首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Six diets were designed to investigate the effects of dietary docosahexaenoic acid (22:6n‐3; DHA) levels (0.5, 1.3, 2.3, 4.2, 8.1 and 15.9 g/kg diets) on growth performance, fatty acid profile and expression of some lipogenesis‐related genes of blunt snout bream (Megalobrama amblycephala). Fish (average weight: 26.40 ± 0.11 g) were randomly fed one of six diets for 8 weeks. Results indicated that the final body weight (FBW) and specific growth rate (SGR) of fish fed 1.3 g/kg DHA were significantly higher than other groups except for the 2.3 g/kg DHA (p < .05). Compared with other groups, the number of lipid droplet clusters of the liver stained with oil red O in the 2.3 g/kg DHA group was the highest, which was consistent with the lipid contents of whole body and liver. The DHA proportion in liver and muscle significantly increased with the increasing dietary DHA levels (p < .05), which reflected fatty acid profiles of diets. The highest mRNA expressions of acetyl‐CoA carboxylase α (ACCα), fatty acid synthase (FAS) and sterol regulatory element‐binding protein‐1 (SREBP‐1) occurred in the 1.3 g/kg DHA group, followed by 2.3 g/kg DHA. In summary, the supplementation of 1.3–2.3 g/kg DHA could improve growth performance and lipogenesis, and the dietary DHA could improve DHA and PUFA proportion in liver and muscle.  相似文献   

2.
3.
A 10‐week feeding experiment was conducted to evaluate the effects of supplemental betaine on growth performance, body composition and lipid deposition in allogynogenetic gibel carp. Four isoproteic (37% crude protein) and isolipidic (5% crude lipid) artificial diets with 0%, 0.08%, 0.4% and 2% betaine supplementation were formulated, and named VB0, VB0.08, VB0.4 and VB2, respectively. Each diet was fed in triplicate to fish about 10 g in weight. The results showed that 0.4% betaine supplementation significantly improved growth performance and reduced lipid content in the hepatopancreas, muscle and the whole body compared with the control group. Moreover, both fatty acid synthase and acetyl‐CoA carboxylase, two important lipogenic genes, showed significantly lower expression in the VB0.4 group than in the control group, and a strong correlation was detected between lipid content and mRNA expression levels for FAS and ACC in the hepatopancreas. Taken together, appropriate (0.4%) betaine supplementation in the diet not only improved growth, but also reduced lipid deposition in allogynogenetic gibel carp, probably by diminishing lipogenic gene expression.  相似文献   

4.
Five experimental diets containing different lipid sources, fish oil (D1), soybean lecithin (D2), corn oil (D3), canola oil (D4) and olive oil (D5), were evaluated in Atractosteus tropicus larvae for the relative gene expression of the enzymes fatty acid synthase (fas), acetyl‐CoA carboxylase 1 (acc1) and carnitine palmitoyltransferase 1C (cpt1c), in addition to their effects on larval growth, survival and cannibalism during a 30‐day feeding trial. Higher growth and survival were obtained in treatments D1 and D2, and lower performance in diets D3, D4 and D5. The highest levels of expression of fas and acc1 occurred in larvae fed with D1, which contained high amounts of n‐3 long‐chain polyunsaturated fatty acids (LC‐PUFA), mainly DHA and EPA FA are regulators of lipogenesis. The higher cpt1c expression in plant‐based diets is attributed to the fact that these diets are rich in α‐linolenic acid (ALA) and low DHA, EPA and ARA levels that favour ß‐oxidation. In conclusion, the diets with fish oil (D1) and soybean lecithin (D2) were the best treatments for larval growth, survival and cannibalism and thus appear to meet both lipid and energy requirements of A. tropicus larvae, meanwhile the use of vegetable oils influences the expression of intermediary lipogenic genes.  相似文献   

