首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ultracold molecular quantum gas is created by application of a magnetic field sweep across a Feshbach resonance to a Bose-Einstein condensate of cesium atoms. The ability to separate the molecules from the atoms permits direct imaging of the pure molecular sample. Magnetic levitation enables study of the dynamics of the ensemble on extended time scales. We measured ultralow expansion energies in the range of a few nanokelvin for a sample of 3000 molecules. Our observations are consistent with the presence of a macroscopic molecular matter wave.  相似文献   

2.
We report on the Bose-Einstein condensation of more than 10(5) Li2 molecules in an optical trap starting from a spin mixture of fermionic lithium atoms. During forced evaporative cooling, the molecules are formed by three-body recombination near a Feshbach resonance and finally condense in a long-lived thermal equilibrium state. We measured the characteristic frequency of a collective excitation mode and demonstrated the magnetic field-dependent mean field by controlled condensate spilling.  相似文献   

3.
A quantum gas of ultracold polar molecules, with long-range and anisotropic interactions, not only would enable explorations of a large class of many-body physics phenomena but also could be used for quantum information processing. We report on the creation of an ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules. Using a single step of STIRAP (stimulated Raman adiabatic passage) with two-frequency laser irradiation, we coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential. The polar molecular gas has a peak density of 10(12) per cubic centimeter and an expansion-determined translational temperature of 350 nanokelvin. The polar molecules have a permanent electric dipole moment, which we measure with Stark spectroscopy to be 0.052(2) Debye (1 Debye = 3.336 x 10(-30) coulomb-meters) for the triplet rovibrational ground state and 0.566(17) Debye for the singlet rovibrational ground state.  相似文献   

4.
We report the realization of a Bose-Einstein condensate of metastable atoms (helium in the lowest triplet state). The excitation energy of each atom with respect to the ground state is 20 electron volts, but inelastic processes that would destroy the sample are suppressed strongly enough in a spin-polarized sample to allow condensation. Our detection scheme takes advantage of the metastability to achieve detection of individual atoms as well as of the decay products of inelastic processes. This detection opens the way toward new studies in mesoscopic quantum statistical physics, as well as in atomic quantum optics.  相似文献   

5.
We report the production of matter-wave solitons in an ultracold lithium-7 gas. The effective interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach resonance from repulsive to attractive before release in a one-dimensional optical waveguide. Propagation of the soliton without dispersion over a macroscopic distance of 1.1 millimeter is observed. A simple theoretical model explains the stability region of the soliton. These matter-wave solitons open possibilities for future applications in coherent atom optics, atom interferometry, and atom transport.  相似文献   

6.
We report the observation of a one-dimensional (1D) Tonks-Girardeau (TG) gas of bosons moving freely in 1D. Although TG gas bosons are strongly interacting, they behave very much like noninteracting fermions. We enter the TG regime with cold rubidium-87 atoms by trapping them with a combination of two light traps. By changing the trap intensities, and hence the atomic interaction strength, the atoms can be made to act either like a Bose-Einstein condensate or like a TG gas. We measure the total 1D energy and the length of the gas. With no free parameters and over a wide range of coupling strengths, our data fit the exact solution for the ground state of a 1D Bose gas.  相似文献   

7.
在EMA(Effective Mass Approximation)的理论框架下,研究了柱形量子点的能级和电子结构.计算了柱形量子点的激发态(m=1)基态(m=0)能量,并作出柱形量子点能量图;还计算了柱形量子点的电子概率密度,并作出电子概率分布图.  相似文献   

8.
State-selected rubidium-87 molecules were created at rest in a dilute Bose-Einstein condensate of rubidium-87 atoms with coherent free-bound stimulated Raman transitions. The transition rate exhibited a resonance line shape with an extremely narrow width as small as 1.5 kilohertz. The precise shape and position of the resonance are sensitive to the mean-field interactions between the molecules and the atomic condensate. As a result, we were able to measure the molecule-condensate interactions. This method allows molecular binding energies to be determined with unprecedented accuracy and is of interest as a mechanism for the generation of a molecular Bose-Einstein condensate.  相似文献   

9.
用CNDO/2量子化学计算方法计算了血卟啉分子(HP)的基态和三重态的能级、本征函数、原子净电荷、Wiberg键级、Mulliken键级和自旋密度.血卟啉的三重态和单重态相比没有呈现新的反应活性中心.丙酸基、羟乙基和甲基上的电荷密度及有关位置的键级也没有变化,只是部分卟啉环钝化.  相似文献   

10.
Even in small molecules, the influence of electronic state on rotational and vibrational product energies is not well understood. Here, we use experiments and theory to address this issue in photodissociation of formaldehyde, H2CO, to the radical products H + HCO. These products result from dissociation from the singlet ground electronic state or the first excited triplet state (T1) of H2CO. Fluorescence spectra reveal a sudden decrease in the HCO rotational energy with increasing photolysis energy accompanied by substantial HCO vibrational excitation. Calculations of the rotational distribution using an ab initio potential energy surface for the T1 state are in very good agreement with experiment and strongly support dominance of the T1 state in the dynamics at the higher photolysis energies.  相似文献   

