首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The effect of curing agents (salt, glucose, nitrate, nitrite, and ascorbic acid) on the binding of skeletal peptides (carnosine and anserine) and a sarcoplasmic protein (myoglobin) with key flavor compounds (hexanal, octanal, 2-pentanone, 2-methylbutanal, and 3-methylbutanal) has been studied by solid-phase microextraction (SPME). Curing agents had an effect on the interaction process between carnosine and volatile compounds, which was higher than the interactions observed with anserine and myoglobin. Sodium chloride decreased the interaction of volatiles with carnosine except for octanal, which was increased, and 2-pentanone, which was unaltered. Ascorbic acid exerted the highest effect by decreasing the interaction of carnosine with all of the volatile compounds except for octanal and 2-pentanone. The interaction with anserine was affected by sodium chloride, nitrate, and nitrite, producing a decrease in the interaction with hexanal, octanal, and methional. Finally, sodium chloride, glucose, and nitrite increased the interaction of myoglobin with hexanal, octanal, and methional. The effect of simulated stages of the curing process on the binding was also studied. A combined effect of the curing agents resulted in a change in the relative proportions of volatile compounds that can lead to different flavor perceptions of dry-cured meat products.  相似文献   

2.
The binding of sarcoplasmic and myofibrillar proteins extracted from postrigor pork muscle and from 7 and 12 months dry-cured hams with volatile compounds such as 3-methyl-butanal, 2-methyl-butanal, 2-pentanone, hexanal, methional, and octanal was studied using solid phase microextraction and gas chromatography analysis. The binding ability of sarcoplasmic proteins from pork muscle was higher than the ability shown by 7 and 12 months dry-cured ham sarcoplasmic homogenates and also higher than the binding ability of myofibrillar homogenates. The effect of the ionic strength on the binding was also studied. This effect was more important on myofibrillar proteins due to its ability to produce changes on the protein conformation that affect their binding ability. However, the sarcoplasmic protein binding ability was more related to the small compounds present in this homogenate than with the aqueous phase ionic strength.  相似文献   

3.
Application of the aroma extract dilution analysis on a flavor distillate prepared from freshly ground rye flour (type 1150) revealed 1-octen-3-one (mushroom-like), methional (cooked potato), and (E)-2-nonenal (fatty, green) with the highest flavor dilution (FD) factors among the 26 odor-active volatiles identified. Quantitative measurements performed by stable isotope dilution assays and a comparison to the odor thresholds of selected odorants in starch suggested methional, (E)-2-nonenal, and hexanal as contributors to the flour aroma, because their concentrations exceeded their odor thresholds by factors >100. Application of the same approach on a rye sourdough prepared from the same batch of flour revealed 3-methylbutanal, vanillin, 3-methylbutanoic acid, methional, (E,E)-2,4-decadienal, 2,3-butanedione, and acetic acid as important odorants; their concentrations exceeded their odor thresholds in water and starch by factors >100. A comparison of the concentrations of 20 odorants in rye flour and the sourdough made therefrom indicated that flour, besides the fermentation process, is an important source of aroma compounds in dough. However, 3-methylbutanol, acetic acid, and 2,3-butanedione were much increased during fermentation, whereas (E,E)-2,4-decadienal and 2-methylbutanal were decreased. Similar results were obtained for five different flours and sourdoughs, respectively, although the amounts of some odorants in the flour and the sourdough differed significantly within batches.  相似文献   

4.
An investigation of the volatile fraction of a freshly prepared sourdough rye bread crumb by means of the aroma extract dilution analysis (AEDA), followed by identification experiments, revealed 22 flavor compounds in the flavor dilution (FD) factor range of 128 to 2048. Quantitations performed by stable isotope dilution assays (SIDA) and a calculation of odor activity values (OAV; ratio of concentration to odor threshold) revealed the following as contributors to the overall crumb flavor: 3-methylbutanal (malty), (E)-2-nonenal (green, fatty), (E,E)-2,4-decadienal (fatty, waxy), hexanal (green), acetic acid (sour, pungent), phenylacetaldehyde (honey-like), methional (boiled potato-like), vanillin (vanilla-like), 2,3-butandione (buttery), 3-hydroxy-4,5-dimethyl-2(5H)-furanone (spicy), and 2- and 3-methylbutanoic acid (sweaty). Using either citrate buffer, starch, or deodorized crumb as model matrixes, the typical malty and sour rye bread crumb flavor was reproduced by adding a mixture of 20 reference odorants in the "natural" concentrations as quantitatively determined in the fresh crumb.  相似文献   

