold storage, the populations in both treatments increased from 10(3) to 10(5) CFU/g of apple after 30 days, and then declined to about 2.5 x 10(4) CFU/g of apple. In laboratory studies, the low-a(w)-tolerant cells provided significantly better disease control as compared with the unmodified cells and reduced the number of infected wounds and lesion size by 75 and 90%, respectively, as compared with the non-treated controls. After 4 months in cold storage, both unmodified and low-a(w)-tolerant cells of C. sake were equally effective against P. expansum on apple (>50% reduction in size of infected wounds).  相似文献   

3.
ABSTRACT The yeast Candida oleophila, the base of the commercial product Aspire, is recommended for the control of postharvest decay in citrus and pome fruit. Its modes of action include nutrient competition, site exclusion, and direct mycoparasitism. In the present study, we showed that application of Candida oleophila to surface wounds or to intact 'Marsh Seedless' grapefruit elicited systemic resistance against Penicillium digitatum, the main postharvest pathogen of citrus fruit. The induction of pathogen resistance in fruit was already pronounced 24 h after elicitation; it was distance, concentration, and time dependent and restricted to the peel tissue closely surrounding the yeast application site. The induction of pathogen resistance required viable yeast cells at concentrations of 10(8) to 10(9) cells ml(-1). Nonviable autoclaved or boiled yeast cells or lower yeast concentrations were ineffective in enhancing fruit disease resistance. Application of Candida oleophila cell suspensions to grapefruit peel tissue increased ethylene biosynthesis, phenylalanine ammonia lyase activity, and phytoalexin accumulation, and increased chitinase and beta-1,3-endoglucanase protein levels, indicated by western immunoblotting analysis. Scanning electron microscope observations revealed that spore germination and germ tube growth of Penicillium digitatum were markedly inhibited in wounds made near the yeast-treated sites. Overall, this study provides evidence that induced resistance against postharvest decay of citrus fruit should be considered an important component of the multiple modes of action of the yeast Candida oleophila.  相似文献   

4.
ABSTRACT The potential enhancement of Candida sake (CPA-1) by ammonium molybdate to control blue and gray mold caused by Penicillium expansum and Botrytis cinerea, respectively, on Blanquilla pears was investigated. In laboratory trials, improved control of blue and gray molds was obtained with the application of ammonium molybdate (1, 5, 10, and 15 mM) alone or in combination with C. sake at 2 x 10(6) or 2 x 10(7) CFU ml(-1) on Blanquilla pears stored at 20 degrees C. In semicommercial trials at 1 degrees C for 5 months, the efficacy of C. sake at 2 x 10(6) CFU ml(-1) on reducing P. expansum and B. cinerea decay was enhanced more than 88% with the addition of ammonium molybdate 5 mM in the 1999-2000 season. In two seasons, the performance C. sake at 2 x 10(6) CFU ml(-1) plus ammonium molybdate was similar to or greater than that of C. sake at 2 x 10(7) CFU ml(-1). Similar control of blue mold was obtained on pears stored under low oxygen conditions. The preharvest application of ammonium molybdate did not reduce postharvest blue mold decay. The population of C. sake on pear wounds significantly decreased in the presence of ammonium molybdate 1 and 5 mM at 20 and 1 degrees C.  相似文献   

