首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu XL  Zhang Z  Wang YL  Lieber CM 《Science (New York, N.Y.)》1990,248(4960):1211-1214
The structural and electronic effects of lead substitution in the high-temperature superconducting materials Pb(x)Bi(2-x)Sr(2)CaCu(2)O(8) have been characterized by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Large-area STM images of the Bi(Pb)-O layers show that lead substitution distorts and disorders the one-dimensional superlattice found in these materials. Atomic-resolution images indicate that extra oxygen atoms are present in the Bi(Pb)-O layers. STS data show that the electronic structure of the Bi(Pb)-O layers is insensitive to lead substitution within +/-0.5 electron volt of the Fermi level; however, a systematic decrease in the density of states is observed at approximately 1 electron volt above the Fermi level. Because the superconducting transition temperatures are independent of x(Pb) (x 相似文献   

2.
The tip-surface region of a scanning tunneling microscope (STM) emits light when the energy of the tunneling electrons is sufficient to excite luminescent processes. These processes provide access to dynamic aspects of the local electronic structure that are not directly amenable to conventional STM experiments. From monolayer films of carbon-60 fullerenes on gold(110) surfaces, intense emission is observed when the STM tip is placed above an individual molecule. The diameter of this emission spot associated with carbon-60 is approximately 4 angstroms. These results demonstrate the highest spatial resolution of light emission to date with a scanning probe technique.  相似文献   

3.
Boland JJ 《Science (New York, N.Y.)》1993,262(5140):1703-1706
Chlorine atoms strongly chemisorbed at dangling bond sites on the Si(100)-(2 x 1) surface are observed by scanning tunneling microscopy (STM) to hop between adjacent sites. The origin of this behavior is suggested to be an interaction between the field of the probe tip and the dipole moment of the silicon-chlorine bond. Chlorine atom migration is shown to be facilitated by the presence of a metastable chlorine bridge-bonded minimum. The STM probe was used to excite single chlorine atoms into this bridging configuration, resulting in a local population inversion. Selective application of voltage pulses between the probe tip and the surface rearranged the local bonding and induced transformations between different types of chlorine sites. In this manner, adsorbed species can be dissected and their composition and structure directly probed.  相似文献   

4.
Junctions between metals and molecules play an important role in molecular electronics. Advances in this field are hampered by the lack of understanding of the electronic structure of organic-metal interfaces. In his Perspective, Kummel highlights the report by Nazin et al. (3), who have used scanning tunneling microscopy (STM) to assemble a metal-molecule-metal junction. Subsequently, they employed the STM tip to probe the atomic structure and local electronic properties of the metal-molecule interface in unprecedented detail. They find evidence for strong coupling between the molecular and metal states. Such coupling affects the conductivity of metal-molecule-metal junctions.  相似文献   

5.
The scanning tunneling microscope (STM) can be used to select a particular adsorbed molecule, probe its electronic structure, dissociate the molecule by using electrons from the STM tip, and then examine the dissociation products. These capabilities are demonstrated for decaborane(14) (B(10)H(14)) molecules adsorbed on a silicon(111)-(7 x 7) surface. In addition to basic studies, such selective dissociation processes can be used in a variety of applications to control surface chemistry on the molecular scale.  相似文献   

6.
Qiu XH  Nazin GV  Ho W 《Science (New York, N.Y.)》2003,299(5606):542-546
Tunneling electrons from a scanning tunneling microscope (STM) were used to excite photon emission from individual porphyrin molecules adsorbed on an ultrathin alumina film grown on a NiAl(110) surface. Vibrational features were observed in the light-emission spectra that depended sensitively on the different molecular conformations and corresponding electronic states obtained by scanning tunneling spectroscopy. The high spatial resolution of the STM enabled the demonstration of variations in light-emission spectra from different parts of the molecule. These experiments realize the feasibility of fluorescence spectroscopy with the STM and enable the integration of optical spectroscopy with a nanoprobe for the investigation of single molecules.  相似文献   

