首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Cooper pairing mechanism that binds single electrons to form pairs in metals allows electrons to circumvent the exclusion principle and condense into a single superconducting or zero-resistance state. We present results from an amorphous bismuth film system patterned with a nanohoneycomb array of holes, which undergoes a thickness-tuned insulator-superconductor transition. The insulating films exhibit activated resistances and magnetoresistance oscillations dictated by the superconducting flux quantum h/2e. This 2e period is direct evidence indicating that Cooper pairing is also responsible for electrically insulating behavior.  相似文献   

2.
离子束增强沉积掺杂氧化钒薄膜的最佳退火条件   总被引:1,自引:0,他引:1  
用离子束增强沉积方法制备掺杂Ar和W的VO2多晶薄膜,明显改变了VO2薄膜的相变温度.试验发现,薄膜存在一个形成VO2结构的临界结晶温度,该温度随薄膜制备时沉积条件的不同而改变.选择适当的杂质和退火条件可以将VO2薄膜的相变温度降低到室温附近,获得较高室温电阻-温度系数的薄膜.  相似文献   

3.
Identifying the mechanism of superconductivity in the high-temperature cuprate superconductors is one of the major outstanding problems in physics. We report local measurements of the onset of superconducting pairing in the high-transition temperature (Tc) superconductor Bi2Sr2CaCu2O8+delta using a lattice-tracking spectroscopy technique with a scanning tunneling microscope. We can determine the temperature dependence of the pairing energy gaps, the electronic excitations in the absence of pairing, and the effect of the local coupling of electrons to bosonic excitations. Our measurements reveal that the strength of pairing is determined by the unusual electronic excitations of the normal state, suggesting that strong electron-electron interactions rather than low-energy (<0.1 volts) electron-boson interactions are responsible for superconductivity in the cuprates.  相似文献   

4.
Superconductivity in compressed lithium is observed by magnetic susceptibility and electrical resistivity measurements. A superconducting critical temperature (Tc) is found ranging from 9 to 16 kelvin at 23 to 80 gigapascals. The pressure dependence of Tc suggests multiple phase transitions, consistent with theoretical predictions and reported x-ray diffraction results. The observed values for Tc are much lower than those theoretically predicted, indicating that more sophisticated theoretical treatments similar to those proposed for metallic hydrogen may be required to understand superconductivity in dense phases of lithium.  相似文献   

5.
Polarized and unpolarized neutron scattering was used to measure the wave vector- and frequency-dependent magnetic fluctuations in the normal state (from the superconducting transition temperature, Tc = 35 kelvin, up to 350 kelvin) of single crystals of La1.86Sr0.14CuO4. The peaks that dominate the fluctuations have amplitudes that decrease as T-2 and widths that increase in proportion to the thermal energy, kBT (where kB is Boltzmann's constant), and energy transfer added in quadrature. The nearly singular fluctuations are consistent with a nearby quantum critical point.  相似文献   

6.
Single-crystal films are essential for devices because the intrinsic properties of the material, rather than its grain boundaries, can be exploited. Cubic bismuth oxide has the highest known oxide ion mobility, which makes it useful for fuel cells and sensors, but it is normally only stable from 729 degrees to 825 degrees C. The material has not been previously observed at room temperature. Single-crystal films of the high-temperature cubic polymorph of bismuth oxide were epitaxially electrodeposited from an aqueous solution onto single-crystal gold substrates. The 35.4 percent lattice mismatch was accommodated by forming coincidence lattices in which the bismuth oxide film was rotated in relation to the gold substrate. These results provide a method for producing other nonequilibrium phases that cannot be accessed by traditional thermal processing.  相似文献   

7.
An unresolved issue concerning cuprate superconductors is whether the distribution of carriers in the CuO2 plane is uniform or inhomogeneous. Because the carriers comprise a small fraction of the total charge density and may be rapidly fluctuating, modulations are difficult to detect directly. We demonstrate that in anomalous x-ray scattering at the oxygen K edge of the cuprates, the contribution of carriers to the scattering amplitude is selectively magnified 82 times. This enhances diffraction from the doped holes by more than 10(3), permitting direct structural analysis of the superconducting ground state. Scattering from thin films of La2CuO4+delta (superconducting transition temperature = 39 K) at temperature = 50 +/- 5 kelvin on the reciprocal space intervals (0,0,0.21) --> (0,0,1.21) and (0,0,0.6) --> (0.3,0,0.6) shows a rounding of the carrier density near the substrate suggestive of a depletion zone or similar effect. The structure factor for off-specular scattering was less than 3 x 10(-7) electrons, suggesting an absence of in-plane hole ordering in this material.  相似文献   