5.
Beattie GA  Marcell LM 《Phytopathology》2002,92(9):1015-1023
ABSTRACT The dynamics of the adherent and nonadherent populations of three bacterial species on maize leaves were examined to identify the extent to which bacteria adhere to leaves and the importance of this adhesion to leaf colonization. Pantoea agglomerans strain BRT98, Clavibacter michiganensis subsp. nebraskensis strain GH2390, and Pseudomonas syringae pv. syringae strain HS191R all rapidly adhered to maize leaves following inoculation, but differed in the percentage of cells that adhered to the leaves. Immediately following inoculation, the percentage of adherent cells was highest for the saprophyte P. agglomerans (8 to 10%) and was much lower for the pathogens C. michiganensis subsp. nebras-kensis and P. syringae pv. syringae (2 to 3 and <1%, respectively), although the results for P. syringae pv. syringae HS191R were based on only one experiment. In the 4 days following inoculation, the percentage of the P. agglomerans populations that adhered to the leaves increased to approximately 70%. Similarly, the percentage of C. michiganensis subsp. nebraskensis and P. syringae pv. syringae cells that resisted removal steadily increased in the days following inoculation, although these increases probably reflected both adherence and localization to endophytic sites. Based on differences in the percentage of cells adhering to several cuticular wax mutants of maize, the rapid adherence of C. michiganensis subsp. nebraskensis cells to maize leaves was influenced by the cuticular wax properties, while the rapid adherence of P. agglomerans was not. Finally, bacterial adherence to leaves was advantageous to P. agglomerans survival and growth on leaves based on the finding that the nonadherent populations of the P. agglomerans strain decreased significantly more than did the adherent populations in the 24 h following inoculation, and increased much less than did the adherent populations over the next 3 days. Similar results with the C. michiganensis subsp. nebraskensis and P. syringae pv. syringae strains indicate that bacterial adherence to leaves, bacterial movement to endophytic sites, or both were advantageous to the survival and growth of these strains on leaves.  相似文献   

6.
Several factors affecting the severity of bacterial canker of pear were studied. In the orchard, infection of shoots by Pseudomonas syringae pv. syringae occurred only when the inoculum dose exceeded 106 colony-forming units/shoot. However, under favourable conditions in a growth chamber, cankers formed on detached shoots inoculated with 5 cfu/shoot. A second-order polynomial relationship was established between log10 transformed canker length and log10 transformed inoculum dose. In orchard and growth chamber experiments, shoots were susceptible from the time of bud swell until after fruit harvest. The severity of Pseudomonas canker of detached shoots increased if they were frozen at – 10°C for 24 h before inoculation. Shoots were most susceptible when inoculated immediately after wounding, and no cankers developed in the orchard when 3-day-old wounds were inoculated. Additionally, no cankers resulted from inoculation of leaf scars at leaf drop. Actively growing, current-season shoots were more susceptible than shoots that had set a terminal bud. The practical implications of these results are discussed as a basis for control of bacterial canker of pear.  相似文献   

7.
ABSTRACT Eighteen bacterial strains were individually assayed against Gibberella pulicaris (5 x 10(5) conidia per ml) by coinoculating antagonist and pathogen in wounds in cv. Russet Burbank potatoes. All antagonist concentrations (10(6), 10(7), and 10(8) CFU/ml) decreased disease (38 to 76% versus control, P < 0.05). When four strains were assayed at 11 concentrations (range 10(5) to 10(8) CFU/ml) against G. pulicaris, linear regression of the log-dose, log-response data was significant for all four strains (P < 0.001 to 0.01, R(2) = 0.50 to 0.74). Challenging G. pulicaris with all possible antagonist pairings within 2 sets of 10 antagonist strains (5 x 10(5) CFU of each strain per ml) resulted in 16 of 90 pairs controlling disease better than predicted based on averaging the performance of the individual strains making up the pair (P < 0.10). Successful pairs reduced disease by ~70% versus controls, a level of control comparable to that obtained with 100 times the inoculum dose of a single antagonist strain. Neither strain genus nor soil of origin were useful in predicting successful antagonist pairs. Factors potentially influencing dose-response relationships and the effectiveness of antagonist pairs in controlling disease are discussed.  相似文献   