7.
We present a low-temperature scanning tunneling microscopy (STM) study of K(x)C60 monolayers on Au(111) for 3 < or = x < or = 4. The STM spectrum evolves from one that is characteristic of a metal at x = 3 to one that is characteristic of an insulator at x = 4. This electronic transition is accompanied by a dramatic structural rearrangement of the C60 molecules. The Jahn-Teller effect, a charge-induced mechanical deformation of molecular structure, is directly visualized in the K4C60 monolayer at the single-molecule level. These results, along with theoretical analyses, provide strong evidence that the transition from metal to insulator in K(x)C60 monolayers is caused by the Jahn-Teller effect.  相似文献   

8.
Lee HJ  Ho W 《Science (New York, N.Y.)》1999,286(5445):1719-1722
A scanning tunneling microscope (STM) was used to manipulate the bonding of a carbon monoxide (CO) molecule and to analyze the structure and vibrational properties of individual products. Individual iron (Fe) atoms were evaporated and coadsorbed with CO molecules on a silver (110) surface at 13 kelvin. A CO molecule was transferred from the surface to the STM tip and bonded with an Fe atom to form Fe(CO). A second CO molecule was similarly transferred and bonded with Fe(CO) to form Fe(CO)(2). Controlled bond formation and characterization at the single-bond level probe chemistry at the spatial limit.  相似文献   

9.
A chemically induced dimer configuration was prepared on the silicon (Si) (100) surface and was characterized by scanning tunneling microscopy (STM) and spectroscopy (STS). These prepared dimers, which are essentially untilted and differ both electronically and structurally from the dynamically tilting dimers normally found on this surface, are more reactive than normal dimers. For molecular hydrogen (H2) adsorption, the enhancement is about 10(9) at room temperature. There is no appreciable barrier for the H2 reaction at prepared sites, indicating the prepared configuration closely approximates the actual dimer structure in the transition state. This previously unknown ability to prepare specific surface configurations has important implications for understanding and controlling reaction dynamics on semiconductor surfaces.  相似文献   

10.
A link between scanning tunneling microscopy (STM) and conventional transmission electron microscopy has been established for biological material by applying STM on freeze-dried recA-DNA complexes coated with a conducting film. The topography of the complexes observed by means of STM revealed a right-handed single helix composed of about six recA monomers per helical turn.  相似文献   

11.
Wu SW  Ogawa N  Ho W 《Science (New York, N.Y.)》2006,312(5778):1362-1365
Spatial resolution at the atomic scale has been achieved in the coupling of light to single molecules adsorbed on a surface. Electron transfer to a single molecule induced by green to near-infrared light in the junction of a scanning tunneling microscope (STM) exhibited spatially varying probability that is confined within the molecule. The mechanism involves photo-induced resonant tunneling in which a photoexcited electron in the STM tip is transferred to the molecule. The coupling of photons to the tunneling process provides a pathway to explore molecular dynamics with the combined capabilities of lasers and the STM.  相似文献   

12.
The scanning tunneling microscope (STM) and the atomic force microscope (AFM) are scanning probe microscopes capable of resolving surface detail down to the atomic level. The potential of these microscopes for revealing subtle details of structure is illustrated by atomic resolution images including graphite, an organic conductor, an insulating layered compound, and individual adsorbed oxygen atoms on a semiconductor. Application of the STM for imaging biological materials directly has been hampered by the poor electron conductivity of most biological samples. The use of thin conductive metal coatings and replicas has made it possible to image some biological samples, as indicated by recently obtained images of a recA-DNA complex, a phospholipid bilayer, and an enzyme crystal. The potential of the AFM, which does not require a conductive sample, is shown with molecular resolution images of a nonconducting organic monolayer and an amino acid crystal that reveals individual methyl groups on the ends of the amino acids. Applications of these new microscopes to technology are demonstrated with images of an optical disk stamper, a diffraction grating, a thin-film magnetic recording head, and a diamond cutting tool. The STM has even been used to improve the quality of diffraction gratings and magnetic recording heads.  相似文献   

13.
Lyo IW  Avouris P 《Science (New York, N.Y.)》1989,245(4924):1369-1371
Negative differential resistance (NDR) is the essential property that allows fast switching in certain types of electronic devices. With scanning tunneling microscopy (STM) and scanning tunneling spectroscopy, it is shown that the current-voltage characteristics of a diode configuration consisting of an STM tip over specific sites of a boron-exposed silicon(111) surface exhibit NDR. These NDR-active sites are of atomic dimensions ( approximately 1 nanometer). NDR in this case is the result of tunneling through localized, atomic-like states. Thus, desirable device characteristics can be obtained even on the atomic scale.  相似文献   

