首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to determine the influence of a 10-month training programme on the linear, temporal and angular characteristics of the fore and hind limbs at the trot in the Andalusian horse, using standard computer-aided videography. Sixteen male Andalusian horses were observed before and after training. Six strides were randomly selected for analysis in each horse and linear, temporal and angular parameters were calculated for fore and hind limbs. The training programme used here produced significant changes in kinematic parameters, such as shortening of stride length, and increase in swing duration and a decrease in hind limb stance percentage. No significant differences were recorded in the angular values for the forelimb joints. In trained horses, the more proximal joints of the hind limb, especially the hip and stifle, had a greater flexion while the fetlock showed a smaller extension angle. At the beginning of the swing phase, hip and stifle joints presented angles that were significantly more flexed. When the hind limbs came into contact with the ground, all the joints presented greater flexion after training.  相似文献   

2.
OBJECTIVE: To identify hind limb and pelvic kinematic variables that change in trotting horses after induced lameness of the distal intertarsal and tarsometatarsal joints and after subsequent intra-articular administration of anesthetic. ANIMALS: 8 clinically normal adult horses. PROCEDURE: Kinematic measurements were made before and after transient endotoxin-induced lameness of the distal intertarsal and tarsometatarsal joints and after intra-articular administration of anesthetic. Fourteen displacement and joint angle (metatarsophalangeal [fetlock] and tarsal joints) measurements were made on the right hind limb, sacrum, and the right and left tubera coxae. Kinematic measurements were compared by general linear models, using a repeated measures ANOVA. Post hoc multiple comparisons between treatments were evaluated with a Fisher least squared difference test at alpha = 0.05. RESULTS: After lameness induction, fetlock and tarsal joint extension during stance decreased, fetlock joint flexion and hoof height during swing increased, limb protraction decreased, and vertical excursion of the tubera coxae became more asymmetric. After intra-articular administration of anesthetic, limb protraction returned to the degree seen before lameness, and vertical excursion of the tubera coxae became more symmetric. CONCLUSIONS AND CLINICAL RELEVANCE: Increased length of hind limb protraction and symmetry of tubera coxae vertical excursion are sensitive indicators of improvement in tarsal joint lameness. When evaluating changes in tarsal joint lameness, evaluating the horse from the side (to assess limb protraction) is as important as evaluating from the rear (to assess pelvic symmetry).  相似文献   

3.
Movement analysis techniques allow objective and quantitative assessment of kinematic gait analysis. Consistent repeatability of the kinematic data is essential for such assessments. This study investigated whether the repeatability of a standardized Equinalysis Elite gait analysis system is sufficient to allow its use in clinical evaluation of equine lameness with reliable documentation of individual locomotion patterns. The extent to which examinations on different days affected the results when a standardized protocol was used was investigated. The repeatability of distal limb kinematics in nine sound horses over three successive days at one location was investigated. Measurements were performed at the examination area, for three motion cycles at the walk and trot, in each direction per day. Skin markers were placed on the lateral aspect of the coffin joint, forelimb fetlock joint, hindlimb fetlock joint, carpus, tarsus, elbow, and stifle, at clipped sites marked with a permanent marker. The inter-day repeatability of angular measurements of the carpus, tarsus, forelimb fetlock, and hindlimb fetlock joints was determined. A low degree of inter-day repeatability was found with statistically significant (P ≤ .05) differences between findings on different days, observed in the time-angle diagrams of left and right carpus, tarsus, forelimb fetlock, and hindlimb fetlock joints of all horses, at both walk and trot. The standardized Equinalysis Elite system for gait analysis of distal limb kinematics in the horse did not provide highly repeatable data in this setting.  相似文献   

4.
Linear, temporal and angular biokinematic characteristics of the forelimb at the walk in different breeds were determined, highlighting inter-breed differences. Twenty-three healthy stallions were used: ten Andalusians (AN), seven Arabs (AR) and six Anglo-Arabs (AA). Height at the withers was significantly different between groups (P < 0.001). Six trials per horse were recorded using a levelled video camera (sampling frame rate 25 frames/s), digitized and analysed using a semi-automatic movement analysis system. No statistically significant differences in speeds were recorded between breeds (P > 0.05). The only temporal parameter which was similar in the three breeds was the moment at which the hoof reached the highest point in its trajectory. The variables presenting the most significant differences were the percentages of deceleration and propulsion within the stance phase. ANOVA for angular variables showed that the greatest difference was in the range of angular movement of the carpal joint, being higher in AN, due to a lower minimum value. In the fetlock joint, the greatest difference was observed in minimum values, which differed in all three breeds. Significant inter-breed differences were also observed for maximum limb retraction, being lowest in the AN group, followed by the AA and AR groups. This finding was reflected in the angular range of motion, despite smaller differences in the degree of limb protraction; very similar values were reported in all three breeds. As regards the elbow joint, no inter-breed differences were observed in terms of minimum values, whereas differences were recorded for maximum and angular range of motion, higher values being displayed by the AR and AN groups than by AA animals. In conclusion, inter-breed differences may be determined in equine forelimb biokinematics at the walk. This study distinguished between AN, AR and AA horses.  相似文献   