5.
A new, fast, sensitive, and solventless extraction technique was developed in order to analyze beer carbonyl compounds. The method was based on solid-phase microextraction with on-fiber derivatization. A derivatization agent, O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBOA), was absorbed onto a divinyl benzene/poly(dimethylsiloxane) 65-microm fiber and exposed to the headspace of a vial with a beer sample. Carbonyl compounds selectively reacted with PFBOA, and the oximes formed were desorbed into a gas chromatograph injection port and quantified by mass spectrometry. This method provided very high reproducibility and linearity. When it was used for the analysis of aged beers, nine aldehydes were detected: 2-methylpropanal, 2-methylbutanal, 3-methylbutanal, pentanal, hexanal, furfural, methional, phenylacetaldehyde, and (E)-2-nonenal.  相似文献   

6.
Volatiles were obtained from commercially prepared and laboratory-prepared rice cakes using high-flow dynamic headspace isolation with Tenax trapping. Analysis was carried out by capillary GC/MS. More than 60 compounds were identified. Major volatiles included 1-hydroxy-2-propanone, furfuryl alcohol, 2, 5-dimethylpyrazine, 2-methylpyrazine, pyrazine, hexanal, furfural, pentanol, 3-hydroxy-2-butanone (acetoin), and ethyl-3, 6-dimethylpyrazine. Although not ideally applicable to a dry product, concentration/threshold ratios indicated that the compounds with a high probability of contributing to the aroma and flavor included 3-methylbutanal, dimethyl trisulfide, 2-ethyl-3,5-dimethylpyrazine, 4-vinylguaiacol, hexanal, (E,E)-2,4-decadienal, 2-methylbutanal, 2-acetyl-1-pyrroline, 1-octen-3-ol, and 1-octen-3-one.  相似文献   

7.
Tubers of five cultivars of potato were stored at 4 degrees C for 2, 3, and 8 months and baked in a conventional oven. The flavor compounds from the baked potato flesh were isolated by headspace adsorption onto Tenax and analyzed by gas chromatography-mass spectrometry. On a quantitative basis, compounds derived from lipid and Maillard reaction/sugar degradation dominated the flavor isolates, with sulfur compounds, methoxypyrazines, and terpenes making smaller contributions. Levels of 37 of the >150 detected compounds were monitored in each cultivar with time of storage. Many significant differences were found in levels of individual compounds, compound classes, and total monitored compounds for the individual effects of cultivar and storage time and for their two-way interaction. Differences may be explained by variations in levels of flavor precursors and activities of enzymes mediating flavor compound formation among cultivars and storage times. In addition, differences in agronomic conditions may partly account for variations among cultivars. Overall, of the compounds monitored, those most likely having the greatest flavor impact were 2-isopropyl-3-methyoxypyrazine, 2-isobutyl-3-methoxypyrazine, dimethyl trisulfide, decanal, and 3-methylbutanal, with methylpropanal, 2-methylbutanal, methional, and nonanal also being probable important contributors to flavor.  相似文献   

8.
Application of aroma extract dilution analysis (AEDA) to the volatiles isolated from a commercial Japanese soy sauce revealed 30 odor-active compounds in the flavor dilution (FD) factor range of 8-4096, among which 2-phenylethanol showed the highest FD factor of 4096, followed by 3-(methylsulfanyl)propanal (methional), the tautomers 4-hydroxy-5-ethyl-2-methyl- and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone (4-HEMF), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDF), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolone), all showing FD factors of 1024. Thirteen odorants were quantified by stable isotope dilution assays, and their odor activity values (OAVs) were calculated as ratio of their concentrations and odor thresholds in water. Among them, 3-methylbutanal (malty), sotolone (seasoning-like), 4-HEMF (caramel-like), 2-methylbutanal (malty), methional (cooked potato), ethanol (alcoholic), and ethyl 2-methylpropanoate (fruity) showed the highest OAVs (>200). An aqueous model aroma mixture containing 13 odorants, which had been identified with the highest OAVs, in concentrations that occur in the soy sauce showed a good similarity with the overall aroma of the soy sauce itself. Heat treatment of the soy sauce resulted in a clear change of the overall aroma. Quantitation of selected odorants revealed a significant decrease in sotolone and, in particular, increases in 2-acetyl-1-pyrroline, 4-HDMF, and 4-HEMF induced by heating.  相似文献   