8.
Electronic Raman scattering from high- and low-energy excitations was studied as a function of temperature, extent of hole doping, and energy of the incident photons in Bi2Sr2CaCu2O8+/-delta superconductors. For underdoped superconductors, short-range antiferromagnetic (AF) correlations were found to persist with hole doping, and doped single holes were found to be incoherent in the AF environment. Above the superconducting (SC) transition temperature Tc, the system exhibited a sharp Raman resonance of B1g symmetry and energy of 75 millielectron-volts and a pseudogap for electron-hole excitations below 75 millielectron-volts, a manifestation of a partially coherent state forming from doped incoherent quasi particles. The occupancy of the coherent state increases with cooling until phase ordering at Tc produces a global SC state.  相似文献   

9.
Wang MX  Liu C  Xu JP  Yang F  Miao L  Yao MY  Gao CL  Shen C  Ma X  Chen X  Xu ZA  Liu Y  Zhang SC  Qian D  Jia JF  Xue QK 《Science (New York, N.Y.)》2012,336(6077):52-55
Three-dimensional topological insulators (TIs) are characterized by their nontrivial surface states, in which electrons have their spin locked at a right angle to their momentum under the protection of time-reversal symmetry. The topologically ordered phase in TIs does not break any symmetry. The interplay between topological order and symmetry breaking, such as that observed in superconductivity, can lead to new quantum phenomena and devices. We fabricated a superconducting TI/superconductor heterostructure by growing dibismuth triselenide (Bi(2)Se(3)) thin films on superconductor niobium diselenide substrate. Using scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we observed the superconducting gap at the Bi(2)Se(3) surface in the regime of Bi(2)Se(3) film thickness where topological surface states form. This observation lays the groundwork for experimentally realizing Majorana fermions in condensed matter physics.  相似文献   

10.
Strong magnetic fluctuations can provide a coupling mechanism for electrons that leads to unconventional superconductivity. Magnetic order and superconductivity have been found to coexist in a number of magnetically mediated superconductors, but these order parameters generally compete. We report that close to the upper critical field, CeCoIn5 adopts a multicomponent ground state that simultaneously carries cooperating magnetic and superconducting orders. Suppressing superconductivity in a first-order transition at the upper critical field leads to the simultaneous collapse of the magnetic order, showing that superconductivity is necessary for the magnetic order. A symmetry analysis of the coupling between the magnetic order and the superconducting gap function suggests a form of superconductivity that is associated with a nonvanishing momentum.  相似文献   

11.
We demonstrated short segments of a superconducting wire that meets or exceeds performance requirements for many large-scale applications of high-temperature superconducting materials, especially those requiring a high supercurrent and/or a high engineering critical current density in applied magnetic fields. The performance requirements for these varied applications were met in 3-micrometer-thick YBa2Cu3O(7-delta) films epitaxially grown via pulsed laser ablation on rolling assisted biaxially textured substrates. Enhancements of the critical current in self-field as well as excellent retention of this current in high applied magnetic fields were achieved in the thick films via incorporation of a periodic array of extended columnar defects, composed of self-aligned nanodots of nonsuperconducting material extending through the entire thickness of the film. These columnar defects are highly effective in pinning the superconducting vortices or flux lines, thereby resulting in the substantially enhanced performance of this wire.  相似文献   

12.
Angle-resolved photoemission experiments reveal evidence of an energy gap in the normal state excitation spectrum of the cuprate superconductor Bi2Sr2CaCu2O8+delta. This gap exists only in underdoped samples and closes around the doping level at which the superconducting transition temperature Tc is a maximum. The momentum dependence and magnitude of the gap closely resemble those of the dx2-y2 gap observed in the superconducting state. This observation is consistent with results from several other experimental techniques, which also indicate the presence of a gap in the normal state. Some possible theoretical explanations for this effect are reviewed.  相似文献   

13.
Guo Y  Zhang YF  Bao XY  Han TZ  Tang Z  Zhang LX  Zhu WG  Wang EG  Niu Q  Qiu ZQ  Jia JF  Zhao ZX  Xue QK 《Science (New York, N.Y.)》2004,306(5703):1915-1917
We have fabricated ultrathin lead films on silicon substrates with atomic-scale control of the thickness over a macroscopic area. We observed oscillatory behavior of the superconducting transition temperature when the film thickness was increased by one atomic layer at a time. This oscillating behavior was shown to be a manifestation of the Fabry-Perot interference modes of electron de Broglie waves (quantum well states) in the films, which modulate the electron density of states near the Fermi level and the electron-phonon coupling, which are the two factors that control superconductivity transitions. This result suggests the possibility of modifying superconductivity and other physical properties of a thin film by exploiting well-controlled and thickness-dependent quantum size effects.  相似文献   

