首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于OTSU算法与数学形态学的木材缺陷图像分割   总被引:3,自引:0,他引:3  
在木材分选过程中,图像缺陷分割技术占有重要的地位,能否精确提取缺陷轮廓会直接影响到分选的准确率.本文讨论提取木材表面缺陷图像的方法,应用OTSU算法与数学形态学相结合的方法对缺陷图像进行分割,最终提取出缺陷边缘.实验表明,经过OTSU算法和数学形态学进行图像分割,最后得到的木材缺陷图像更加清晰、连贯,提高了图像的可视性和准确性.  相似文献   

2.
为了识别死节、活节和虫眼三种木材表面缺陷类型,本文采用高斯-马尔可夫随机场模型提取木材表面缺陷图像的纹理参数,结合缺陷区域的矩形度和伸长度两个几何特征,形成14维特征向量.设计三层BP神经网络来识别缺陷的类型.试验表明,三种缺陷的整体识别正确率达到96.67%,验证了该方法的有效性.  相似文献   

3.
在用X射线检测木材缺陷的过程中,很重要的一步就是对图像中的缺陷的提取和分割,其处理的效果直接影响到后面的缺陷识别的正确性。主要是针对木材X射线图像对比度差的特点和固有的模糊性,利用模糊C均值聚类的方法对木材X射线图像进行分割处理,为后续的提取出木材缺陷工作打下基础。  相似文献   

4.
基于灰度-梯度共生矩阵的木材表面缺陷分割方法   总被引:4,自引:0,他引:4  
根据木材表面缺陷图像的特点,提出了基于灰度-梯度共生矩阵模型和最大熵原理的木材缺陷图像自动阈值化技术。并且利用形态学运算对分割后的二值图像进行后期处理。经实验验证,该方法提取的木材表面缺陷图像效果良好:  相似文献   

5.
基于优化卷积神经网络的木材缺陷检测   总被引:1,自引:0,他引:1  
针对深度学习中的卷积神经网络算法,在木材无损检测过程中存在缺陷定位不准确、缺陷轮廓和边界信息不完整、识别精度需进一步提高等问题,利用非下采样剪切波变换最优稀疏表示特性,以及简单线性迭代聚类算法能很好地保持像素紧凑度和图像边界轮廓的优点,设计了一种优化的卷积神经网络算法,以提高木材无损检测的准确率。首先采用非下采样剪切波变换对采集的木材图像进行简单预处理,保留木材图像的缺陷特征不丢失,降低图像处理的复杂度以及运算量;然后利用卷积神经网络对木材图像实现深层次的算法设计,同时应用简单线性迭代聚类算法对初步模型进行增强改进,提取出相对准确的木材缺陷轮廓;最后通过反复调整参数和调试优化器,优化卷积神经网络算法的收敛速度,提高学习和运算效率,完善卷积神经网络对木材缺陷轮廓的提取,在降低运算复杂度的同时,提高其精度,具有良好的鲁棒性。相比径向基函数(RBF)神经网络、向后反馈-径向基函数(BP-RBF)混合神经网络和卷积神经网络,本算法对木材缺陷具有更好的识别效果,其识别准确率达到98.6%左右,且识别时间相对更短。  相似文献   

6.
木质板材表面缺陷自动检测技术研究   总被引:1,自引:0,他引:1  
木质板材表面缺陷检测系统采用高亮光源提供照明,线阵CCD相机实时获取其表面图像,利用工控机在线处理数据并根据板材缺陷的检测分析选择相应的生产工艺和加工方法,以提高木材的出材率和生产的自动化程度。该系统可完整提取板材表面缺陷,利用改进的差影法对图像进行分割,以便对图像特征进行提取。实验表明,该数据处理方法能够准确地提取板材表面缺陷的信息。  相似文献   

7.
针对图像分割的复杂性和局限性,作者提出一种基于最小二乘支持向量机(LS-SVM)的木材表面缺陷网格化检测方法。首先将木材表面图像划分成互不重叠的矩形块,然后依次计算每个矩形块图像的特征向量,用于描述各个矩形块图像,其特征向量由颜色特征和纹理特征等参数共同组成。最后将特征向量归一化后送入LS-SVM分类器,利用特征向量的相似度来进行缺陷的定位和识别。实验结果表明,该方法可有效进行木材表面缺陷检测,检测准确率超过93%。  相似文献   

8.
为提高对木材表面缺陷图像分割的准确率,对木材表面缺陷图像采用传统GAC模型算法和改进GAC模型算法进行多组对比试验,与此同时研究改进算法中迭代步长、迭代次数、常数速度、反差参数等参数对木材表面缺陷图像分割结果的影响。通过试验验证了改进GAC模型算法的可行性、快速性和准确性,能够克服传统的GAC模型欠分割的缺点。  相似文献   

9.
结构用锯材在使用之前进行表面质量评价、分级,对于提高木材的综合利用率具有重要作用。综合利用机器视觉技术和深度学习方法,选取国内常用的云杉结构用锯材作为研究对象,通过工业相机采集结构用锯材表面主要缺陷(节子、虫眼、裂纹),并对锯材主要缺陷进行数字化评价分析。先通过自主搭建的机器视觉图像采集装置,采集100块结构锯材正反面表面图像,共获取表面缺陷图像1 450张,其中活节缺陷图像550张、死节缺陷图像320张、裂纹缺陷图像295张、虫眼缺陷图像285张;随后搭建基于YOLOv4的深度学习缺陷检测识别框架,对缺陷图像中80%的图像进行训练,剩余20%用于测试。试验结果表明,基于YOLOv4的深度学习缺陷检测识别框架,能有效识别并准确定位锯材表面缺陷的类型和位置,平均识别率96.7%,其中活节缺陷识别率100%、死节缺陷识别率97.5%、裂纹缺陷识别率90%、虫眼缺陷识别率96.7%,可满足生产应用需求。  相似文献   

10.
综述了数字图像处理技术在木材缺陷检测、木材结构和木材美学三个方面的研究进展,分析了其中存在的不足。结果表明,数字图像处理技术可实现木材虫眼、节子和腐朽等缺陷的快速准确识别;木材结构的图像分析对于气候变化、木材长势及力学性能研究均有一定的参考价值;利用数字图像处理技术可以提取出木材独一无二的纹理图案。展望了数字图像处理技术在木材科学中的应用前景,以及其在木材缺陷自动检测、物种识别和美学研究等方面的商业价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号