首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 574 毫秒
1.
渔船拖网绞车张力自动控制系统设计及试验   总被引:1,自引:1,他引:0  
为了补偿拖网渔船作业过程中绞车纲绳张力波动或渔船转向造成的负载不对称性,保持网具良好的开口形状,基于电液控制技术设计了拖网张力自动控制系统。对拖网曳纲张力采集方法进行了研究,采用油压力传感器间接测量拖网左右曳纲张力数据作为输入信号,传输到控制器进行逻辑运算,控制先导溢流阀调整马达溢流压力,改变绞车输出扭矩,从而驱动拖网绞车收、放来控制左右曳纲张力,达到系统动态平衡。并基于实验室虚拟仪器工程平台(laboratory virtual instrument engineering workbench,Lab VIEW)对系统软件进行了设计,实现绞车张力控制系统的参数设置与控制管理。为了验证系统的张力控制特性和实用性,对系统进行了海上应用试验,在张力自动控制模式下,拖网绞车根据渔船航速和水流自动调节收放网速度,减少作业过程中曳纲张力波动。拖曳过程中拖网曳纲长度范围为350~490 m,绞车曳纲张力范围为118~148 k N,对应系统压力为2.3~2.7 MPa,渔船平均拖速为5.6节。试验结果表明,左右曳纲张力差在合理范围内,系统能很好调节曳纲张力大小,为渔船安全生产提供了保障;启用张力控制系统后网口面积比未使用张力控制系统前增大了9.5%,有效调整了网口扩张,提高了捕捞效率。  相似文献   

2.
针对在中东大西洋海域作业的远洋中型单拖渔船缺乏捕捞小型中上层鱼类手段的现状,该研究通过分析大型中层拖网和中国近海大网目拖网的结构特点和水动力参数,综合大型中层拖网和近海大网目拖网的设计参数,优化设计了网口网目尺寸为12 m、网口周长分别为552、456和360 m 共3个规格的试验网,并进行模型试验和海上生产试验。结果表明:在拖速为2.31 m/s时,模型试验测得552型试验网(网口周长552 m)在L/S袖端间距L与长纲长度S之比为0.35、0.40、0.45 3种水平下的平均阻力为151.82 kN,网口高度为28.74 m;456型(网口周长456 m)的平均阻力为135.60 kN,网口高度为24.96 m;360型(网口周长360 m)的平均阻力为70.76 kN,网口高度为20.20 m。试验船在中东大西洋海域生产试验时,552型试验网平均拖速为2.06 m/s,平均每小时产量为0.13 t,456型试验网平均拖速为2.26 m/s,平均每小时产量为0.77 t,360型试验网平均拖速为2.52 m/s,平均每小时产量为1.13 t。中型拖网渔船使用中层拖网捕捞游泳能力较强的小型中上层鱼类,需要较高的拖速,作业拖速为2.31~2.57 m/s时产量较好。试验网具部分(不计网板、曳纲)的功率消耗占主机额定功率的11%~16%。研究结果有助于设计适合中国远洋中型拖网渔船的中层拖网。  相似文献   

3.
南极磷虾拖网结构优化设计与网具性能试验   总被引:3,自引:3,他引:0  
目前中国南极磷虾渔业缺乏专用捕捞网具,针对现有网具与渔船匹配性差、网口扩张较小的主要问题,通过分析多种现用南极磷虾拖网结构及性能,提出了缩短南极磷虾捕捞网具总长度和网身长度的优化方案,自主设计了TN01型4片式小网目南极磷虾拖网。实船海上生产测试结果表明:当曳纲长度小于230 m时,囊网部位后翘影响导鱼效果。当曳纲大于230 m后,随着作业水深增加,囊网所处水深增加,拖网网型展开良好,建议网具浮沉比配备为1:1.1;网口垂直扩张与曳纲收放长度关系无显著相关,拖网航速为1.542 m/s时试验网具网口高度为26~29 m,垂直扩张比达到0.11~0.12;随着曳纲长度由90 m放长到370 m,水平扩张也由14 m扩张到20 m,水平扩张比为0.22~0.32;渔获量对比分析表明,昼夜之间渔获量差异不大,白天平均网次产量为33 t,夜晚平均网次产量为28 t,平均每网次渔获产量为30 t,较同渔区作业渔船(平均每网次产量约20 t)提高约50%。试验网具达到设计预估性能、渔获效率理想,可为进一步自主研发南极磷虾捕捞网具提供参考依据。  相似文献   