5.
To determine the effects of linolenic acid (LNA, 18:3n‐3) in oriental river prawn (Macrobrachium nipponense), an 8‐week feeding experiment was conducted using six isonitrogenous and isoenergetic semi‐purified diets containing 0.07 g/kg (control), 7.3 g/kg, 16.6 g/kg, 20.2 g/kg, 27.3 g/kg and 36.3 g/kg LNA. The hepatopancreas lipid content decreased significantly when dietary LNA content was >20.2 g/kg. Fatty acid analysis revealed that the percentage of 18:3n‐3 in the hepatopancreas significantly increased with increasing dietary LNA levels, while 20:5n‐3, 22:5n‐3 and 22:6n‐3 levels in the hepatopancreas decreased in a curvilinear manner as dietary LNA increased. Additionally, qRT‐PCR results revealed that hepatopancreas mRNA expression of acetyl‐CoA carboxylase (ACC) decreased with increasing dietary LNA, while the greatest carnitine palmitoyl transferase‐1(CPT1) mRNA expression was observed in the 2.73 g/kg and 36.3 g/kg groups. Furthermore, hepatopancreas mRNA expression of acyl‐CoA delta‐9 desaturase (SCD) and fatty acyl elongase 6(elovl6) was downregulated when prawns fed the diets containing >20.2 g/kg LNA. These results indicate that dietary 18:3n‐3 could decrease lipid deposition through increased fatty acid β‐oxidation and modulated fatty acid synthesis, and alter fatty acid composition by regulating fatty acyl elongase and fatty acyl desaturase mRNA expression in the M. nipponense.  相似文献   

6.
A 10‐week feeding trial was conducted to evaluate the growth performance, glucose transport and metabolism of Chinese soft‐shelled turtles (Pelodiscus sinensis) exposure to graded levels of dietary starch (0.52%, 7.43%, 14.74%, 22.99% and 31.38%). The 360 turtles (initial body weight, 12.94 ± 0.50 g) with 12 replicates were randomly assigned to five experimental diets. The highest weight gain and specific growth rate (SGR) were observed in 7.43% group and the lowest in 31.38% group. The protein efficiency ratio, whole‐body lipid contents, hepatic glycogen contents and the 4‐hr postprandial plasma glucose levels were significantly increased with the increment of starch levels (p < .05). In contrast, the daily feed intake and feed conversion ration were significantly declined (p < .05). The mRNA levels of glucose transporter 2, glucokinase, pyruvate kinase, malic enzyme and acetyl‐CoA carboxylase alpha genes in the liver significantly increased as the increase in starch levels at 4‐hr and 24‐hr post feeding (p < .05). No significant differences were observed in the expression of gluconeogenesis genes at each time point (p > .05). These results suggested that dietary addition of starch up‐regulated hepatic glycolysis, glycogenesis and lipogenesis genes expression, but the deficient response of gluconeogenesis to dietary starch might be part of the causes limited the starch utilization. Based on the secondary polynomial regression of SGR, y = ?0.0011x2 + 0.028x + 1.63 (R2 = 0.9292), the 12.73% inclusion level of dietary starch was recommended in juvenile turtles.  相似文献   

7.
A 95‐day feeding trial was conducted to determine the effects of n‐3 highly unsaturated fatty acids (n‐3 HUFA) on the growth, antioxidation and lipid metabolism in grass carp (Ctenopharyngodon idellus). Two isonitrogenous and isolipidic diets were formulated with either lard oil (LO) or fish oil (FO) as the main lipid source. The results showed that the intraperitoneal fat (IPF) ratio was significantly lower (P < 0.05) in FO group. The concentration of n‐3 HUFA in muscle, hepatopancreas and IPF was significantly higher in FO group (P < 0.05). The serum low‐density lipoprotein (LDL) content was significantly lower (P < 0.05), and glucose (GLU) content was significantly higher (P < 0.05) in FO group. The serum total superoxide dismutase (T‐SOD) activity was significantly higher (P < 0.05) in FO group, consistent with the serum malondialdehyde (MDA) content. The gene expression of IPF fatty acid synthase (FAS), acetyl‐CoA carboxylase (ACC), sterol regulatory element‐binding protein (SREBP‐1) and peroxisome proliferator‐activated receptor γ (PPARγ) was significantly lower (P < 0.05) and that of peroxisome proliferator‐activated receptor α (PPARα) was significantly higher (P < 0.05) in FO group compared with LO group. Similar trends were found in the hepatopancreas, except for PPARγ. It is suggested that n‐3 HUFA could inhibit lipid accumulation in grass carp by affecting the expression of lipid‐metabolism‐related genes.  相似文献   