14.
Sizable single crystals of C(6O) have been synthesized and doped with potassium. Above the superconducting transition temperature T(c), the electrical resistivity p(T) displays a classic metal-like temperature dependence. The transition to the superconducting state at T(c) = 19.8 K is extremely sharp, with a transition width DeltaT < 200 mK. In contrast to transport behavior of doped polycrystalline and granular thin films, no anomalous fluctuations are observed near T(c) in single crystal specimens.  相似文献   

15.
The Dirac Hamiltonian, which successfully describes relativistic fermions, applies equally well to electrons in solids with linear energy dispersion, for example, in bismuth and graphene. A characteristic of these materials is that a magnetic field less than 10 tesla suffices to force the Dirac electrons into the lowest Landau level, with resultant strong enhancement of the Coulomb interaction energy. Moreover, the Dirac electrons usually come with multiple flavors or valley degeneracy. These ingredients favor transitions to a collective state with novel quantum properties in large field. By using torque magnetometry, we have investigated the magnetization of bismuth to fields of 31 tesla. We report the observation of sharp field-induced phase transitions into a state with striking magnetic anisotropy, consistent with the breaking of the threefold valley degeneracy.  相似文献   

16.
Gupta A  Sun JZ  Tsuei CC 《Science (New York, N.Y.)》1994,265(5175):1075-1077
The superconducting transport characteristics of HgBa(2) CaCu(2)O(6+delta) (Hg-1212) films and grain-boundary junctions grown on (100)-oriented SrTiO(3) bicrystal substrates have been investigated. The films exhibit a zero-resistance temperature of approximately 120 kelvin and sustain large critical current densities, with values as high as 10(6) amperes per square centimeter at around 100 kelvin. On the other hand, the grain boundaries behave as weak links, with substantially lower critical currents, as is observed for other cuprate superconductors. A reduction of three orders of magnitude in critical current was observed for transport across a 36.8 degrees grain boundary. The current-voltage characteristics of bridges across such a grain boundary show weak-link behavior qualitatively resembling that of a resistively shunted junction. Single-level direct-current superconducting quantum interference devices (SQUIDs) have been fabricated with such bicrystal junctions. These SQUIDs show clear periodic voltage modulations when subjected to applied magnetic fields. The SQUIDs operate at temperatures as high as 111.8 kelvin, which makes them attractive for operation in portable sensors and devices that utilize nonconventional cooling methods.  相似文献   

17.
The metallization of hydrogen directly would require pressure in excess of 400 gigapascals (GPa), out of the reach of present experimental techniques. The dense group IVa hydrides attract considerable attention because hydrogen in these compounds is chemically precompressed and a metallic state is expected to be achievable at experimentally accessible pressures. We report the transformation of insulating molecular silane to a metal at 50 GPa, becoming superconducting at a transition temperature of Tc = 17 kelvin at 96 and 120 GPa. The metallic phase has a hexagonal close-packed structure with a high density of atomic hydrogen, creating a three-dimensional conducting network. These experimental findings support the idea of modeling metallic hydrogen with hydrogen-rich alloy.  相似文献   

18.
Understanding the suppression of ferroelectricity in perovskite thin films is a fundamental issue that has remained unresolved for decades. We report a synchrotron x-ray study of lead titanate as a function of temperature and film thickness for films as thin as a single unit cell. At room temperature, the ferroelectric phase is stable for thicknesses down to 3 unit cells (1.2 nanometers). Our results imply that no thickness limit is imposed on practical devices by an intrinsic ferroelectric size effect.  相似文献   

19.
The microstructure of superconducting films that have shown high-critical current densities has been studied. The films are shown to be epitaxial and contain twins and precipitates. The main difference between these films and low current carrying samples is the absence of grain boundaries. These boundaries are therefore identified as the cause of the lower critical current in ceramic samples.  相似文献   

20.
The current-perpendicular-to-plane magnetoresistance (CPP-MR) has been investigated for the layered manganite, La2-2xSr1+2xMn2O7 (x = 0.3), which is composed of the ferromagnetic-metallic MnO2 bilayers separated by nonmagnetic insulating block layers. The CPP-MR is extremely large (10(4) percent at 50 kilo-oersted) at temperatures near above the three-dimensional ordering temperature (Tc approximately 90 kelvin) because of the field-induced coherent motion between planes of the spin-polarized electrons. Below Tc, the interplane magnetic domain boundary on the insulating block layer serves as the charge-transport barrier, but it can be removed by a low saturation field, which gives rise to the low-field tunneling MR as large as 240 percent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号