8.
Qin GZ  Tian SP 《Phytopathology》2005,95(1):69-75
ABSTRACT Exogenous application of silicon (Si) in the form of sodium metasilicate reduced disease development caused by Penicillium expansum and Monilinia fructicola in sweet cherry fruit at 20 degrees C. The inhibition of fruit decay was correlated closely with Si concentrations. Silicon at concentrations of 1%, in combination with the biocontrol agent Cryptococcus laurentii at 1 x 10(7) cells per ml, provided synergistic effects against both diseases. Population dynamics of C. laurentii were stimulated by Si 48 h after the yeast treatment in the wounds of sweet cherry fruit. Silicon strongly inhibited spore germination and germ tube elongation of P. expansum and M. fructicola in vitro. Based on results with scanning electron microscopy, growth of both pathogens was significantly inhibited by Si in the wounds of sweet cherry fruit. Compared with the wounded water control, Si treatment induced a significant increase in the activities of phenylalanine ammonia-lyase, polyphenoloxidase, and peroxidase in sweet cherry fruit but did not increase the levels of lignin. Application of Si activated a cytochemical reaction and caused tissue browning near the site of wounding. Based on our studies, the improvement in biocontrol efficacy of antagonistic yeast when combined with Si may be associated with the increased population density of antagonistic yeast by Si, the direct fungitoxicity property of Si to the pathogens, and the elicitation of biochemical defense responses in fruit.  相似文献   

9.
Isolates of three pathovars of Pseudomonas syringae were tested against 10 legume species. Some isolates of all pathovars showed cultivar-specific interactions with at least one legume species outside the expected host range. Lablab purpureus and Phaseolus lunatus were found to be hosts to isolates of both P. syringae pv. glycinea and P. syringae pv. phaseolicola, while Lathyrus latifolius was host to isolates of P. syringae pv. pisi and P. syringae pv. glycinea . Lens culinaris showed patterns of interaction with isolates of all three pathovars. Gene models based on mathematical estimates of minimum gene numbers agreed with those previously published for the interactions of P. syringae pv. pisi with Pisum sativum and P. syringae pv. phaseolicola with Phaseolus vulgaris. Two different gene-for-gene models based on five resistance/avirulence gene pairs were proposed to explain observed interactions between Glycine max and P. syringae pv . glycinea . Pathogen isolates which contained no known avirulences defined on their respective host species were found to carry cryptic avirulences recognized by other plant species. Estimates of minimum gene numbers required to explain the interactions of a plant species with all pathogen isolates or to explain the interactions of the isolates of one pathovar with all plant accessions were consistently lower than the sum of the minimum gene numbers required to explain the interactions of each individual component.  相似文献   

10.
ABSTRACT Pear blossoms were sampled during various stages of bloom in 1991 and 1992 from orchards at Cashmere, WA, and Corvallis and Medford, OR, for epiphytic populations of culturable bacteria. On stigmatic surfaces, bacteria were isolated from 2 to 32% of blossoms prior to petal expansion and from 47 to 94% of blossoms by petal fall. In general, a lower percentage of hypanthia than stigmas supported bacterial populations. Randomly selected bacteria isolated at population levels of >/=10(4) CFU/tissue were identified by fatty acid methyl ester analysis. Diverse genera of gram-negative and -positive bacteria were identified from the Medford and Cashmere field sites. Pseudomonas syringae and Pseudomonas viri-diflava were isolated from all sites and were the predominant species detected at Corvallis, where they were isolated from 28% of the blossoms sampled on a given date. Because most pear blossoms do not support detectable populations (>/=10(2) CFU/tissue) of culturable bacteria prior to petal expansion, we speculate that introduced biocontrol agents may become established with minimal competition from indigenous epiphytes at early bloom stages.  相似文献   

11.
ABSTRACT The role of watermelon blossom inoculation in seed infestation by Acidovorax avenae subsp. citrulli was investigated. Approximately 98% (84/87) of fruit developed from blossoms inoculated with 1 x 10(7) or 1 x 10(9) CFU of A. avenae subsp. citrulli per blossom were asymptomatic. Using immunomagnetic separation and the polymerase chain reaction, A. avenae subsp. citrulli was detected in 44% of the seed lots assayed, despite the lack of fruit symptoms. Furthermore, viable colonies were recovered from 31% of the seed lots. Of these lots, 27% also yielded seedlings expressing bacterial fruit blotch symptoms when planted under conditions of 30 degrees C and 90% relative humidity. A. avenae subsp. citrulli was detected and recovered from the pulp of 33 and 19%, respectively, of symptomless fruit whose blossoms were inoculated with A. avenae subsp. citrulli. The ability to penetrate watermelon flowers was not unique to A. avenae subsp. citrulli, because blossoms inoculated with Pantoea ananatis also resulted in infested seed and pulp. The data indicate that watermelon blossoms are a potential site of ingress for fruit and seed infestation by A. avenae subsp. citrulli.  相似文献   