5.
The purpose of this study was to determine basic kinematic parameters (linear, temporal and angular) in young and adult Andalusian horses (P.R.E.) at the trot, using a normal computer-aided videography system. The trotting gaits of 16 horses were analysed: seven young horses (3.7 +/- 0.2 years old, height at withers 167.1 +/- 4.1 cm) and nine adult stallions (12.3 +/- 2.9 years old, height at withers 162.9 +/- 3.6 cm) were recorded at least 6 times at the trot using a 25-Hz video-camera filming from the side. Video images were processed with a real-time digital system (SMVD). Speeds averaged 3.84 and 3.75 m/s for young and adult horses, respectively. Differences between age groups for speed and linear and temporal parameters of the stride were not significant. However, variations in angular parameters were detected: adults showed a greater ARM than younger horses for most forelimb joints. In the hind limb, hip, stifle, and, to a lesser degree, the tarsal joint, a smaller degree of extension during the stance phase was observed in adult horses.  相似文献   

6.
Osteochondritis dissecans of the sagittal ridge of the third metacarpal and metatarsal bones was diagnosed in 8 horses during an 18-month period. Seven of the horses were less than or equal to 2 1/2 years old. Synovial distention of the affected fetlock joints and a pain response to fetlock flexion were typical findings. Lameness predominated in 1 limb at a trot, although fetlock flexion frequently elicited lameness in other affected limbs. Radiography revealed bony lesions (flattening, erosion, or fragmentation) of the sagittal ridge in at least 2 fetlock joints in all horses. The onset of signs was not correlated with the severity of radiographic changes in all horses.  相似文献   

7.
OBJECTIVE: To study the effect of unilateral synovitis in the distal intertarsal and tarsometatarsal joints on locomotion, including the compensating effects within and between limbs. ANIMALS: 4 clinically normal horses. PROCEDURE: Gait analyses including kinematics, force plate, and inverse dynamic analysis were performed at the trot before lameness, after which synovitis was induced by injecting endotoxin into the right distal intertarsal and tarsometatarsal joints. Gait analyses were repeated 24 to 30 hours later during lameness. Differences between the stride variables during the 2 conditions (lame and sound) were identified. RESULTS: Tarsal joint range of motion, peak vertical force, and vertical impulse were decreased during lameness. Mechanical deficits included a decrease in negative work performed by the tarsal extensors during the early stance phase and a decrease in positive work by the tarsal extensors during push off. No compensatory changes in work were performed by other joints within the lame hind limb during the stance phase. Vertical impulse in the diagonal forelimb decreased, but there were no significant changes in forces or impulses in the ipsilateral forelimb or contralateral hind limb. CONCLUSION AND CLINICAL RELEVANCE: Results indicate that horses are able to manage mild, unilateral hind limb lameness by reducing the airborne phase of the stride rather than by increased loading of the compensating limbs.  相似文献   

8.
OBJECTIVE: To identify types of musculoskeletal problems associated with lameness or poor performance in horses used for barrel racing. DESIGN: Retrospective case series. ANIMALS: 118 horses. PROCEDURE: Medical records were reviewed for information on signalment, history, physical and lameness examination findings, diagnostic tests performed, diagnosis, and treatment. RESULTS: Most horses were examined because of lameness (n = 72 [61%]) rather than poor performance (46 [39%]), but owner complaint was not significantly associated with age or body weight of the horse. The most common performance change was refusal or failure to turn properly around the first barrel (19/46 [41%]). The right forelimb (n = 57 [48%]) was most commonly affected, followed by the left forelimb (51 [43%]), the left hind limb (31 [26%]), and the right hind limb (25 [21%]). In 31 horses (26%), both forelimbs were affected, and in 6 (5%), both hind limbs were affected. The most common musculoskeletal problems were forelimb foot pain only (n = 39 [33%]), osteoarthritis of the distal tarsal joints (17 [14%]), suspensory ligament desmitis (15 [13%]), forelimb foot pain with distal tarsal joint osteoarthritis (11 [9%]), and bruised feet (10 [8.5%]). In 81 (69%) horses, the affected joint was treated with intra-articular medications. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in horses used for barrel racing that are examined because of lameness or poor performance, the forelimbs are more likely to be affected than the hind limbs, with forelimb foot pain and osteoarthritis of the distal tarsal joints being the most common underlying abnormalities.  相似文献   

