首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Degreening caused by chlorophyll degradation is the most important feature that determines postharvest loss of quality in broccoli. Chlorophyll molecules are assembled to several thylakoid proteins, from which chlorophylls must be released in order to be catabolized. Stay-Green (SGR), a chloroplast-located protein, specifically interacts with light harvesting complex subunits helping toward their destabilization and to the release of chlorophylls. In this work, a fragment of a gene encoding a SGR from broccoli (BoSGR) was cloned. The expression of BoSGR was analyzed and detected an important increment during postharvest senescence, simultaneously with chlorophyll degradation. In order to analyze the effect of different growth regulators, different groups of broccoli heads were treated with cytokinins, ethylene and 1-MCP. Cytokinins and 1-MCP delayed the increment of BoSGR expression whereas ethylene accelerated the process. In addition, several postharvest treatments that delay degreening in broccoli florets were applied to evaluate their effects on BoSGR expression. Samples treated with modified atmosphere, hot air, UV-C or white lights showed a delay in chlorophyll degradation and degreening. In most cases, the treatments also delayed the increment of BoSGR expression during senescence, reaffirming the relationship between the expression of this gene and chlorophyll degradation.  相似文献   

2.
Postharvest yellowing of broccoli (Brassica oleracea L. Italica Group) is an important indicator of quality deterioration and occurs with chlorophyll (Chl) degradation. Postharvest ethanol vapor treatment could delay the yellowing of broccoli florets, through the suppression of Chl degradation. As the first step in identifying the mechanism of this delay, the effects of postharvest ethanol vapor treatment on activities and gene expression of the Chl catabolic enzymes in broccoli were determined. Broccoli branchlets were placed in a perforated polyethylene bag with or without (control) an ethanol pad and stored at 20 °C in darkness. The Chl contents of the control broccoli florets decreased remarkably after three days in storage, whereas the contents of the ethanol-treated broccoli showed no significant changes except at day one. Changes in chlorophyllase activity in the ethanol-treated broccoli were similar to those of the control until three days in storage, but then the activity tended to decease. Mg-dechelatase and Chl-degrading peroxidase activities, which increased greatly with senescence in the controls, remained unchanged in the ethanol-treated broccoli. BoCLH1 expression showed changes almost similar to those of chlorophyllase activity. BoPAO expression in the control broccoli increased greatly at day one in storage and was maintained at a high level until three days. In contrast, this expression in ethanol-treated broccoli was suppressed until two days. BoRCCR expression in the control broccoli increased until two days in storage, while the expression in the ethanol-treated broccoli showed no change during storage. These results show that postharvest ethanol vapor treatment suppressed the activities and gene expression of Chl catabolic enzymes, resulting in delayed yellowing of broccoli florets.  相似文献   

3.
4.
5.
Central broccoli heads (cv. de Cicco) were harvested and treated with UV-C light (4, 7, 10, or 14 kJ m−2). All treatments delayed yellowing and chlorophyll degradation at 20 °C but the irradiation dose of 10 kJ m−2 allowed retaining the highest chlorophyll content yet had lower amounts of pheophytins than every treatment other than 7 kJ m−2. This dose was selected to analyze the effect of UV-C on postharvest broccoli senescence at 20 °C. The UV-C treatment delayed yellowing, chlorophyll a and b degradation, and also the increase in pheophytins during storage. The activity of chlorophyll peroxidase and chlorophyllase was lower in UV-C treated broccoli. Instead, Mg-dechelatase activity increased immediately after the treatment, but after 4 and 6 d this activity was lower in UV-C treated florets than in controls. Treated broccoli also displayed lower respiration rate, total phenols and flavonoids, along with higher antioxidant capacity. The results suggest that UV-C treatments could be a useful non-chemical method to delay chlorophyll degradation, reduce tissue damage and disruption, and maintain antioxidant capacity in broccoli.  相似文献   

6.
1-MCP处理对采后青花菜内源激素变化的影响   总被引:1,自引:0,他引:1  
王丽宁 《中国农学通报》2008,24(10):291-295
以青花菜品种"曼陀绿"(Brassica olracea L. var. italica)为试材,研究了1-MCP处理对青花菜采后叶绿素含量、乙烯释放速率和内源玉米素(ZR)、赤霉素(GA)、生长素(IAA)、脱落酸(ABA)含量的影响。结果表明:1-MCP延缓了叶绿素降解,降低了组织对乙烯的敏感性,延缓了GA的分解,推迟了ABA的积累。经1-MCP处理的青花菜ABA/GA和ABA/IAA比值上升缓慢。  相似文献   