4.
不同增氧方式对精养池塘溶氧的影响   总被引:1,自引:1,他引:0  
当前对于在精养池塘中如何配制和合理使用不同机械增氧方式缺乏系统的比较研究。该文为了探讨高温季节晴好天气不同机械增氧方式对池塘溶氧全天调控的影响,试验设计如下:于夏天高温季节集中对精养池塘应用3种不同增氧方式,在晴好天气的白天和夜间进行增氧效果试验。结果发现:无论增氧机开启与否,池塘的溶氧都存在明显的昼夜起伏,且在午后出现峰值。增氧机的开启增强了上下水层交换,削减了氧差,减少了上层溶氧的逸出损失,提升了下层水体的低溶氧水平。池塘上层溶氧起伏程度大于下层,下层溶氧变化滞后于上层(下层溶氧出现峰值落后于上层约2~5 h),且这种滞后性为增氧机运行所削弱。夜间增氧能向池塘补充溶氧,但仍不足以弥补鱼类和浮游生物的代谢、微生物的生长及有机物的氧化分解造成的溶氧损耗。单从机械增氧能力来看,叶轮式>微孔式>耕水机。综合分析节能和增氧效果,在精养池塘养殖环境下,白天开机增氧选择耕水机较为合适,而夜间应急增氧选择叶轮式更可取。试验通过对不同机械增氧方式增氧效果和能耗的系统比较,为合理选择和使用增氧方式提供了一定的参考价值。  相似文献   

5.
基于激光导航的果园拖拉机自动控制系统   总被引:10,自引:8,他引:2  
为实现果园作业的自动化,以拖拉机为研究对象,采用激光导航方式实现了果园机械的自动导航。试验以激光扫描仪为检测设备对果树位置信息实时采集,采用最小二乘法规划拖拉机导航路径;拖拉机航向偏差和横向偏差作为比例控制器的输入量,以方向盘电机的转速为输出量,控制拖拉机沿导航路径直线行走;系统实现了拖拉机在果园环境下的直线行走控制功能。拖拉机以0.27 m/s的速度直线行走30 m,最大横向偏差0.15 m。试验结果表明本系统可用于果园机械的自动导航,并具有一定的可靠性。  相似文献   

6.
移动式太阳能增氧机的研制   总被引:2,自引:0,他引:2  
为提高池塘养殖的机械增氧效率,应用Solidworks软件设计了移动式太阳能能增氧机,该设备由太阳能动力组件、水面行走机构、增氧装置和运动控制系统等组成。移动式太阳能增氧机可在水面自主行走,产生波浪和实现上下水层交换。性能测试表明,移动式太阳能增氧机的光照启动强度为17 000 lx,空载噪声为75.3 d B,水面行走机构的行走速度在0.027~0.041 m/s之间波动,无线遥控距离为44.2 m,在增氧装置位置的最大浪高为0.44 m。随着光照强度的增强,增氧装置增氧效率和扰动水体能力增强,最大机械增氧能力为1.24 kg/h,动力效率2.59 kg/(k W·h);最大扰动水体1 254.4 m3/h,扰水动力效率2 613.3 m3/(k W·h)。移动式太阳能增氧机利用太阳能作为能源,在池塘水体中运行面积大、运行时间长,强化了池塘自身的自净能力,具有生态调控的功能,有利于池塘物质循环和水质改善。  相似文献   

7.
为研究养殖池塘三维植被网护坡技术及其水质净化调控效果,试验用三维植被网、布水管和水生植物等构建池塘生态坡净化调控系统。研究发现,池塘三维植被网生态坡净化调控系统具有潜流湿地和表流湿地双重特点,空隙率为4%~9%,构建坡度应低于1:2.5,水流速度应高于0.13m/s。在池塘水体日循环量10%情况下,三维植被网生态坡可使池塘水体中氨氮、亚硝态氮、硝态氮、总氮和总磷的浓度下降46%、65%、49.2%、64.4%和39%,使养殖水体中叶绿素a浓度下降8.8%;生态坡对水体中总氮、总磷、COD的净化效率分别为0.27、0.015和0.94g/h.m2。与对照池相比,试验期间,三维植被网生态护坡池塘水体中的绿藻种类比对照池塘增加了10.7%,蓝藻种类减少了2.5%,藻类ShannonWiener多样性指数(H’)增加了38%。同时,试验池塘水体中的藻类密度下降了23%,其中蓝藻密度下降48.4%,隐藻、裸藻密度分别增加了24%和34%,藻类优势种群结构组成更有利于养殖需要。研究表明池塘三维植被网生态坡系统具有保护池埂和净化调控水质效果,是一种"经济、生态、减排"的护坡技术。  相似文献   