12.
ABSTRACT Southern wilt of geraniums (Pelargonium hortorum), caused by the soilborne bacterium Ralstonia solanacearum race 3 biovar 2 (R3bv2), has inflicted significant economic losses when geranium cuttings latently infected with this quarantine pest were imported into the United States. Little is known about the interaction between R. solanacearum and this ornamental host. Using UW551, a virulent R3bv2 geranium isolate from a Kenyan geranium, we characterized development of Southern wilt disease and R3bv2 latent infection on geranium plants. Following soil inoculation, between 12 and 26% of plants became latently infected, carrying average bacterial populations of 4.8 x 10(8) CFU/g of crown tissue in the absence of visible symptoms. Such latently infected plants shed an average of 1.3 x 105 CFU/ml in soil run-off water, suggesting a non-destructive means of testing pools of asymptomatic plants. Similarly, symptomatic plants shed 2 x 10(6) CFU/ml of run-off water. A few hundred R. solanacearum cells introduced directly into geranium stems resulted in death of almost all inoculated plants. However, no disease transmission was detected after contact between wounded leaves. Increasing temperatures to 28 degrees C for 2 weeks did not convert all latently infected plants to active disease, although disease development was temperature dependent. Holding plants at 4 degrees C for 48 h, a routine practice during geranium cutting shipment, did not increase frequency of latent infections. R. solanacearum cells were distributed unevenly in the stems and leaves of both symptomatic and latently infected plants, meaning that random leaf sampling is an unreliable testing method. UW551 also caused potato brown rot and bacterial wilt of tomato, surpassing race 1 strain K60 in virulence on tomato at the relatively cool temperature of 24 degrees C.  相似文献   

13.
In a field trial to determine whether the rootstock influenced the susceptibility of cherry cultivars to bacterial canker three cultivars (Napoleon, Roundel and JI 14039), each grafted on two rootstocks (F 12/1 and Colt), were subjected to natural infectionand to inoculation with three bacterial canker pathogens (Pseudomonas syringae pv. morsprunorum races 1 and 2 and P. syringae pv. syringae). Inoculations were made through leaf scars and through wounds. The high susceptibility of Napoleon and high resistance of JI 14039 were confirmed. Napoleon was more susceptible to inoculation through branches when on F12/1 than when on Colt but the reverse was true for leaf scar inoculations. JI14039 was more susceptible to race 1 inoculated through leaf scars when grown on F12/1 than when on Colt. No rootstock/scion interaction was detected with Roundel.
The complexity of the relationships between the pseudomonad pathogens and their cherry hosts is briefly discussed.  相似文献   

14.
ABSTRACT Chemical applications, with the exception of mancozeb, reduced population sizes and spread of Clavibacter michiganensis subsp. michiganensis among tomato seedlings in the greenhouse and impacted subsequent plant development and yield in the field. While applications of copper hydroxide, copper hydroxide/mancozeb, copper hydroxide/mancozeb (premixed 12 h before spraying), streptomycin, and streptomycin/copper hydroxide to seedlings in the greenhouse did not differ significantly from the inoculated control, the trend was for these treatments to increase the survival of inoculated transplants in the field in comparison to the inoculated control. In the field, inoculated controls produced yields that were 63% (1995) and 51% (1996) of those produced by uninoculated controls. In both years, with the exception of mancozeb in 1995, all treatments resulted in yields similar to those obtained with the uninoculated control. Plant survival and yield in the field were severely affected when transplants had a pathogen population of >/= x 10(8) CFU/g of tissue. All treatments, with the exception of mancozeb, limited C. michiganensis subsp. michiganensis populations to <5.0 x 10(5). None of the treatments significantly reduced the incidence of fruit spotting compared with that of the inoculated control.  相似文献   