7.
Pheophytinase (PPH) activity and gene expression of chlorophyll (Chl)-degrading enzymes relating to UV-B treatment in postharvest broccoli (Brassica oleracea L. Italica Group) florets were determined. PPH is involved in the dephytylation of Mg-free Chl a, pheophytin (Phy) a. However, in vitro chlorophyllase (Chlase, EC.3.1.1.14) also uses Phy a as a substrate to produce pheophorbide (Pheide) a by dephytylation. For an accurate determination of PPH activity, the PPH protein fraction was separated from Chlase protein by ammonium sulfate precipitation. The protein precipitated by 45-60% saturated ammonium sulfate included a little bit of Chlase activity and was suitable for PPH determination. PPH activity in broccoli florets treated with a UV-B dose of 19 kJ m−2 was repressed for the first 2 d of storage at 15 °C, whereas it increased gradually with senescence of control broccoli florets. The expression level of BoCLH1 was reduced in broccoli florets on day 4 of storage, while BoCLH2 and BoCLH3 were up-regulated with UV-B treatment. A high BoPAO expression level was found in senescent broccoli florets, and the up-regulation of this gene was delayed by UV-B treatment. The highest expression level of BoPPH was found in the control, and its expression was clearly repressed by UV-B treatment on day 2 of storage. We suggest that the up-regulation of Chl-degrading enzyme genes could be delayed by UV-B treatment, resulting in the suppression of floret yellowing in stored broccoli.  相似文献   

8.
In order to evaluate the effect of ethanol vapor treatments (0.5 mL/kg and 3 mL/kg) on postharvest storage at 23 °C, quality of oriental sweet melons, and to clarify the mechanism of the inhibition of senescence, we investigated physiological and quality changes induced by ethanol vapor, decay incidence, internal ethylene concentration (IEC) and ethylene-related enzymes activities as well as gene expression. Both ethanol vapor treatments, irrespective of concentration, significantly (P < 0.5) delayed skin color changes, retarded softening and suppressed fruit decay in ethanol vapor-treated fruit. Between the two treatments, 0.5 mL/kg of ethanol vapor maintained better quality in storage than that of 3 mL/kg. Compared with the control, both ethanol vapor treatments resulted in different profiles and composition of aromatic volatile compounds of fruit during storage, and a significant increase of ethyl esters, including ethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl 2-methylbutanoate, 3-(methylthio) propionate and 2-phenethyl acetate, and five new ethyl esters were also detected. Both treatments increased alcohol acyl-transferase (AAT) activity levels, which peaked earlier than in the control, but there were no significant differences in activities of alcohol dehydrogenase (ADH). Both treatments significantly (P < 0.5) suppressed internal ethylene concentrations (IEC) during storage at 23 °C, which was evident from reducing 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) activities, and inhibiting ACC biosynthesis, and the effect of the 0.5 mL/kg treatment was better than that of 3 mL/kg. Real-time quantitative PCR (Q-PCR) analysis showed that the expression patterns of CM-ACO1, CM-ACO2, CM-ACS1 and CM-ACS2 were consistent with ethylene production during storage. These results suggest that postharvest ethanol vapor treatments markedly delayed the senescence of harvested oriental sweet melons, maintained better quality in storage and improved levels of volatile aroma compounds, especially the ethyl esters, through suppressing the expression of particular members of ethylene-forming enzyme gene families as well as ethylene biosynthesis, and the effect is dose dependent.  相似文献   

9.
10.
11.
Ethylene-mediated premature floral senescence and petal or flower abscission affect postharvest longevity of several species used as cut flowers. Exposure to exogenous or endogenously produced ethylene can be controlled in several ways. These include the use of ethylene biosynthesis inhibitors or ethylene action inhibitors, and ethylene removal technologies. In addition, genetic modification can be very effective in controlling ethylene synthesis and perception. We review here the potential for applications of nanotechnology to control ethylene levels and postharvest management in the flower industry. Already, nanosponges have been shown to enhance efficacy of the ethylene inhibitor 1-MCP in several flower species. In carnation, 1-MCP included in nanosponges also allowed better control of Botrytis cinerea damage. However other applications are also considered based on successes in the use of this technology to increase agricultural production and decrease postharvest waste. Nano-metal based sensors could be used for detection of ethylene in the store and to label the product along the distribution chain. Furthermore, nanocomposites could be included as scavengers for ethylene removal in active packaging, and nanocatalysts could promote ethylene catalytic degradation in the warehouse. Nanoparticles could also be introduced into a new generation of packaging to control effects of gases and UV, and increase strength, quality and packaging appearance. This review highlights recent results on the use of nanotechnology sensu lato and potential application for cut flower vase life improvement, focusing on ethylene control strategies.  相似文献   