8.
几种机械增氧方式在池塘养殖中的增氧性能比较   总被引:15,自引:7,他引:8       下载免费PDF全文
为评价池塘养殖中主要机械增氧方式的性能优劣,该文通过增氧清水试验和水产养殖池塘中实地试验,研究了几种机械增氧方式在清水试验中的增氧能力,动力效率和实际池塘中的溶解氧变化。结果表明,在清水中,叶轮增氧机增氧能力分别高出水车和螺旋桨增氧机4%和264%,动力效率分别高出12.7%和259%;在池塘中,叶轮增氧机对池塘水层的混合均匀时间要比水车和螺旋桨增氧机快40%,对溶解氧的增加值分别高115%和293%。叶轮增氧机综合增氧性能要高于水车和螺旋桨增氧机,螺旋桨增氧机综合增氧性能最差。该研究为在池塘养殖中合理运用机械增氧方式提供了有益的借鉴。  相似文献   

9.
高枝修剪机姿态协调控制与精准锯切定位   总被引:1,自引:1,他引:0  
修枝是林业抚育管理的重要措施之一,但适用于高大树木的修枝机械尚处起步阶段。针对目前国内外修枝机械普遍存在作业高度不足、灵活性不高,操作人员劳动强度大、作业危险性高等问题,设计研发了一种高枝修剪机及其控制系统,实现15 m以内高大树木的修枝作业。本文详细阐述了高枝修剪机的工作原理,基于多自由度修剪机械臂正、逆运动学进行锯切定位分析,提出了修剪机的机械臂姿态协调控制与末端修枝锯的锯切定位方法,辅以末端摄像头观察待修树枝的相对位置,通过人机交互界面实现修枝臂协调控制和锯切定位调整,自动化实现升降台、回转台和修剪机械臂姿态调整。此外,通过在开放场地进行样机修枝试验及误差测量与补偿,试验结果表明:在回转台转角固定情况下,本文设计的控制系统和控制方法可以实现末端修枝锯在空间2个坐标轴上的定位标准差均小于5 mm,在作业高度15 m、作业半径6 m的范围内,与同类机械相比具有更高的相对定位精度,能够实现精确定位和锯切作业。  相似文献   

10.
移动式太阳能增氧机的增氧性能评价   总被引:4,自引:3,他引:1  
为改善池塘养殖环境,设计了一种移动式太阳能增氧机,由光伏供电装置和水面行走装置搭载涌浪机而成,能在水面沿钢丝绳移动并利用涌浪机的波浪增氧和水层交换作用,大范围扰动水体并为池塘增氧。该研究的目的是通过机械增氧效率检测、提水能力测定和池塘增氧能力测定3个试验,评估太阳能增氧机的机械增氧性能、水层交换性能和实际应用效果,以期全面了解移动增氧机增氧能力。结果表明,该移动式太阳能增氧机最大机械增氧能力为1.24 kg/h,动力效率2.59 kg/(k W·h);最大提水能力1 254.4 m3/h,提水动力效率2 613.3 m3/(k W·h);并在晴好天气白天(09:00—19:00),在对照组底层溶氧为3.1~3.8 mg/L时,大幅度提升池塘底层溶氧水平,最高时达7.8 mg/L,维持池塘上下溶氧均匀度72%~84%,极大改善了底层溶氧环境。数据表明移动式太阳能增氧机具有良好的机械增氧和水层交换性能,因而能有效改善池塘底层溶氧环境,提高上下水体溶氧均匀度。该研究结果可为太阳能增氧机的进一步推广应用提供数据支撑。  相似文献   

11.
该文以保证蓄水池合适的汇水面积和实现最大程度自流灌溉为目标,同时考虑了丘陵地区地形高差的"天然优势",提出了丘陵地区蓄水池选址的方法。在研究区地形数据和研究时段降雨数据的基础上,以保证200 m3蓄水池汇流量和流域作物7至10月份灌溉需水量为目标,通过设置合理的集水工程选址约束条件,利用Arc Gis水文分析、叠置分析及空间查询等空间分析工具筛选出65处适合修建200 m3蓄水池的位置。经计算得到蓄水池平均汇水面积为0.31 hm2,在当地降雨条件下能够保证200 m3蓄水池的汇水量。选址优化后蓄水池能够对流域内近50%的农田进行自流灌溉,较好地实现了保证蓄水池灌溉效用和降低灌溉成本的统一。该选址方法可指导丘陵地区土地整理项目规划阶段不同规格蓄水池的选址,也可为其他类型雨水集蓄工程选址提供借鉴。  相似文献   