9.
This study was undertaken to characterize and establish the kinematic standards of Italian standardbred trotter horses in real racing conditions. Certain parameters, such as the angles of both front and hind fetlock joints, stride length, stride frequency and average speed in youngs and adults are presented, examinated and compared with statistical tests. The angles and stride length were obtained using ONTRACK software over frames extracted from two CANON MV630i digital videocameras. For the stride frequency, a third identical videocamera filmed the horses to count the number of beats per minute. The average speed was calculated by multiplying the stride frequency by the stride length and transforming the result into kilometers per hour. The data reveal that as speed increases, younger horses have more extended fetlock joints than adults. Contrary to this, at the maximum speed (hereafter referred to as sprint speed) the adults increase both their stride frequency and stride length, while young horses increase stride frequency and decrease stride length. We think that the knowledge of these parameters in competition breeds could have potential relevance as they may reveal early indicators of the development of proper and adequate characteristics in young horses of those breeds.  相似文献   

10.
A recent epidemiological study indicated that various factors may be related to injury in dressage horses, but the mechanism by which these injuries occur has yet to be determined. The suspensory ligament (SL) is a frequent site of injury, and it is assumed that greatest strain is placed on this structure in collected trot; this has yet to be proved conclusively. The study aimed to investigate the effect of collected and extended trot on the hindlimb movement pattern. Four dressage horses were fitted with markers and inertial motion sensors (IMS). High‐speed video was obtained for 2 strides on each rein in collected and extended trot on 3 different surfaces: waxed outdoor; sand/plastic granules; and waxed indoor. Maximal tarsal flexion during stance and distal metatarsal coronary band ratio (MTCR), representing fetlock extension, were determined. Inertial motion sensor data determined stride duration, speed and stride length. Data were compared between collection and extension within horses on each surface, and compared between surfaces. Collected trot had significantly lower speed and stride length but longer stride duration than extended trot on all surfaces. All horses had less tarsal flexion and fetlock extension in collected compared with extended trot (P<0.05), which is likely to increase SL loading. The study findings indicate that extended trot may increase SL strain, providing a possible explanation for the high incidence of SL injury in horses trained for extravagant movement. It is possible that substantial use of extended trot could be a risk factor for development of suspensory desmitis, which might be one contributory factor in the prevalence of suspensory desmitis in young horses repeatedly undertaking extravagant movement.  相似文献   

11.
OBJECTIVE: To investigate continuous wavelet transformation and neural network classification of gait data for detecting forelimb lameness in horses. ANIMALS: 12 adult horses with mild forelimb lameness. PROCEDURE: Position of the head and right forelimb foot, metacarpophalangeal (ie, fetlock), carpal, and elbow joints was determined by use of kinematic analysis before and after palmar digital nerve blocks. We obtained 8 recordings from horses without lameness, 8 with right forelimb lameness, and 8 with left forelimb lameness. Vertical and horizontal position of the head and vertical position of the foot, fetlock, carpal, and elbow joints were processed by continuous wavelet transformation. Feature vectors were created from the transformed signals and a neural network trained with data from 6 horses, which was then tested on the remaining 2 horses for each category until each horse was used twice for training and testing. Correct classification percentage (CCP) was calculated for each combination of gait signals tested. RESULTS: Wavelet-transformed vertical position of the head and right forelimb foot had greater CCP (85%) than untransformed data (21%). Adding data from the fetlock, carpal, or elbow joints did not improve CCP over that for the head and foot alone. CONCLUSIONS AND CLINICAL RELEVANCE: Wavelet transformation of gait data extracts information that is important for the detection and differentiation of forelimb lameness of horses. All of the necessary information to detect lameness and differentiate the side of lameness can be obtained by observation of vertical head movement in concert with movement of the foot of 1 forelimb.  相似文献   