12.
Broccoli (Brassica oleracea L.) tissue held in a controlled atmosphere (CA; 10% carbon dioxide and 5% oxygen) senesces more slowly than tissue held in air. CA-treated broccoli tissues lose less water and soluble sugars, have lower protease activity, and have no significant loss of color (hue angle, chlorophyll content) for 96 h after harvest (20 °C, dark) compared to tissue held in air that starts to senesce and yellow after 48 h. The current study examined differential gene expression in broccoli tissues in response to postharvest CA treatment. This genetic analysis was undertaken to identify CA-responsive genes that may act as signaling elements and repress postharvest senescence processes. CA-responsive genes with up- and down-regulated expression (compared to air controls) were isolated after a 6 h CA treatment by differential display-polymerase chain reaction. The candidate CA-responsive genes included a number of novel genes without previously assigned functions, and genes of known function previously found to be regulated by stress (e.g. dehydration, salt stress, low temperature, and sugar starvation).  相似文献   

13.
Flower senescence of the potted gentian (Gentiana scabra) ‘Shinbisei’ was investigated in relation to ethylene sensitivity and production. ‘Shinbisei’ flowers were used for all experiments except for those with inflorescences. Exposure to ethylene at 0.5 μL L−1 or higher concentrations for 24 h markedly accelerated flower senescence, indicating that G. scabra flowers are highly sensitive to ethylene. Treatment with 0.2 or 0.5 mM silver thiosulfate complex (STS) and 2 μL L−1 1-methylcyclopropene (1-MCP), ethylene action inhibitors, and 50 mM α-aminoisobutyric acid, an inhibitor of 1-aminocyclopropane-1-carboxylate (ACC) oxidase, did not delay flower senescence. However, treatment with 1 mM l-α-(2-aminoethoxyvinyl) glycine, an inhibitor of ACC synthase, slightly delayed flower senescence. Pollination significantly accelerated petal senescence of G. scabra flowers. Ethylene production of petals, gynoecium, and stamens in unpollinated flowers slightly increased during senescence. Pollination significantly increased ethylene production of petals, gynoecium and stamens 1 day after pollination. To clarify whether 1-MCP delays senescence of cut gentian inflorescences, cut G. scabra ‘Yuki-hotaru’, G. scabra × Gentiana triflora ‘Aoi-kaze’, and G. triflora ‘Koharu’ inflorescences with various stages of flowers, including buds with colored petals, were treated with 2 μL L−1 1-MCP for 24 h. 1-MCP treatment delayed flower wilting of cut inflorescences of ‘Aoi-kaze’ and ‘Yuki-hotaru’ more than that of ‘Koharu’, suggesting that there is species variation in the effect of 1-MCP in delaying flower senescence of cut gentian inflorescences.  相似文献   

14.
Persimmon (Diospyros kaki Thunb.) fruit undergoes intensive cell wall modification during postharvest fruit softening. Xyloglucan metabolism is important in cell wall disassembly. We cloned cDNAs for two xyloglucan endotransglycosylase/hydrolase genes (DkXTH1 and DkXTH2) from ‘Saijo’ persimmon fruit treated with dry ice to remove astringency. In order to determine the ethylene dependence of XTH gene expression, fruit were exposed to 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, prior to removal of astringency. Ethylene production increased in mature control and 1-MCP-pretreated fruit after dry-ice treatment, and flesh firmness decreased to the same extent during dry-ice treatment in the control and 1-MCP-pretreated fruit. After dry-ice treatment, control fruit softened completely, but fruit firmness was maintained in 1-MCP-pretreated fruit. Accumulation of DkXTH1 mRNA was induced simultaneously with commencement of ethylene production in mature control fruit. Pretreatment with 1-MCP delayed accumulation of DkXTH1 mRNA. DkXTH2 expression also coincided with fruit softening but was intensified by 1-MCP treatment during the deastringency treatment. These results indicate that fruit softening was related to both DkXTH1 and DkXTH2 expression in ‘Saijo’ persimmons.  相似文献   