8.
The tropical gar (Atractosteus tropicus) is an economically and socially important freshwater fish species from southeastern Mexico, with high aquaculture potential. This study determined the expression of acetyl‐CoA carboxylase (ACC1), fatty acid synthase (FAS), and carnitine palmitoyl transferase 1 (CPT1C) in several tissues of adult specimens, as well as in early ontogeny stages of tropical gar. Partial sequences of all genes were obtained for brain, liver, muscle, mesenteric adipose, kidney, testis, gill, and heart in males. Specific qPCR primers were used to compare the expression between tissues and also during larviculture, starting with embryos (0 days after hatching, [DAH]), and at 5, 10, 15, 20, 25, and 30 DAH. Mesenteric adipose tissue, liver, and muscle showed maximum FAS, ACC1, and CPT1C expression. Additionally, the highest expression of lipogenic genes was detected in embryos (0 DAH), decreasing between 5 and 10 DAH, then increasing at 15 DAH, and ultimately decreasing again from 20 DAH onwards. Based on these results, it can be concluded that genes encoding ACC1, FAS, and CPT1C are expressed differentially across tissues of tropical gar adults, and are regulated during larval development.  相似文献   

9.
10.
11.
We studied the effects of dietary n‐3 LC‐PUFAs on the activities and mRNA expression levels of tissue lipoprotein lipase (LPL) and fatty acid synthase (FAS) during vitellogenesis and ovarian fatty acid composition in female silver pomfret broodstock. Broodstock were fed one of four experimental diets for 185 days: FO (100% fish oil), FSO (70% fish oil + 30% soybean oil), SFO (30% fish oil + 70% soybean oil) or SO (100% soybean oil). The results revealed that hepatic LPL and FAS and ovarian FAS activities and mRNA expression levels significantly increased at vitellogenesis and postvitellogenesis relative to previtellogenesis, with no significant differences between these two stages, except for hepatic LPL mRNA expression. Dietary n‐3 LC‐PUFAs decreased tissue FAS and increased LPL activities and mRNA expression levels. The ovarian concentrations of 20:4n‐6 (ARA), 20:5n‐3 (EPA), 22:6n‐3 (DHA) and n‐3 LC‐PUFAs were directly influenced by n‐3 LC‐PUFA levels. Total n‐3 LC‐PUFA concentrations in SO were 57% lower than those in FO, while 18:2n‐6 concentrations in SO were 4.7 ×  higher than those in FO. These results revealed that high dietary n‐3 LC‐PUFAs levels significantly affected tissue lipid metabolism in female silver pomfret broodstock during vitellogenesis by upregulating LPL and downregulating FAS.  相似文献   

12.
Five isonitrogenous and isocaloric diets containing dietary lipid concentrations from 71.90 to 142.70 g/kg were formulated and fed to Chinese rice field eel Monopterus albus fingerlings (5.00 ± 0.50 g). The highest values of weight gain, specific growth rate (SGR), together with the lowest feed conversion ratio (FCR) were found in fish fed with 89.10 g/kg lipid diet. Fish fed with 71.90 g/kg diet (F1) had higher hepatosomatic index, viscerosomatic index and whole‐body crude lipid than fish in the other four treatments (p < .05). Plasma concentration of triacylglycerol and the activity of alanine aminotransferase were also higher in fish fed with F1 diet. Whole‐body fatty acid profile varied exclusively, but with a stable value of n?3/n?6 ratio. Gas chromatography–mass spectrometry‐based metabolomics identified eighteen differential metabolites (including idose, alanine, glutamic acid, serine and hypotaurine) in liver affected by dietary lipid content using PLS‐DA analysis. The subsequent pathway enrichment revealed ten affected pathways, with the top three pathways being glycine, serine and threonine metabolism; starch and sucrose metabolism; and D‐glutamine and D‐glutamate metabolism. The broken‐line model of SGR suggested that a dietary lipid concentration of 83.50 g/kg was appropriate for M. albus fingerlings.  相似文献   

13.
Six purified diets were formulated to contain three lipid sources, fish oil (FO), linseed oil (LO) and soybean oil (SO), at 6% diet lipid crossing two levels of vitamin E (100 and 300 mg α‐tocopheryl acetate/kg diet) for each lipid source (FO100, FO300, LO100, LO300, SO100, SO300). The juvenile Chinese mitten crab, Eriocheir sinensis, respectively, fed on these diets with four replicates for 6 weeks. The crab weight gain (WG) and specific growth rate (SGR) were significantly affected by dietary lipid sources. No difference was found between the crabs fed two levels of vitamin E, but the WG and SGR were numerically higher in crab fed 300 mg/kg vitamin E than those fed the other level of vitamin E. The lipid source and vitamin E level could affect fatty acid composition in the hepatopancreas. The contents of saturated fatty acids (SAFA) and n‐3HUFA were significantly higher in the crab‐fed fish oil. The highest contents of n‐6PUFA and n‐3PUFA were found in the crab‐fed soybean oil and linseed oil respectively. The contents of SAFA, n‐3HUFA and n‐3PUFA were higher in the 300 mg/kg vitamin E treatment. A lower malondialdehyde (MDA) content and higher phenoloxidase (PO) activity were observed in the crab fed 300 mg/kg vitamin E. The results of this study indicate that the Chinese mitten crab fed the diet with 6% fish oil and 300 mg/kg vitamin E showed better growth, antioxidant capacity and resistance to Aeromonas hydrophila.  相似文献   