9.
10.
Aqueous extracts were prepared from five barley crystal malts (color range 15-440 degrees EBC, European Brewing Convention units). Antioxidant activity was determined by using the 2,2'-azinobis(3-ethylbenothiazoline-6-sulfonic acid) (ABTS(*)(+)) radical cation scavenging method. Antioxidant activity increased with increasing color value although the rate of increase decreased with increasing color value. Color was measured in CIELAB space. Extracts of the 15, 23, and 72 degrees EBC malts followed the same dilution pathway as did the 148 degrees EBC sample at higher dilution levels, indicating that they could each be used to give the same color by appropriate dilution. The 440 degrees EBC sample followed a different dilution pathway, indicating that different compounds were responsible for color in this extract. Fifteen selected volatile compounds were monitored using gas chromatography/mass spectrometry (GC/MS). Levels of methylpropanal, 2-methylbutanal, and 3-methylbutanal were highest for the 72 degrees EBC sample. When odor threshold values of the selected compounds were taken into account, 3-methylbutanal was the most important contributor to flavor. Relationships between levels of the lipid oxidation products, hexanal and (E)-2-nonenal, and antioxidant activity were complex, and increasing antioxidant activity for samples in the range of 15-148 degrees EBC did not result in reduced levels of these lipid-derived compounds. When different colored malt extracts were diluted to give the same a* and b* values, calculated antioxidant activity and amounts of 3-methylbutanal, hexanal, and (E)-2-nonenal decreased with increasing degrees EBC value.  相似文献   

11.
We identified volatile compounds of barley flour and determined the variation in volatile compound profiles among different types and varieties of barley. Volatile compounds of 12 barley and two wheat cultivars were analyzed using solid phase microextraction (SPME) and gas chromatography. Twenty-six volatiles comprising aldehydes, ketones, alcohols, and a furan were identified in barley. 1-Octen-3-ol, 3-methylbutanal, 2-methylbutanal, hexanal, 2-hexenal, 2-heptenal, 2-nonenal, and decanal were identified as key odorants in barley as their concentration exceeded their odor detection threshold in water. Hexanal (46-1269 microg/L) and 1-pentanol (798-1811 microg/L) were the major volatile compounds in barley cultivars. In wheat, 1-pentanol (723-748 microg/L) was a major volatile. Hulled barley had higher total volatile, aldehyde, ketone, alcohol, and furan contents than hulless barley, highlighting the importance of the husk in barley grain aroma. The proanthocyanidin-free varieties generally showed higher total volatile and aldehyde contents than wild-type varieties, potentially due to decreased antioxidant activity by the absence of proanthocyanidins.  相似文献   

12.
Characterization of the most odor-active compounds of Iberian ham headspace   总被引:11,自引:0,他引:11  
Gas chromatography-olfactometry (GC-O) based on detection frequency (DF) was used to characterize the most odor-active compounds from the headspace of Iberian ham. Twenty-eight odorants were identified by GC-O on two capillary columns, including aldehydes (11), sulfur-containing compounds (7), ketones (5), nitrogen-containing compounds (2), esters (2), and an alcohol. Among them, the highest odor potencies (DF values) were found for 2-methyl-3-furanthiol, 2-heptanone, 3-methylbutanal, methanethiol, hexanal, hydrogen sulfide, 1-penten-3-one, 2-methylpropanal, ethyl 2-methylbutyrate, and (E)-2-hexenal. Nine of the 28 most odor-active compounds were identified for the first time as aroma components of dry-cured ham, including hydrogen sulfide, 1-penten-3-one, (Z)-3-hexenal, 1-octen-3-one, and the meaty-smelling compounds 2-methyl-3-furanthiol, 2-furfurylthiol, 3-mercapto-2-pentanone, 2-acetyl-1-pyrroline, and 2-propionyl-1-pyrroline.  相似文献   

13.
The levels of important oxidation-related aldehydes, such as methional, phenylacetaldehyde, (E)-2-hexenal, (E)-2-heptenal, (E)-2-octenal, (E)-2-nonenal, methylpropanal, 2-methylbutanal, and 3-methylbutanal, were determined in 41 different wines belonging to different types (young whites and reds, natural sparkling wines, oxidized young whites and reds, Sherry, aged red wines, Port wines). Except (E)-2-hexenal and (E)-2-heptenal, all of them could be found at levels above threshold. Different compositional patterns were identified: Sherry wines have large amounts of branched aldehydes but not of (E)-2-alkenals, wines exposed to oxygen can have large amounts of (E)-2-alkenals but not of branched aldehydes, while aged wine and Port have relatively large amounts of both classes of compounds. Different sensory tests confirmed the active sensory role of these compounds and revealed the existence of interactions (additive or synergic) between them and with other wine volatiles. (E)-2-Alkenals are related to flavor deterioration, while branched aldehydes enhance dried fruit notes and mask the negative role of (E)-2-alkenals.  相似文献   