15.
ABSTRACT In excised dormant stems of peach (Prunus persica), prune (Prunus domestica), and almond (Prunus dulcis), stem diameter, stem hydration, and freezing-thawing influenced the extent of infection caused by Pseudomonas syringae pv. syringae. Bacterial lesion length increased with increasing stem diameter, demonstrating the need to account for the effects of stem diameter when lesion length data are analyzed. Lesion length increased or decreased with stem hydration or dehydration, respectively. However, tissue water content was not a good indicator of tissue susceptibility to infection by P. syringae pv. syringae, as larger diameter stems had larger lesions and lower water content than did smaller diameter stems. After freezing at -5 degrees C for 12 to 24 h, inoculations made during the thawing process produced significantly larger lesions than did inoculations performed before freezing or after thawing. These results support the hypothesis that the increased susceptibility to bacterial canker that is associated with noninjurious freezing is a result of the increased passive spread of bacteria through water redistribution when inoculation is performed during the thawing process. Plant tissue water relationship characteristics that can influence water movement during freezing and thawing may be an important component of bacterial canker development in stone fruit trees.  相似文献   

16.
The effects of apple fruit maturity, temperature of fruit or dip solution, period of time in fungicidal dip, storage conditions, and spore inoculum concentration, on the efficacy of fungicides for control of blue mould ( Penicillium expansum ) were examined in various experiments.
Iprodione and imazalil were only effective when inoculum concentration was low, whilst prochloraz was highly effective in controlling rot on fruit inoculated with 3 × 106 spores/ml. There was no consistent effect of dip temperature or fruit maturity on the efficacy of the fungicides. Iprodione was more effective on warm fruit (19°C) than cold fruit (6°C) whilst the reverse was true of imazalil. Extended periods of immersion in the fungicides slightly reduced the incidence of rotting but not to any useful degree.
The incidence of rotting in fruit treated with prochloraz and etaconazole was less in fruit stored under controlled-atmosphere cold storage conditions than in fruit stored in air cold-storage. Both fungicides were also effective for short-term storage at 20 C in air. Captan, benomyl, captan plus benomyl or vinclozolin were either ineffective or of poor efficacy under all storage conditions.  相似文献   

17.
ABSTRACT Successful spread of an organism to a new habitat requires both immigration to and growth on that habitat. Field experiments were conducted to determine the relative roles of dispersal (i.e., immigration) and bacterial multiplication in spread of Pseudomonas syringae pv. syringae in the phyllosphere. To study spread, individual plots consisted of three nested concentric squares with the inner 6 m(2) planted to snap beans serving as the sink. Each sink, in turn, was surrounded by a barrier zone, usually 6 m wide, which was surrounded by a 6-m-wide source area. The source areas were planted with snap bean seeds inoculated with doubly marked strains derived from wild-type P. syringae pv. syringae B728a. The treatments were designed to test the effects of the nature and width of the barrier zone and suitability of the habitat in the sinks on spread of P. syringae pv. syringae. The marked strains introduced into the source areas at the time of planting were consistently detected in sink areas within a day or two after emergence of bean seedlings in the sources as assessed by leaf imprinting and dilution plating. The amounts of spread (population sizes of the marked strain in sinks) across barrier zones planted to snap bean (a suitable habitat for growth of P. syringae pv. syringae), soybean (not a favorable habitat for P. syringae pv. syringae), and bare ground were not significantly different. Thus, the nature of the barrier had no measurable effect on spread. Similarly, spread across bare-ground barriers 20 m wide was not significantly different from that across barriers 6 m wide, indicating that distance on this scale was not a major factor in determining the amount of spread. The suitability of the sink for colonization by P. syringae pv. syringae had a measurable effect on spread. Spread to sinks planted to clean seed was greater than that to sinks planted with bean seeds inoculated with a slurry of pulverized brown spot diseased bean leaves, sinks planted 3 weeks before sources, and sinks planted to a snap bean cultivar that does not support large numbers of P. syringae pv. syringae. Based of these results, we conclude that the small amount of dispersal that occurred on the scale studied was sufficient to support extensive spread, and suitability of the habitat for multiplication of P. syringae pv. syringae strongly influenced the amount of spread.  相似文献   