14.
This study was conducted to determine the effect of dietary CLA (Conjugated linoleic acid) levels on growth performance, fatty acid profiles and lipid metabolism of liver in Synechogobius hasta. Fish were fed six diets with fish oil replaced by 0 (control), 5, 10, 15, 20 and 25 g kg?1 CLA for 8 weeks. Weight gain, WG, and SGR (specific growth rate) tended to increase when dietary CLA levels increased from 0 to 10 g kg?1 and then decline with further increasing dietary CLA levels to 25 g kg?1. FCR (feed conversion ratio) showed contrary trend with WG and SGR. The reduced VSI (vicero somatic index) and increased HSI (hepatosomatic index) were observed in fish fed increasing dietary CLA levels. Whole‐body lipid content declined, but hepatic lipid content increased with increasing dietary CLA levels. Dietary CLA modified total percentages of the main groups of fatty acids in liver. Hepatic 6PGD, ME and ICDH activities increased with increasing dietary CLA levels. FAS and G6PD were very variable and not related to dietary treatments. CPT I activities showed no significant differences among the treatments. Based on second‐order polynomial regression analysis of WG and FCR against dietary CLA level, 8.7–10.1 g kg?1 was indicated to be the optimal dietary CLA range for maximum growth and feed utilization for S. hasta.  相似文献   

15.
This study investigated the effect of n‐3 to n‐6 fatty acid ratios in broodstock diets on reproduction performance, fatty acid composition of eggs and gonads of tongue sole Cynoglossus semilaevis. Broodstock were fed five isonitrogenous and isoenergetic diets for 60 days. The supplemented lipids were prepared by a combination of fish oil and soybean oil inclusion FO (fish oil); FSO1 (fish oil: soybean oil = 7:1); FSO2 (fish oil: soybean oil = 2.2:1); FSO3 (fish oil: soybean oil = 1:1); FSO4 (fish oil: soybean oil = 1:4.3) as lipid sources with different n‐3 to n‐6 fatty acid ratios 10.40, 5.21, 2.81, 1.71 and 0.87. Results showed that relative fecundity, fertilization rate and survival rate of larvae at 7 days posthatching were all higher in broodstock fed FSO1 and FSO2 diet and significantly (< 0.05) decreased in groups fed FSO3 and FSO4 diets. The best result in starvation tolerance test was obtained in FSO2 diet. The present study suggests that n‐3 and n‐6 PUFA ratio in broodstock diet has a considerable effect on spawning performance, egg and larval quality for C. semilaevis.  相似文献   

16.
A study was undertaken to determine the effect of various dietary carbohydrate‐to‐lipid ratios on growth performance, whole‐body composition and tissue lipid content in Senegalese sole (Solea senegalensis) juveniles. Data on the dietary regulation of key hepatic enzymes of the lipogenic and glycolytic pathways (glucose‐6‐phosphate dehydrogenase, G6PD; malic enzyme, ME; fatty acid synthetase, FAS; pyruvate kinase, PK and glucokinase, GK) were also generated. Four isonitrogenous (crude protein: 52% dry matter (DM)) diets were formulated to contain one of two lipid levels (11% and 21% DM). Within each dietary lipid level, the nature of the carbohydrate fraction (raw or extruded peas) was varied. Triplicate groups of 54 sole (initial body weight: 23.6±1.2 g) were grown in recirculated seawater over 67 days. Fish were fed using automated feeders. At the end of the study, whole‐body, liver, viscera and muscle samples were withdrawn for analyses. During the experimental period, the mean fish weight about doubled in all treatments. No significant differences were found in growth performance (ranging from 1.1% to 1.4% body weight day?1) among dietary treatments. High‐fat diets increased whole‐body fat content. Similarly, daily fat gain ranged from 0.54 to 0.78 g kg?1 day?1 and highest values were found in fish fed high‐lipid diets. Dietary treatments also affected tissue lipid content (liver, viscera and muscle), with highest values in fish fed high‐fat diets. The nature of dietary carbohydrates had little influence on performance criteria, but affected tissue lipid deposition. The activities of G6PD, ME and FAS were depressed by elevated levels of dietary lipid, confirming the inhibitory effect of dietary fats on lipid biosynthesis. At both dietary lipid levels, ME and FAS activities were little affected by dietary carbohydrate. Activities of PK and GK were not affected by the starch level of the diets. In Senegalese sole juveniles, the lipogenic pathway is more susceptible to modulation by dietary means (particularly through lipid intake) than the glycolytic pathway.  相似文献   