14.
Heat processing during canning is responsible for the change in flavor of black tea infusion. The quantitative change in the volatile components of the black tea infusion during heat processing is not sufficient for explaining the sensory evaluation. In this study, application of aroma extract dilution analysis using the volatile fraction before and after black tea (Darjeeling) samples were heat processed resulted in the detection of 10 odor-active peaks for which flavor dilution (FD) factors changed. Seven potent odorants were identified from these peaks by gas chromatography-mass spectrometry. Among these components, 3-methylbutanal (stimulus), methional (potato-like), beta-damascenone (sweet), dimethyl trisulfide (putrid), and 2-methoxy-4-vinylphenol (clove-like) showed the highest FD factors after heat processing of the black tea sample. Therefore, these odorants were the most important components involved in changing the black tea odor during heat processing. In addition, the precursor of beta-damascenone in black tea infusion was investigated, and 3-hydroxy-7,8-didehydro-beta-ionol was determined to be one of the beta-damascenone-generating compounds for the first time.  相似文献   

15.
Diffusion-based NMR techniques were employed to study effects of pH on beta-lactoglobulin (BLG) conformation and binding affinity to alpha- and beta-ionone. In the first part of the study, the influence of pH on the diffusion coefficient of BLG in D(2)O solution was investigated using a stimulated-echo NMR experiment. The diffusion coefficient of BLG decreased with increasing pH values. A significant decrease in the diffusion coefficient observed at pH 11 may be due to total unfolding (denaturation) of the protein, resulting in hydrophobically driven self-aggregation. A diffusion-based NOE pumping technique was then applied to determine the relative binding affinities between alpha- and beta-ionones and BLG at pH values varying from 3 to 11. An increase in signal intensities for beta-ionone with increasing molar concentration ratios between beta-ionone and BLG was observed at all pH ranges studied. The increased signal intensities reflect increased relative binding affinity. The greatest binding affinity occurred at pH 9 and the lowest at pH 11. alpha-Ionone showed binding evidence only at pH 9, and the binding was significantly weaker than that obtained for beta-ionone at the same pH. The high affinity observed for both aroma compounds at pH 9 may be due to a flexible conformation of BLG at this pH so that the flavor ligand accessibility increases. Conversely, alkaline denaturation occurring at pH 11 gives rise to relatively lower binding affinity compared to that observed at the other pH values.  相似文献   

16.
Extrusion cooking processing followed by air-drying has been applied to obtain low-fat potato snacks. Optimal parameters were developed for a dough recipe. Dough contained apart from potato granules 7% of canola oil, 1% of salt, 1% of baking powder, 5% of maltodextrin, and 15% of wheat flour. After the extrusion process, snacks were dried at 85 degrees C for 15 min followed by 130 degrees C for 45 min. The potent odorants of extruded potato snacks were identified using aroma extract dilution analysis and gas chromatography-olfactometry. Among the characteristic compounds, methional with boiled potato flavor, benzenemethanethiol with pepper-seed flavor, 2-acetyl-1-pyrroline with popcorn flavor, benzacetaldehyde with strong flowery flavor, butanal with rancid flavor, and 2-acetylpyrazine with roasty flavor were considered to be the main contributors to the aroma of extruded potato snacks. Several compounds were concluded to be developed during extrusion cooking, such as ethanol, 3-methylbutanal, (Z)-1,5-octadien-3-one with geranium flavor, and unknown ones with the flavor of boiled potato, cumin, candy, or parsley root. Compounds such as methanethiol, 2,3-pentanedione, limonene, 2-acetylpyrazine, 2-ethyl-3,5-dimethylpyrazine, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, 2-methyl-3,5-diethylpyrazine, 5-methyl-2,3-diethylpyrazine, and (E)-beta-damascenone were probably developed during air-drying of the potato extrudate.  相似文献   