12.
DX-180型玻璃钢扇贝拖网渔船优化改造与试验   总被引:1,自引:1,他引:0  
针对日本引进的DX-180型玻璃钢扇贝拖网渔船在獐子岛海域捕捞过程中出现的高能耗、低产量等问题,通过对该渔船与獐子岛扇贝捕捞主力船型(辽长渔养15021钢质扇贝拖网渔船)的技术指标差异性分析得出,该渔船配备的捕捞网具与作业模式无法满足中国海域扇贝捕捞需求。因此,该文提出优化捕捞网具与作业模式,并通过在獐子岛虾夷扇贝(Patinopecten yessoensis)底播海域的海上对比试验论证其改造的合理性。试验分2阶段进行,第1阶段通过增大网具扫海面积并对作业参数进行优化与论证,确定在沙砾底、泥沙底和泥底的最佳拖网航速与曳纲长度;第2阶段进行海上生产对比试验,并以单位捕捞油耗、单位捕捞效率和单位捕捞成本为经济评价指标。试验结果表明,优化后的DX-180型扇贝拖网渔船的捕捞量与耗油量均得到有效改善。与预替代的辽长渔养15021钢质扇贝拖网渔船相比,虽单位捕捞油耗与钢质拖网渔船基本持平,但在单位捕捞效率和单位捕捞成本方面均优于钢质拖网渔船,其中单位捕捞效率提高了37.5%,单位捕捞成本降低了26.0%,符合扇贝低碳化产业发展需求,对中国推广玻璃钢扇贝拖网渔船从技术与经济性方面提供参考。  相似文献   

13.
以"养殖-净化"复合系统为对象,探讨河蟹养殖尾水达标排放(地表Ⅲ类水)的工程与技术措施。通过构建系统动力学模型,模拟河蟹养殖尾水达标排放的最佳养殖塘与净化塘的面积比,及不同饵料替代比例、水质调控技术与净化效率对养殖塘和净化塘水体TN和TP浓度的影响。模拟结果显示,在常规养殖条件下,要使净化尾水达到地表Ⅲ类水标准,养殖塘与净化塘的最佳面积比为20.5∶1。商品饲料代替5%、10%和15%时,养殖塘TN浓度分别降低3.1%、6.3%和10.0%,TP浓度分别降低4.2%、8.3%和8.3%;净化塘TN浓度分别降低4.5%、10.1%和14.6%。养殖塘水质调控技术对养殖塘和净化塘水体的TN和TP浓度无显著影响。与水葫芦收获1次相比,收获2次和3次的养殖塘TN浓度分别显著降低10.0%和10.0%,TP浓度降低11.1%和11.1%;净化塘TN浓度分别降低16.1%和17.2%。水葫芦收获2次与3次对养殖塘和净化塘水体TN、TP浓度变化无显著影响。以上结果表明,河蟹养殖工程可以按照养殖塘与净化塘的面积比为20.5∶1进行构建,二塘水体的TN、TP浓度随商品饲料替代比例增加而降低;净化塘水葫芦只需收获2次,净化水质即可达标地表Ⅲ类水。  相似文献   

14.
分隔式循环水池塘养殖系统设计与试验   总被引:3,自引:1,他引:2  
为了解决池塘养殖设施化程度低、净化能力不足和排污效果差等问题,设计了分隔式循环水池塘养殖系统。该系统由20%水面的吃食性鱼类养殖区和80%水面的滤杂食性鱼类养殖区构成,配置过水堰、螺旋桨式和水车式推流装置、集污和吸污装置等养殖系统设施和装备。性能测试结果表明:螺旋桨式推流装置提水动力效率为340 m~3/(k W·h),流量为204 m~3/h,空载噪音为60 d B;水车式推流装置提水动力效率为360 m~3/(k W·h),流量为180 m~3/h,空载噪音为67 d B;过水堰过水的总流量约为331 m~3/h,利用水循环装备实现水体流动可实现水体日交换量7 900 m~3,达到养殖池塘水体的50%左右。利用推流装置搅动水体,可实现水体大范围的对流,交替暴晒水体,增加水体中的溶解氧,试验池塘中下层溶解氧水平比对照塘高出59.5%,试验池塘叶绿素a浓度比对照塘低,说明一定程度上限制了浮游植物过渡繁殖。该养殖系统可为池塘健康养殖系统模式构建提供参考。  相似文献   