11.
Observation of bose-einstein condensation in a dilute atomic vapor   总被引:2,自引:0,他引:2  
A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled. The condensate fraction first appeared near a temperature of 170 nanokelvin and a number density of 2.5 x 10(12) per cubic centimeter and could be preserved for more than 15 seconds. Three primary signatures of Bose-Einstein condensation were seen. (i) On top of a broad thermal velocity distribution, a narrow peak appeared that was centered at zero velocity. (ii) The fraction of the atoms that were in this low-velocity peak increased abruptly as the sample temperature was lowered. (iii) The peak exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.  相似文献   

12.
Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling.  相似文献   

13.
The methods producing cold molecules from cold atoms tend to leave molecular ensembles with substantial residual internal energy. For instance, cesium molecules initially formed via photoassociation of cold cesium atoms are in several vibrational levels nu of the electronic ground state. We applied a broadband femtosecond laser that redistributes the vibrational population in the ground state via a few electronic excitation/spontaneous emission cycles. The laser pulses are shaped to remove the excitation frequency band of the nu = 0 level, preventing re-excitation from that state. We observed a fast and efficient accumulation ( approximately 70% of the initially detected molecules) in the lowest vibrational level, nu = 0, of the singlet electronic state. The validity of this incoherent depopulation pumping method is very general and opens exciting prospects for laser cooling and manipulation of molecules.  相似文献   

14.
Quantum phase engineering is demonstrated with two techniques that allow the spatial phase distribution of a Bose-Einstein condensate (BEC) to be written and read out. A quantum state was designed and produced by optically imprinting a phase pattern onto a BEC of sodium atoms, and matter-wave interferometry with spatially resolved imaging was used to analyze the resultant phase distribution. An appropriate phase imprint created solitons, the first experimental realization of this nonlinear phenomenon in a BEC. The subsequent evolution of these excitations was investigated both experimentally and theoretically.  相似文献   

15.
Reactivity of the excited spin-orbit state of Cl with H2 to yield ground-state HCl products is forbidden by the Born-Oppenheimer (BO) approximation. We used new ab initio potential energy surfaces and exact quantum scattering calculations to explore the extent of electronic nonadiabaticity in this reaction. In direct contrast to recent experiments, we predict that the BO-allowed reaction of the ground spin-orbit state will be much more efficient than the BO-forbidden reaction of the excited spin-orbit state. Also, Coriolis coupling opens up an electronically nonadiabatic inelastic channel, which competes substantially with reaction.  相似文献   

16.
We studied fermionic pairing in an ultracold two-component gas of 6Li atoms by observing an energy gap in the radio-frequency excitation spectra. With control of the two-body interactions through a Feshbach resonance, we demonstrated the dependence of the pairing gap on coupling strength, temperature, and Fermi energy. The appearance of an energy gap with moderate evaporative cooling suggests that our full evaporation brought the strongly interacting system deep into a superfluid state.  相似文献   

17.
The formation of a Bose-Einstein condensate of a dilute atomic gas has been studied in situ with a nondestructive, time-resolved imaging technique. Sodium atoms were evaporatively cooled close to the onset of Bose-Einstein condensation and then suddenly quenched to below the transition temperature. The subsequent equilibration and condensate formation showed a slow onset distinctly different from simple relaxation. This behavior provided evidence for the process of bosonic stimulation, or coherent matter-wave amplification, crucial to the concept of an atom laser.  相似文献   

18.
Bose-Einstein condensation of cesium atoms is achieved by evaporative cooling using optical trapping techniques. The ability to tune the interactions between the ultracold atoms by an external magnetic field is crucial to obtain the condensate and offers intriguing features for potential applications. We explore various regimes of condensate self-interaction (attractive, repulsive, and null interaction strength) and demonstrate properties of imploding, exploding, and non-interacting quantum matter.  相似文献   

19.
Small changes in an external parameter can often lead to dramatic qualitative changes in the lowest energy quantum mechanical ground state of a correlated electron system. In anisotropic crystals, such as the high-temperature superconductors where electron motion occurs primarily on a two-dimensional square lattice, the quantum critical point between two such lowest energy states has nontrivial emergent excitations that control the physics over a significant portion of the phase diagram. Nonzero temperature dynamic properties near quantum critical points are described, using simple theoretical models. Possible quantum phases and transitions in the two-dimensional electron gas on a square lattice are discussed.  相似文献   

20.
Despite decades of progress in quantum mechanics, electron correlation effects are still only partially understood. Experiments in which both electrons are ejected from an oriented hydrogen molecule by absorption of a single photon have recently demonstrated a puzzling phenomenon: The ejection pattern of the electrons depends sensitively on the bond distance between the two nuclei as they vibrate in their ground state. Here, we report a complete numerical solution of the Schr?dinger equation for the double photoionization of H2. The results suggest that the distribution of photoelectrons emitted from aligned molecules reflects electron correlation effects that are purely molecular in origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号