17.
Solid-phase microextraction (SPME) fibers were evaluated for their ability to adsorb volatile flavor compounds under various conditions with coffee and aqueous flavored solutions. Experiments comparing different fibers showed that poly(dimethylsiloxane)/divinylbenzene had the highest overall sensitivity. Carboxen/poly(dimethylsiloxane) was the most sensitive to small molecules and acids. As the concentrations of compounds increased, the quantitative linear range was exceeded as shown by competition effects with 2-isobutyl-3-methoxypyrazine at concentrations above 1 ppm. A method based on a short-time sampling of the headspace (1 min) was shown to better represent the equilibrium headspace concentration. Analysis of coffee brew with a 1-min headspace adsorption time was verified to be within the linear range for most compounds and thus appropriate for relative headspace quantification. Absolute quantification of volatiles, using isotope dilution assays (IDA), is not subject to biases caused by excess compound concentrations or complex matrices. The degradation of coffee aroma volatiles during storage was followed by relative headspace measurements and absolute quantifications. Both methods gave similar values for 3-methylbutanal, 4-ethylguaiacol, and 2,3-pentanedione. Acetic acid, however, gave higher values during storage upon relative headspace measurements due to concurrent pH decreases that were not seen with IDA.  相似文献   

18.
Application of aroma extract dilution analysis using the volatile fraction of a Japanese green tea (Sen-cha) sample resulted in the detection of 36 odor-active peaks with flavor dilution (FD) factors between 10 and 5000. Thirty-six potent odorants were identified from 36 odor-active peaks by gas chromatography/mass spectrometry (GC/MS) and/or the multidimensional GC/MS (MDGC/MS) system. Among these components, 4-methoxy-2-methyl-2-butanethiol (meaty), (Z)-1, 5-octadien-3-one (metallic), 4-mercapto-4-methyl-2-pentanone (meaty), (E,E)-2,4-decadienal (fatty), beta-damascone (honey-like), beta-damascenone (honey-like), (Z)-methyl jasmonate (floral), and indole (animal-like) showed the highest FD factors. Therefore, these odorants were the most important components of the Japanese green tea odor. In addition, 4-methoxy-2-methyl-2-butanethiol, 4-mercapto-4-methyl-2-pentanone, methional, 2-ethyl-3, 5-dimethylpyrazine, (Z)-4-decenal, beta-damascone, maltol, 5-octanolide, 2-methoxy-4-vinylphenol, and 2-aminoacetophenone were newly identified compounds in the green tea.  相似文献   

19.
Changes in the volatility of selected flavor compounds in the presence of nonvolatile food matrix components were studied using headspace solid-phase microextraction (HS-SPME) combined with GC-MS quantification. Time-dependent adsorption profiles to the SPME fiber and the partition coefficients between different phases were obtained for several individual volatiles, showing that HS-SPME analysis with a short sampling time can be used to determine the "true" headspace concentration at equilibrium between the headspace and a sample matrix. Equilibrium dialysis followed by HS-SPME/GC-MS was carried out to confirm the ability of HS-SPME extraction for monitoring the free volatile compounds in the presence of proteins. In particular, a short sampling time (1 min) avoided additional extraction of volatiles bound to the protein. Interactions between several selected flavor compounds and nonvolatile food matrix components [beta-lactoglobulin or (+)-catechin] were also studied by means of HS-SPME/GC-MS analysis. The volatility of ethyl hexanoate, heptanone, and hexanal was significantly decreased by the addition of beta-lactoglobulin compared to that of isoamyl acetate. Catechin decreased the volatility of ethyl hexanoate and hexanal by 10-20% and increased that of 2-heptanone by approximately 15%. This study indicates that HS-SPME can be a useful tool for the study of the interactions between volatile compounds and nonvolatile matrix components provided the kinetic and thermodynamic behavior of the volatiles in relation to the fiber chosen for the studies is carefully considered.  相似文献   

20.
The interactions of whey protein isolate (WPI) and flavor compounds (2-nonanone, 1-nonanal, and trans-2-nonenal) were investigated, and the influence of flavor compound structure and heat and high pressure denaturation on the interactions were determined by using headspace solid-phase microextraction (SPME) and gas chromatography (GC). The binding of WPI and the flavor compounds decreased in the order trans-2-nonenal > 1-nonanal > 2-nonanone. The differences in binding can be explained with hydrophobic interactions only in the case of 2-nonanone, whereas the aldehydes, in particular trans-2-nonenal, can also react covalently. Heat and high pressure treatment affected protein-flavor interactions depending on the structure of the flavor compound. Upon both heat and high pressure denaturation, the binding of 2-nonanone to WPI decreased, while the binding of 1-nonanal remained unchanged, and the affinity for trans-2-nonenal increased rapidly. The results suggest that hydrophobic interactions are weakened upon heat or high pressure denaturation, whereas covalent interactions are enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号