15.
Interactions between sea turtles and northwestern Atlantic trawl fisheries are of global concern, and the National Marine Fisheries Service is considering expanding bycatch reduction regulations, including deployment of turtle excluder devices (TEDs). To inform bycatch mitigation strategies, the number of loggerhead sea turtle (Caretta caretta) interactions was estimated for US Mid-Atlantic bottom trawl fisheries for fish and scallops. A generalized additive model of interactions was developed using 1994–2008 Northeast Fisheries Observer Program data from trawl fisheries that were not required to deploy TEDs. Predicted loggerhead interaction rates were applied to 2005–2008 commercial fishing data to estimate the number of interactions for the trawl fleet. For trawl fisheries in which TEDs were required, an experimentally-determined TED exclusion rate (97%) was applied to estimate the number of loggerheads that were excluded by TEDs. Latitude, depth, and sea surface temperature (SST) were associated with the interaction rate. Average annual interactions for 2005–2008 were estimated at 292 (CV 0.13, 95% CI 221–369) loggerheads, with an additional 61 (CV 0.17, 95% CI 41–83) excluded by TEDs. The interaction rate was highest south of latitude 37°N in waters <50 m deep with SST >15 °C; interaction magnitude in terms of adult equivalents was highest at latitude 37–39°N, depth <50 m, and SST >15 °C. Predicted average annual loggerhead interactions decreased compared to 1996–2004, likely due to decreased commercial fishing effort in high-interaction areas. Additional sea turtle conservation measures can be informed by the high-interaction-rate and -magnitude areas identified through this analysis.  相似文献   

16.
河蟹养殖投饵喂料需要全塘均匀覆盖,目前主要靠人工驾驶或遥控船载投饲机在池塘中进行投喂,准确度和效率较低,难以保证投饲效果。针对以上情况,基于GPS(global positioning system)船载移动式自动投饲系统,研究了一种全覆盖轨迹规划方法,满足河蟹养殖池塘自动均匀投饲要求。该文利用轨迹规划系统建立池塘区域平面坐标系;以实际饵料累积密度与期望分布密度间的均方差最小作为衡量投饲均匀度的目标函数,求解出系统最优运行参数,生成往复遍历式自动投饲轨迹。仿真结果表明,在面积为2298.08 m2的不规则四边形池塘区域中,取饵料分布密度期望值为9 g/m2时,最优计算投饲系统运行参数对应的轨迹规划效果要优于传统经验估算参数。试验结果表明,当分别用两组参数进行自动投饲作业时,投饲船的实际航行轨迹与理论投饲轨迹都只有很小的偏移,与仿真结果具有一致性;同时,最优计算运行参数对应实际路径总长度、投饲路径长度、作业总时间、投饲时长、饵料分布密度均值、覆盖率等各项指标与仿真结果相比,相对误差分别为6.85%、2.71%、10.07%、10.41%、3.06%和1.87%,验证了全覆盖轨迹规划方法的可行性。该文可为河蟹养殖自动均匀投饲和其他水产养殖中需要沿池或全池自动均匀投饲轨迹规划研究提供重要参考。  相似文献   

17.
针对以往海洋机动渔船捕捞能力评估研究中考虑影响因素较少,对各影响因素的主观权重值和客观权重值综合分析不足,不能给出渔船单船捕捞能力量化值等问题,该研究提出了考虑多影响因素的渔船单船捕捞能力评估模型。首先,考虑多种影响渔船捕捞能力的因素,建立单船捕捞能力评估指标体系,将其分为可量化指标和不可量化指标,并初步制定了不可量化指标评估标准。其次,利用专家、渔民调查问卷中的数据,运用层次分析法计算各指标主观权重值,结果表明各指标权重依次为:捕捞装备(10.76%)、功率(9.35%)、拖网(7.40%)、作业时长(7.14%)、总吨(4.85%)、探鱼仪器(4.74%)、刺网(3.98%)、船长(3.18%)、张网(2.83%)、围网(2.38%)、钓业(2.06%)、作业环境(1.92%)、钢质材质(1.89%)、罩网(1.65%)、玻璃钢材质(1.55%)、船龄(1.26%)、木制材质(1.21%);渔具相关指标权重依次为:网具主尺寸(40.23%)、网具结构(14.93%)、装配技术(9.26%)、制造材料(5.08%)。最后,为兼顾主客观权重优点,基于加法合成法、博弈论法、最小鉴别信息法对各指标权重值进行组合计算,以获得目标权重值,并根据某省渔船数据对建立的模型进行验证分析,通过Spearman等级相关系数法计算捕捞能力评估值与实际渔获量之间的等级相关系数,结果表明基于博弈论法得到的结果相关性最高,相关系数为0.937,证实了组合权重值和评估模型的科学性和合理性。研究结果可为渔业管理部门制定科学合理的渔业资源调控政策提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号