12.
The aim of this study was to evaluate the effect of three footing surfaces on the flexion/extension, and range of motion (ROM) of the carpus, tarsus and fetlocks in the horse. The percentage of stride spent in the stance phase of sound horses at the walk was also measured. Nine sound horses were walked on hard ground (HD), soft ground (SF) and a land treadmill (LT), and five complete gait cycles were recorded by a digital video camera. Retro-reflective markers were placed on the skin at four anatomical locations on the left fore and hind limbs, and data were analyzed using two-dimensional (2D) motion-analysis software. Maximal flexion/extension angles and range of motion were calculated for each joint, and the percentage of the stride spent in stance phase was determined for each stride.Maximal flexion of the tarsus and hind fetlock was greater on LT and SF compared to HD, while maximal flexion of the carpus was greater on LT compared to HD and SF. Maximal extension of the carpus was greater on HD compared to SF and LT, maximal extension of the tarsus was greater on HD and SF compared to LT, and maximal extension of the forelimb and hind limb fetlocks was greater on LT compared to HD and SF. The greatest overall ROM of the carpus and fetlocks was achieved on LT, while the greatest overall ROM of the tarsus was achieved on SF. The stance percentage of the stride for the hind limb was significantly different between all surfaces. In conclusion, walking surface influences flexion/extension of the carpus, tarsus and fetlocks in healthy horses, which should be considered when walking equine rehabilitation cases.  相似文献   

13.
Video (60 Hz) and force (2000 Hz) data were collected from 5 sound horses during walking. Forelimb data were analysed for 8 strides (4 left, 4 right) per horse to determine sagittal plane kinematics and ground reaction forces (GRFs). The results suggested that brachial rotation was responsible for protraction and retraction of the limb as a whole, while rotations of the scapula and antebrachium elevated the distal limb during breakover and early swing then lowered it in preparation for ground contact. The coffin joint was flexed maximally at the time of peak longitudinal braking force, which occurred during breakover of the contralateral forelimb. The metacarpus was vertical at 28% stride. This was considerably earlier than the change from a braking to a propulsive longitudinal force (34% stride), which coincided with maximal extension of the fetlock joint. The longitudinal propulsive force peaked just after contact of the contralateral forelimb. During the swing phase the joints distal to the shoulder showed a single flexion cycle that peaked at 76% stride at the carpus, 81% stride at the fetlock and 84% stride at the elbow and coffin joints. The coffin and shoulder joints began to extend in the terminal swing phase and continued to extend through ground contact and early stance. The results provide normative data that will be applied in detecting changes in kinematics and ground reaction forces that are associated with specific lamenesses.  相似文献   

14.
Reasons for performing study: Dressage involves training of the horse with the head and neck placed in a position defined by the rider. The best position for dressage training is currently under debate among riders and trainers, but there are few scientific data available to confirm or disprove the different views. Objective: To evaluate the kinematic effects of different head and neck positions (HNPs) in elite dressage horses ridden at trot. Methods: Seven high‐level dressage horses were subjected to kinetic and kinematic measurements when ridden on a treadmill with the head and neck in 5 different positions. Results: Compared to free trot on loose reins the HNP desired for collected trot at dressage competitions increased T6 vertical excursion, increased sacral flexion and decreased limb retraction after lift‐off. Further increasing head or head and neck flexion caused few additional changes while an extremely elevated neck position increased hindlimb flexion and lumbar back extension during stance, increased hindlimb flexion during swing and further increased trunk vertical excursion. Conclusions: The movements of the horse are significantly different when ridden on loose reins compared to the position used in collected trot. The exact degree of neck flexion is, however, not consistently correlated to the movements of the horse's limbs and trunk at collected trot. An extremely elevated neck position can produce some effects commonly associated with increased degree of collection, but the increased back extension observed with this position may place the horse at risk of injury if ridden in this position for a prolonged period. Potential relevance: Head and neck positions influence significantly the kinematics of the ridden horse. It is important for riders and trainers to be aware of these effects in dressage training.  相似文献   

