首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity to generate and analyze mental visual images is essential for many cognitive abilities. We combined triple-pulse transcranial magnetic stimulation (tpTMS) and repetitive TMS (rTMS) to determine which distinct aspect of mental imagery is carried out by the left and right parietal lobe and to reveal interhemispheric compensatory interactions. The left parietal lobe was predominant in generating mental images, whereas the right parietal lobe was specialized in the spatial comparison of the imagined content. Furthermore, in case of an rTMS-induced left parietal lesion, the right parietal cortex could immediately compensate such a left parietal disruption by taking over the specific function of the left hemisphere.  相似文献   

2.
Positron emission tomography (PET) was used to measure changes in regional cerebral blood flow of normal subjects, while they were discriminating different attributes (shape, color, and velocity) of the same set of visual stimuli. Psychophysical evidence indicated that the sensitivity for discriminating subtle stimulus changes was higher when subjects focused attention on one attribute than when they divided attention among several attributes. Correspondingly, attention enhanced the activity of different regions of extrastriate visual cortex that appear to be specialized for processing information related to the selected attribute.  相似文献   

3.
In crowded visual scenes, attention is needed to select relevant stimuli. To study the underlying mechanisms, we recorded neurons in cortical area V4 while macaque monkeys attended to behaviorally relevant stimuli and ignored distracters. Neurons activated by the attended stimulus showed increased gamma-frequency (35 to 90 hertz) synchronization but reduced low-frequency (<17 hertz) synchronization compared with neurons at nearby V4 sites activated by distracters. Because postsynaptic integration times are short, these localized changes in synchronization may serve to amplify behaviorally relevant signals in the cortex.  相似文献   

4.
Neuronal correlates of eye movements in the visual cortex of the cat   总被引:1,自引:0,他引:1  
About 10 percent of the cells in the visual cortex of awake cats do not respond to stationary parallel stripes in any orientation or to stripes moving across the visual field in any direction at a moderate speed (up to 132 degrees per second), but these cells are either excited or inhibited during saccadic eye movements when the animal faces a patterned visual environment. Of nineteen such cells tested in total darkness, seven discharged in association with eye movements. For saccade-related discharges, the latency during retinal stimulation is typically shorter than the latencey in total darkness.  相似文献   

5.
It is controversial whether the dorsolateral prefrontal cortex is involved in the maintenance of items in working memory or in the selection of responses. We used event-related functional magnetic resonance imaging to study the performance of a spatial working memory task by humans. We distinguished the maintenance of spatial items from the selection of an item from memory to guide a response. Selection, but not maintenance, was associated with activation of prefrontal area 46 of the dorsal lateral prefrontal cortex. In contrast, maintenance was associated with activation of prefrontal area 8 and the intraparietal cortex. The results support a role for the dorsal prefrontal cortex in the selection of representations. This accounts for the fact that this area is activated both when subjects select between items on working memory tasks and when they freely select between movements on tasks of willed action.  相似文献   

6.
Functional mapping of the human visual cortex by magnetic resonance imaging   总被引:98,自引:0,他引:98  
Knowledge of regional cerebral hemodynamics has widespread application for both physiological research and clinical assessment because of the well-established interrelation between physiological function, energy metabolism, and localized blood supply. A magnetic resonance technique was developed for quantitative imaging of cerebral hemodynamics, allowing for measurement of regional cerebral blood volume during resting and activated cognitive states. This technique was used to generate the first functional magnetic resonance maps of human task activation, by using a visual stimulus paradigm. During photic stimulation, localized increases in blood volume (32 +/- 10 percent, n = 7 subjects) were detected in the primary visual cortex. Center-of-mass coordinates and linear extents of brain activation within the plane of the calcarine fissure are reported.  相似文献   

7.
The role of the primate extrastriate area V4 in vision   总被引:5,自引:0,他引:5  
Area V4 is a part of the primate visual cortex. Its role in vision has been extensively debated. Inferences about the functions of this area have now been made by examination of a broad range of visual capacities after ablation of V4 in rhesus monkeys. The results obtained suggest that this area is involved in more complex aspects of visual information processing than had previously been suggested. Monkeys had particularly severe deficits in situations where the task was to select target stimuli that had a lower contrast, smaller size, or slower rate of motion than the array of comparison stimuli from which they had to be discriminated. Extensive training on each specific task resulted in improved performance. However, after V4 ablation, the monkeys could not generalize the specific task to new stimulus configurations and to new spatial locations.  相似文献   

8.
Visual presentation of words activates extrastriate regions of the occipital lobes of the brain. When analyzed by positron emission tomography (PET), certain areas in the left, medial extrastriate visual cortex were activated by visually presented pseudowords that obey English spelling rules, as well as by actual words. These areas were not activated by nonsense strings of letters or letter-like forms. Thus visual word form computations are based on learned distinctions between words and nonwords. In addition, during passive presentation of words, but not pseudowords, activation occurred in a left frontal area that is related to semantic processing. These findings support distinctions made in cognitive psychology and computational modeling between high-level visual and semantic computations on single words and describe the anatomy that may underlie these distinctions.  相似文献   

9.
A motor illusion was created to separate human subjects' perception of arm movement from their actual movement during figure drawing. Trajectories constructed from cortical activity recorded in monkeys performing the same task showed that the actual movement was represented in the primary motor cortex, whereas the visualized, presumably perceived, trajectories were found in the ventral premotor cortex. Perception and action representations can be differentially recognized in the brain and may be contained in separate structures.  相似文献   