15.
The regulatory effects of 5 kPa CO2 and of the ethylene action inhibitor, 1-methylcyclopropene (1-MCP) at 0.5 μmol/l on the senescence of harvested mint, Mentha longifolia L. were assessed. Visual parameters of senescence including yellowing, browning, decay and leaf abscission were recorded and scored on scales linking the onset and progression of senescence to marketability. The effects of plant age on the rate of postharvest senescence and on the efficacy of the CO2 and 1-MCP treatments were also investigated. All experiments were repeated with and without the presence of exogenous ethylene. Two experimental formats were used, with 6 days storage at room temperature representing local market conditions, and 6 days cold storage at 1.5 °C followed by 4 days at room temperature representing export market conditions. Sprigs from old plants were no longer of marketable quality after 6 days storage at room temperature. Exogenous ethylene accelerated the onset of senescence causing unacceptably high rates of leaf abscission. Raised levels of CO2 in a controlled atmosphere system were found to be more effective in inhibiting senescence without the presence of exogenous ethylene than pre-treatment with 1-MCP, and no additive effect was found. However in the presence of exogenous ethylene, a combined treatment with 1-MCP together with raised CO2 levels resulted in a significant additive effect in nullifying the ethylene-induced leaf abscission. Respiration rates as measured by CO2 production, and ethylene production, were recorded throughout all experiments. While CO2 levels were not affected by any experimental treatment, ethylene production was elevated in mint sprigs exposed to an initial dose of gaseous 1-MCP, and was further increased under a combined treatment of 1-MCP together with 5 kPa CO2. However in the presence of exogenous ethylene, CO2 strongly suppressed the 1-MCP induced ethylene production.  相似文献   

16.
Four plum (Prunus salicina Lindl.) cultivars (“Blackamber”, “Larry Ann”, “Golden Globe” and “Songold”), were treated with 1 or 3% alginate as an edible coating before storage. Analytical determinations were made after 7, 14, 21, 28 and 35 days at 2 °C and after a 3 day period at 20 °C (shelf-life). Both treatments were effective in inhibiting ethylene production for all cultivars, especially when 3% alginate was used. The changes in fruit quality parameters related to plum postharvest ripening, such as weight and acidity losses, softening and colour changes, were significantly delayed by the use of both edible coatings. The delay of the ripening process was also related to lower anthocyanin and carotenoid accumulation. Overall results suggest that these treatments could increase the plum storage period with optimum quality, 2 weeks for “Larry Ann” and “Songold” and 3 weeks for “Blackamber” and “Golden Globe” more than controls.  相似文献   

17.
Flowers of Dendrobium cv. Kenny were hand-pollinated using pollinia from cv. Sakura. This resulted in a large increase in flower ethylene emission and rapid perianth (tepal) senescence. The increase in flower ethylene emission was correlated in time with an increase in ethylene emitted by the column (the fused stigma, style and stamens) plus the ovary. No ethylene emission was observed from perianth parts that were isolated at various periods after pollination. The increased ethylene emission by the column plus ovary was correlated with an increase in ACC synthase and ACC oxidase activity in these flower parts. The perianth parts, in contrast, only showed an increase in ACC oxidase activity, following pollination. The data show that pollination-induced early perianth senescence in Dendrobium is mediated by increased ethylene biosynthesis by the column + ovary, and not due to increased ethylene biosynthesis in the perianth parts. Apparently, ethylene synthesized in the gynoecium diffuses to the perianth parts where it induces senescence. The data are very similar to those found previously in pollinated Phaleanopsis orchids and in emasculated Cymbidium orchids, with the exception that ethylene was emitted from the tepals of these two orchids and not from Dendrobium.  相似文献   