15.
The objective was to study associations between kinematics and ground reaction forces in the hindlimb of walking horses. Video (60 Hz) and force (2000 Hz) data were gathered for 8 strides from each of 5 sound horses during the walk. Sagittal plane kinematics were measured concurrently with the vertical and longitudinal ground reaction forces. The hindlimb showed rapid loading and braking in the initial 10% stride. The stifle, tarsal and coffin joints flexed and the fetlock joint extended during this period of rapid loading. The vertical ground reaction force showed 2 peaks separated by a dip; this pattern was similar to the fetlock joint angle-time graph. Peaks in the longitudinal ground reaction force did not appear to correspond with kinematic events. Total braking impulse was equal to total propulsive impulse over the entire stride. Flexion and extension of the hip were responsible for protraction and retraction of the entire limb. Maximal protraction occurred shortly before the end of swing and maximal retraction occurred during breakover. During the middle part of stance the tarsal joint extended slowly, while the stifle began to flex when the limb was retracted beyond the midstance position at 28% stride. Flexion cycles of the stifle and tarsal joints were well coordinated during the swing phase to raise the distal limb as it was protracted. The results demonstrate a relationship between limb kinematics and vertical limb loading in the hindlimbs of sound horses. Future studies will elucidate the alterations in response to lameness.  相似文献   

16.
REASON FOR PERFORMING STUDY: There are no detailed studies describing a relationship between hindlimb lameness and altered motion of the back. OBJECTIVES: To quantify the effect of induced subtle hindlimb lameness on thoracolumbar kinematics in the horse. METHODS: Kinematics of 6 riding horses were measured during walk and trot on a treadmill before and during application of pressure on the sole of the left hindlimb using a well-established sole pressure model. Reflective markers were located at anatomical landmarks on the limbs, back, head and neck for kinematic recordings. Ground reaction forces (GRF) in individual limbs were calculated from kinematics to detect changes in loading of the limbs. RESULTS: When pressure on the sole of the hindlimb was present, horses were judged as lame (grade 2 on the AAEP scale 1-5) by an experienced clinician. No significant unloading of this limb was found in the group of horses (unloading was observed in 4 animals, but was not detectable in the other 2), but statistically significant effects on back kinematics were detected. The overall flexion-extension (FE) range of motion (ROM) of the vertebral column was increased at walk, especially in the thoracic segments. Axial rotation (AR) ROM of the pelvis was also increased. At trot, the FE ROM was decreased only in the segment L3-L5-S3. During the stance phase of the lame limb, the segment T6-T10-T13 was more flexed and the neck was lowered at both gaits; the thoracolumbar segments were more extended at walk and trot. There were no significant changes in the stride length or protraction-retraction angles in any of the limbs. CONCLUSIONS: Subtle hindlimb lameness provoked slight but detectable changes in thoracolumbar kinematics. The subtle lameness induced in this study resulted in hyperextension and increased ROM of the thoracolumbar back, but also in decreased ROM of the lumbosacral segment and rotational motion changes of the pelvis. POTENTIAL RELEVANCE: Even subtle lameness can result in changes in back kinematics, which emphasises the intricate link between limb function and thoracolumbar motion. It may be surmised that, when chronically present, subtle lameness induces back dysfunction.  相似文献   

17.
A 2-year-old Appaloosa mare was admitted because of acute, severe hind limb lameness (grade 4 of 5). The hock could be flexed or extended without influencing the position of the stifle joint, and the fetlock and proximal interphalangeal joints could be extended while the hock was maintained in flexion. The diagnosis was functional loss of the reciprocal apparatus. The differential diagnoses for functional loss of the reciprocal apparatus include disruption of the common calcaneal tendon, the gastrocnemius muscle, the peroneus tertius, or the superficial digital flexor muscle. In this horse, the diagnosis was disruption of the superficial digital flexor muscle. The horse made an excellent recovery following 5 months of stall confinement.  相似文献   

18.
REASONS FOR PERFORMING STUDY: Athletic taping is used frequently by human athletes to stabilise, maintain or strengthen soft tissue structures, but empirical evidence supporting any changes in equine kinematics is lacking. OBJECTIVES: To assess the effects of athletic taping of the fetlock applied by an experienced athletic trainer on forelimb mechanics in healthy horses. HYPOTHESES: That athletic taping of the distal forelimb reduces 1) hyperextension of the fetlock joint during stance, 2) flexion of the fetlock joint during swing and 3) ground reaction forces during stance. METHODS: Ground reaction force and kinematic data were obtained for 6 healthy horses trotting at 3 m/sec for 4 sequential conditions (baseline, untaped; pre-exercise, taped; post exercise, taped post 30 mins trotting exercise; transfer, 4 h after tape removal). Data were analysed using 2-way mixed ANOVAs (condition; joint). RESULTS: A statistically significant interaction was identified for the fetlock during the swing phase (mean +/- s.d. peak flexion at baseline 157 +/- 4 degrees, reduced with taping to 172 +/- 4 degrees; P<0.05) compared with no differences across conditions for the other joints. Peak vertical force reduced significantly (P<0.05) with taping. CONCLUSIONS: Athletic taping of the fetlock does not alter the kinematics of the forelimb during stance, but does limit flexion of the fetlock during the swing phase. The decreased peak vertical force may be due to an increased proprioceptive effect. POTENTIAL RELEVANCE: Reduced peak vertical forces may be of benefit in preventing or reducing injury. Further investigation remains necessary before it can be concluded that taping should be applied for tendinous or ligamentous rehabilitation in equine patients.  相似文献   