10.
After human observers alternately view green stripes moving up and red stripes moving down for periods of 1/2 to 4 hours, they see a pink aftereffect when white stripes move up and a green aftereffect when white stripes move down. Longer exposures produce aftereffects which are visible 20 hours after stimulation. Thus, experience which pairs simple attributes (color and motion) of visual stimulation can result in a lasting modification of perception.  相似文献   

11.
After viewing a suitable grating of vertical stripes for 5 minutes, subjects overestimated the width of a rectangle by 6 percent. The shifts in perception of size occurred whether individual stripes in the grating were narrower than, equal to, or wider than the rectangle. Rectangle width was underestimated only if the grating stripes were extremely wide, with a spatial frequency lower than most of the effective amplitude spectrum of the rectangle. These findings (and complementary ones with horizontal gratings) suggest that the visual system codes size on the basis of spatial frequency components, rather than directly in terms of width.  相似文献   

12.
A high spatial resolution optical imaging system was developed to visualize cerebral cortical activity in vivo. This method is based on activity-dependent intrinsic signals and does not use voltage-sensitive dyes. Images of the living monkey striate (VI) and extrastriate (V2) visual cortex, taken during visual stimulation, were analyzed to yield maps of the distribution of cells with various functional properties. The cytochrome oxidase--rich blobs of V1 and the stripes of V2 were imaged in the living brain. In V2, no ocular dominance organization was seen, while regions of poor orientation tuning colocalized to every other cytochrome oxidase stripe. The orientation tuning of other regions of V2 appeared organized as modules that are larger and more uniform than those in V1.  相似文献   

13.
Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.  相似文献   

14.
Our ability to have an experience of another's pain is characteristic of empathy. Using functional imaging, we assessed brain activity while volunteers experienced a painful stimulus and compared it to that elicited when they observed a signal indicating that their loved one--present in the same room--was receiving a similar pain stimulus. Bilateral anterior insula (AI), rostral anterior cingulate cortex (ACC), brainstem, and cerebellum were activated when subjects received pain and also by a signal that a loved one experienced pain. AI and ACC activation correlated with individual empathy scores. Activity in the posterior insula/secondary somatosensory cortex, the sensorimotor cortex (SI/MI), and the caudal ACC was specific to receiving pain. Thus, a neural response in AI and rostral ACC, activated in common for "self" and "other" conditions, suggests that the neural substrate for empathic experience does not involve the entire "pain matrix." We conclude that only that part of the pain network associated with its affective qualities, but not its sensory qualities, mediates empathy.  相似文献   

15.
Pitch memory: an advantage for the left-handed   总被引:1,自引:0,他引:1  
In an auditory or musical task, subjects made pitch recognition judgments when the tones to be compared were separated by a sequence of interpolated tones. The left-handed subjects performed significantly better than the right-handed and also had a significantly higher variance. Further analysis showed that the superior performance was attributable largely to the left-handed subjects with mixed hand preference.  相似文献   

16.
Current models partition the primate visual system into dorsal (magno) and ventral (parvo, konio) streams. Perhaps the strongest evidence for this idea has come from the pattern of projections between the primary visual area (V1) and the second visual area (V2). Prior studies describe three distinct pathways: magno to thick stripes, parvo to pale stripes, and konio to thin stripes. We now demonstrate that V1 output arises from just two sources: patch columns and interpatch columns. Patch columns project to thin stripes and interpatch columns project to pale and thick stripes. Projection of interpatches to common V2 stripe types (pale and thick) merges parvo and magno inputs, making it likely that these functional channels are distributed strongly to both dorsal and ventral streams.  相似文献   

17.
Objects displaced intermittently across the visual field will nonetheless give an illusion of continuous motion [called apparent motion (AM)] under many common conditions. It is believed that form perception is of minor importance in determining AM, and that AM is mediated by motion-sensitive areas in the "where" pathway of the cortex. However, form and motion typically interact in specific ways when natural objects move through the environment. We used functional magnetic resonance imaging to measure cortical activation to long-range AM, compared to short-range AM and flicker, while we varied stability of structural differences between forms. Long-range AM activated the anterior-temporal lobe in the visual ventral pathway, and the response varied according to the form stability. The results suggest that long-range AM is associated with neural systems for form perception.  相似文献   

18.
How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain.  相似文献   

19.
Localization of cognitive operations in the human brain   总被引:41,自引:0,他引:41  
The human brain localizes mental operations of the kind posited by cognitive theories. These local computations are integrated in the performance of cognitive tasks such as reading. To support this general hypothesis, new data from neural imaging studies of word reading are related to results of studies on normal subjects and patients with lesions. Further support comes from studies in mental imagery, timing, and memory.  相似文献   

20.
Although the visual cortex is organized retinotopically, it is not clear whether the cortical representation of position necessarily reflects perceived position. Using functional magnetic resonance imaging (fMRI), we show that the retinotopic representation of a stationary object in the cortex was systematically shifted when visual motion was present in the scene. Whereas the object could appear shifted in the direction of the visual motion, the representation of the object in the visual cortex was always shifted in the opposite direction. The results show that the representation of position in the primary visual cortex, as revealed by fMRI, can be dissociated from perceived location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号