17.
A feeding trial was conducted to investigate the effects of dietary graded protein levels on the growth, survival, amylase and trypsin activities of large yellow croaker (Pseudosciaena crocea R.) larvae from 12 to 42 days after hatching (DAH). Five approximately isoenergetic microbound diets (16.65 MJ/kg diet) were formulated to contain different protein (47.1%, 52.0%, 57.1%, 62.2% and 67.5%) levels. Frozen copepods, containing 54.5% crude protein (CP), 6.0% crude lipid, 27.2% ash and 6.7% glycogen, were used as a control. Each diet was randomly fed to triplicate groups of larvae with an initial mean body weight of 1.76 ± 0.09 mg (mean ± SD) in 180 L white plastic tanks, and each tank was stocked initially with 3500 larvae. Both the survival and the specific growth rate (SGR) of large yellow croaker larvae significantly increased with increasing dietary protein level up to 57.1%, and decreased thereafter. Frozen copepods resulted in intermediate survival and low SGR compared with the other diets. Whole‐body moisture and protein of larvae were not significantly affected by the dietary protein level. In contrast, whole‐body lipid of larvae fed diet with 47.1% CP was significantly higher (P<0.05) than those from fish fed the diets containing more than 57.1% CP. Additionally, fish fed the frozen copepods had the lowest whole‐body protein and lipid. The amylase‐specific activity increased with increasing dietary carbohydrate level during the period of this experiment. However, trypsin activity was not significantly affected by the dietary protein content before 42 DAH, indicating a later onset of trypsin than amylase in the regulation of enzymatic synthesis induced by a dietary substrate.  相似文献   

18.
19.
Three groups of juvenile golden pompano, Trachinotus ovatus (54.75 ± 0.25 g), were each fed one of three diets containing different lipid sources: fish oil (FO), soybean oil (SO) and lard oil (LO). Fish were reared in sea cages for 8 weeks, and the fish fed the FO diet had significantly higher specific growth rate (SGR) but lower condition factor (CF) than the other treatments. The fatty acid (FA) composition of whole‐body lipids was closely correlated with those in the diets. Although no differences can be found in hepatic fatty acid synthase (fasn) activity, the carnitine palmitoyl transferase 1 (cpt1) activity in fish fed the FO diet was significantly higher compared with other treatments. In addition, the relative gene expression of lipid metabolism‐related enzymes, such as cpt1, fas, apolipoprotein B100 (apoB100), delta‐6 fatty acyl desaturase (fadsd6) and fatty acid‐binding protein 1 (fabp1), was also influenced by the different dietary lipid sources. Serum triglyceride (TG) and glucose content in fish fed the LO and FO diets were significantly higher than those in the SO group. Accordingly, it can be concluded that FO could not be completely replaced by SO or LO in golden pompano diets. The lipid sources of a diet could impose significant influence on body condition factor and hepatic lipid metabolism of golden pompano.  相似文献   

20.
A nine‐week feeding trial was performed to determine the dietary linolenic acid (LNA; 18:3n–3) requirements of juvenile blunt snout bream. Six iso‐nitrogenous, semi‐purified diets were prepared with different concentrations of LNA (0–25 g/kg). Dietary LNA had no significant effects on survival rate. However, final fish weight, weight gain (WG), specific growth rate (SGR) and feed efficiency ratio (FER) increased with increasing dietary LNA concentrations up to 20 g/kg. Dietary LNA increased muscle LNA and total n‐3 polyunsaturated fatty acid (PUFA) contents, but decreased total saturated fatty acid content. Fish fed 20 g/kg LNA had the highest plasma alkaline phosphatase activity, total protein, albumin and white blood cell count levels. Additionally, fish fed 20 g/kg LNA had higher triglyceride levels than control fish. Plasma glucose increased with increasing dietary LNA concentrations. Superoxide dismutase and glutathione peroxidase activities significantly increased with increasing dietary LNA concentrations up to 15 g/kg. Based on SGR and FER, the optimal dietary LNA requirements of juvenile blunt snout bream were 17.5 and 15.6 g/kg respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号