19.
OBJECTIVE: To determine the types of musculoskeletal problems that result in lameness or poor performance in horses used for team roping and determine whether these problems are different in horses used for heading versus heeling. DESIGN: Retrospective study. ANIMALS: 118 horses. PROCEDURE: Medical records of team roping horses that were evaluated because of lameness or poor performance were reviewed to obtain information regarding signalment, primary use (ie, head horse or heel horse), history, results of physical and lameness examinations, diagnostic tests performed, final diagnosis, and treatment. RESULTS: Among horses evaluated by lameness clinicians, the proportion with lameness or poor performance was significantly greater in horses used for heading (74/118) and lower in horses used for heeling (44/118) than would be expected under the null hypothesis. Most horses examined for poor performance were lame. A significantly greater proportion of horses used for heading had right forelimb lameness (26/74 [35%]), compared with horses used for heeling (7/44 [16%]). Horses used for heading had more bilateral forelimb lameness (18/74 [24%]), compared with horses used for heeling (4/44 [9%]). Horses used for heeling had more bilateral hind limb lameness (3/44 [7%]), compared with horses used for heading (0%). The most common musculoskeletal problems in horses used for heading were signs of pain limited to the distal sesamoid (navicular) area, signs of pain in the navicular area plus osteoarthritis of the distal tarsal joints, and soft tissue injury in the forelimb proximal phalangeal (pastern) region. Heeling horses most commonly had signs of pain in the navicular area, osteoarthritis of the metatarsophalangeal joints, and osteoarthritis of the distal tarsal joints. CONCLUSIONS AND CLINICAL RELEVANCE: Horses used for heading were most commonly affected by lameness in the right forelimb. Horses used for heeling had more bilateral hind limb lameness than horses used for heading.  相似文献   

20.
REASONS FOR PERFORMING STUDY: Lameness has often been suggested to result in altered movement of the back, but there are no detailed studies describing such a relationship in quantitative terms. OBJECTIVES: To quantify the effect of induced subtle forelimb lameness on thoracolumbar kinematics in the horse. METHODS: Kinematics of 6 riding horses was measured at walk and at trot on a treadmill before and after the induction of reversible forelimb lameness grade 2 (AAEP scale 1-5). Ground reaction forces (GRF) for individual limbs were calculated from kinematics. RESULTS: The horses significantly unloaded the painful limb by 11.5% at trot, while unloading at walk was not significant. The overall flexion-extension range of back motion decreased on average by 0.2 degrees at walk and increased by 3.3 degrees at trot (P<0.05). Changes in angular motion patterns of vertebral joints were noted only at trot, with an increase in flexion of 0.9 degrees at T10 (i.e. angle between T6, T10 and T13) during the stance phase of the sound diagonal and an increase in extension of the thoracolumbar area during stance of the lame diagonal (0.7degrees at T13, 0.8 degres at T17, 0.5 degres at L1, 0.4 degrees at L3 and 0.3 degrees at L5) (P<0.05). Lameness further caused a lateral bending of the cranial thoracic vertebral column towards the lame side (1.3 degrees at T10 and 0.9 degrees at T13) (P<0.05) during stance of the lame diagonal. CONCLUSIONS: Both range of motion and vertebral angular motion patterns are affected by subtle forelimb lameness. At walk, the effect is minimal, at trot the horses increased the vertebral range of motion and changed the pattern of thoracolumbar motion in the sagittal and horizontal planes, presumably in an attempt to move the centre of gravity away from the lame side and reduce the force on the affected limb. POTENTIAL RELEVANCE: Subtle forelimb lameness affects thoracolumbar kinematics. Future studies should aim at elucidating whether the altered movement patterns lead to back and/or neck dysfunction in the case of chronic lameness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号