14.
When tin (Sn) atoms are deposited on a clean germanium (Ge) (001) surface at room temperature, buckled dimers originating from the Sn atoms are formed at the Ge-dimer position. We identified the dimer as a heterogeneous Sn-Ge dimer by reversing its buckling orientation with a scanning tunneling microscope (STM) at 80 kelvin. An atomic seesaw switch was formed for one-dimensional electronic conduction in the Ge dimer-row direction by using the STM to reversibly flip the buckling orientation of the Sn-Ge dimer and to set up standing-wave states.  相似文献   

15.
Mo YW 《Science (New York, N.Y.)》1993,261(5123):886-888
The scanning tunneling microscope (STM) was used to control the configuration of antimony clusters on the (001) surface of silicon. In particular, the STM tip induced a reversible rotation between two orthogonal orientations of individual antimony dimers on the surface. This simple rotation can be explained by an atomic-scale torque exerted on the antimony dimers by the STM tip. The reversibility of this process could provide a basis for making atomic-scale memory cells.  相似文献   

16.
Scanning tunneling microscopy of freeze-fracture replicas of biomembranes   总被引:4,自引:0,他引:4  
The high resolution of the scanning tunneling microscope (STM) makes it a potentially important tool for the study of biomaterials. Biological materials can be imaged with the STM by a procedure in which fluid, nonconductive biomaterials are replaced by rigid and highly conductive freeze-fracture replicas. The three-dimensional contours of the ripple phase of dimyristoylphosphatidylcholine bilayers were imaged with unprecedented resolution with commercial STMs and standard freeze-fracture techniques. Details of the ripple amplitude, asymmetry, and configuration unobtainable by electron microscopy or x-ray diffraction can be observed relatively easily with the STM.  相似文献   

17.
The various products from the reaction of chlorine (Cl) with the adatom layer of the Si(111)-(7x7) surface have been identified with scanning tunneling microscopy (STM). Initially, a single Cl atom reacts with the adatom dangling bond. At higher surface coverage, additional Cl atoms insert themselves into the Si-Si backbonds between the adatom and rest-atom layers, producing adatoms that have reacted with two or three Cl atoms. These products are characterized by different registries with respect to the underlying rest layer and appear in STM images as adatoms of different sizes, consistent with the breaking of Si-Si backbonds and the formation ofnew Si-Cl bonds.  相似文献   

18.
Molecular structure of DNA by scanning tunneling microscopy   总被引:5,自引:0,他引:5  
Uncoated DNA molecules marked with an activated tris(l-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with the use of a high-resolution scanning tunneling microscope (STM). Constant-current and gap-modulated STM images show clear evidence of the helicity of the DNA structure: pitch periodicity ranges from 25 to 35 angstroms, whereas the average diameter is 20 angstroms. Molecular structure within a single helix turn was also observed.  相似文献   

19.
Highly ordered pyrolytic graphite (HOPG) is the substrate often used in scanning tunneling microscope (STM) studies of biomolecules such as DNA. All of the images presented in this article are of freshly cleaved HOPG surfaces upon which no deposition has occurred. These images illustrate features previously thought to be due to biological molecules, such as periodicity and meandering of "molecules" over steps. These features can no longer be used to distinguish real molecules from features of the native substrate. The feasibility of the continued use of HOPG as a substrate for biological STM studies is discussed.  相似文献   

20.
The nematic phase transition in electronic liquids, driven by Coulomb interactions, represents a new class of strongly correlated electronic ground states. We studied suspended samples of bilayer graphene, annealed so that it achieves very high quasiparticle mobilities (greater than 10(6) square centimers per volt-second). Bilayer graphene is a truly two-dimensional material with complex chiral electronic spectra, and the high quality of our samples allowed us to observe strong spectrum reconstructions and electron topological transitions that can be attributed to a nematic phase transition and a decrease in rotational symmetry. These results are especially surprising because no interaction effects have been observed so far in bilayer graphene in the absence of an applied magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号