18.
In a survey of the major stonefruit nurseries in Victoria during winter 1978 and 1979, Pseudomonas syringae pv. syringae , the causal organism of bacterial canker, was found to be present on most of the stonefruit material in all nurseries but was detected most frequently on apricot.
The epiphytic populations of P.s. pv. syringae on leaves, buds and shoots of apricot and cherry were assessed periodically between 1979 and 1983 by determining the proportion of trees bearing the bacterium or by counting numbers of bacteria. Populations consistently reached peak levels during spring and late autumn, with highest levels in spring. Populations were lowest during mid- to late summer. High proportions of tree contamination and high populations coincided with periods when maximum temperatures ranged from 19° to 25°C, and when rainfall was moderately high. The significance of these findings in the light of information from other studies on the seasonal variability of host susceptibility, and in relation to chemical control, is discussed.
There was no evidence of occurrence of P.s. pv. morsprunorum in Victoria.  相似文献   

19.
ABSTRACT Bacterial apical necrosis of mango, elicited by Pseudomonas syringae pv. syringae, limits fruit production in southern Spain and Portugal. Examination of a collection of P. syringae pv. syringae isolates for copper resistance showed that 59% were resistant to cupric sulfate. The survey of a mango orchard revealed an increase in frequencies of copper-resistant bacteria after repeated treatments with Bordeaux mixture. These data suggest that selection of copper-resistant strains could be a major reason for control failures following management with copper bactericides. Most copper-resistant isolates harbored plasmids, although the majority of them contained a 62-kb plasmid that also was present in copper-sensitive strains. The 62-kb plasmids were differentiated by restriction enzyme analysis and hybridization to copABCD DNA. The most frequently found copper-resistant plasmid type (62.1) was transferable by conjugation. Southern blot hybridizations showed that genetic determinants partially homologous to copABCD were present in all the copper-resistant strains examined, and usually were associated with plasmids; these determinants were not detected in copper-sensitive strains. The selective pressure exerted by copper bactericide sprays on the diversity of copper resistance determinants in bacterial populations of mango is discussed.  相似文献   

20.
ABSTRACT A chimeric gene fusion cassette, consisting of a secretory sequence from barley alpha-amylase joined to a modified cecropin (MB39) coding sequence and placed under control of the promoter and terminator from the potato proteinase inhibitor II (PiII) gene, was introduced into tobacco by Agrobacterium-mediated transformation. Transgenic and control plants reacted differently when inoculated with tobacco wildfire pathogen Pseudomonas syringae pv. tabaci at various cell concentrations. With control plants (transformed with a PiII-GUS [beta-D-glucuronidase] gene fusion), necrosis was clearly visible in leaf tissue infiltrated with bacterial inoculum levels of 10(2), 10(3), 10(4), 10(5), and 10(6) CFU/ml. With MB39-transgenic plants, however, necrosis was observed only in the areas infiltrated with the two highest levels (10(5) and 10(6) CFU/ml). No necrosis was evident in areas infiltrated with bacterial concentrations of 10(4) CFU/ml or less. Bacterial multiplication in leaves of MB39-transgenic plants was suppressed more than 10-fold compared to control plants, and absence of disease symptom development was associated with this growth suppression. We conclude that the pathogen-induced promoter and the secretory sequence were competent elements for transforming a cecropin gene into an effective disease-control gene for plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号