18.
Leaf senescence is an oxidative process, and most of the catabolic processes involved in senescence are propagated irreversibly once initiated. An experiment was conducted to test the hypothesis that nitrophenolates (Atonik, a plant growth regulator) spray can delay the leaf senescence through reduced oxidative damage. Atonik 3.75 g a.i. ha?1 was sprayed during boll filling stage on cotton, and the senescence process was evaluated by quantifying total chlorophyll contents, photosynthetic rate, Fv/Fm ratio, various reactive oxygen species (ROS) content, antioxidant content and antioxidant enzyme activity from 90 days after sowing (DAS) to 130 DAS. The result indicated that nitrophenolate spray reduced the hydrogen peroxide (H2O2), superoxide anion (O2?) accumulation, lipid peroxidation (malondialdehyde), lipoxygenase activity and membrane permeability over unsprayed control. The antioxidant enzyme activity (superoxide dismutase, SOD; ascorbate peroxidase, APX; peroxidase, POX; glutathione peroxidase, GSH‐Px) were significantly increased by the nitrophenolate spray. POX (118.1 %) and GSH‐Px (143.3 %) activities were enhanced to a higher level compared to APX (8.5 %) activity at 130 DAS. Enhanced accumulation of ascorbate (144.9 %), phenol (154.7 %) and proline (50 %) was seen in nitrophenolate‐sprayed plants compared with unsprayed control plants at 130 DAS. Ascorbate content is increased by higher dehydroascorbate reductase enzyme activity. Ascorbate was thus able to replenish reducing equivalents to phenoxyl radicals resulting in an increase in phenolic compounds. The increased phenolic acid content may be involved in scavenging the ROS produced during senescence process. The higher level of reduced ascorbate and low level of endogenous H2O2 in the leaves may be the prerequisite for delayed leaf senescence in the nitrophenolate‐sprayed plants. Based on the present work, it can be concluded that nitrophenolate‐sprayed plants can postpone the leaf senescence by peroxide/phenolic/ascorbate system which is involved in scavenging the ROS produced during leaf senescence.  相似文献   

19.
Fresh basil (Ocimum basilicum L.) is a highly perishable leafy green vegetable with a storage life of 4–5 d at room temperature. Exposure of basil leaves to temperatures below 12 °C during storage results in chilling injury; therefore, refrigeration cannot be used to extend postharvest life of basil. Typically, leafy vegetables are stored in darkness or extremely low irradiance. Darkness is known to induce senescence, and the initial phase of senescence is reversible by exposure to light. In this work, we studied the effects of low-intensity white light pulses at room temperature on postharvest senescence of basil leaves. Daily exposure for 2 h to 30–37 μmol m−2 s−1 of light was effective to delay postharvest senescence of basil leaves. Chlorophyll and protein levels decreased, ammonium accumulated and leaves developed visual symptoms of deterioration (darkening) during storage in darkness. Light pulses reduced the intensity of these senescence symptoms. The photosynthesis light compensation point of basil leaves was 50 μmol m−2 s−1 i.e., higher than the intensity used in this study, and the effect of treatment with red light was the same as with white light, while far red light was ineffective. Light pulses exerted a local effect on chlorophyll loss, but the effect on protein degradation was systemic (i.e., spreading beyond the illuminated parts of the leaf blade). The results of this study indicate that daily treatment for 2 h with low intensity light (30–37 μmol m−2 s−1 every day) during storage at 20 °C is an effective treatment to delay postharvest senescence of basil leaves. The delay of postharvest senescence by low intensity light pulses seems to be mediated by phytochromes, and it is systemic for protein, and partially systemic for chlorophyll degradation.  相似文献   

20.
刘莹  刘艳 《中国农学通报》2014,30(10):152-157
在常温贮藏条件下,为明确果实采后成熟衰老过程中活性氧代谢和果实软化特性。以达到采收成熟的‘河套’蜜瓜果实为试材,对不同贮藏时期果实进行各项生理指标测定。结果显示:(1)随着贮藏时间的延长,蜜瓜果实中活性氧含量呈增加趋势,其中O2·-产生速率在贮藏后期显著增加,H2O2则表现出双峰段的变化趋势;(2)在贮藏期间,SOD活性呈先下降后上升的变化趋势,POD、CAT、APX活性呈先上升后下降的趋势,且三者先后达到活性峰值,维持一段时间高活性水平后开始下降;(3)贮藏初期,LOX和PG活性均极低,分别在贮藏5天和4天后二者活性迅速升高达到最大值,之后LOX活性迅速下降,PG活性则呈小幅波动上升趋势直至贮藏结束。‘河套’蜜瓜果实贮藏期间,过量积累的活性氧加剧了果实的衰老,同时PG和LOX共同参与了果实的软化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号