首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 887 毫秒
1.
采用水生植物滤池(UB和PUB)和固定膜生物滤池(SB)的复合净化模式,对鲍鱼养殖水体和系统排放水体进行净化,实现了循环水养鲍系统的清洁生产。试验结果表明,植物滤池UB对养殖水体中总氨氮(TAN)具有很高的吸收效率,从而降低了SB的硝化负荷,大大减少了TAN、NO2-N、NO3-N和COD的积累,在整个试验过程中,养殖水体中TAN、NO2-N、NO3-N和COD的浓度分别低于0.19、0.01、1.75和1.20 mg/L。由于UB滤池的吸收作用和SB的硝化作用,养殖水体中PO3-4的浓度一直保持在0.30 mg/L以下。另外,这种复合净化模式具有调节水体pH值的作用,在试验期间,养殖水体中的pH值一直保持在8.11~8.14的良好水质范围,对鲍鱼的养殖十分有利。系统排放水经另一植物滤池PUB吸收净化后,PO3-4浓度降至0.22 mg/L 以下,NO-3-N的浓度甚至降至0.10 mg/L以下。本文还建立了养殖循环水体中无机氮的循环模型,用于对养殖水体中TAN、NO2-N和NO3-N的预测和控制。  相似文献   

2.
零排放技术是循环流水水产养殖实现可持续发展的关键之一,该文以机械—细菌—草综合水处理系统为基础进行零排放循环流水水产养殖,生产系统的两个养殖池(各1.325 m3水)共养殖淡水白鲳(Colossoma brachypomum)62尾(平均体重208.3±28.6 g,养殖密度4.87 kg/m3)。经过25 d的运行,养殖池NO-3-N、TAN(总氨氮)、TN(总氮)、TP(总磷)、COD(化学需氧量)、pH等水质指标基本维持稳定(p<0.05),NO-2-N和SS(悬浮物)显著下降。在处理系统中,机械过滤器和生物滤器的大多数水质指标显著优于沉淀器沉淀区水质(p<0.05)。沉淀器沉淀区的高浓度污液定期(每天34.3 L)输送到植物滤器,间隔循环灌溉2.55 m2 NFT培高羊茅(Festuca arundinacea Schreb.),并定期(每4 d一次)回流重复利用。牧草的净化使水质发生了显著的改善(p<0.01),NO-3-N、NO-2-N、SS的净化率超过90%,TN、TP的净化率超过85%,TAN和COD的净化率为45.2%和71.6%,此外,回流水的EC和pH显著高于污液,每次回流67.5±6.0L。淡水白鲳日增重4.55 g,饲料系数1.610。  相似文献   

3.
生态型多层养鳖装置的试验研究   总被引:1,自引:2,他引:1  
介绍了生态型多层养鳖装置的结构原理。成鳖养殖试验表明,养鳖水经过红萍的生物净化后可以循环使用,水体中NH+4-N含量保持在10 mg/L以下,成功实现高密度、超浅水、集约化养鳖。  相似文献   

4.
[目的] 研究水生蔬菜对富营养化涝池水体的净化效果,为水生蔬菜等经济植物应用于西北农村地区富营养化封闭水体的生态修复提供新的思路和理论参考。[方法] 以菠菜(Spinacia oleracea)和水芹(Oenanthe javanica)为试验材料,采用浮床栽培的方式,探讨水生蔬菜对3种不同程度富营养化涝池水体中的氮(N)、磷(P)的净化效果。[结果] ①2种蔬菜修复富营养化涝池水体过程中各项N,P指标明显下降,试验结束后模拟涝池水体已基本上达到或优于地表水水质标准的Ⅴ类水标准,净化后的水体已经达到国家标准。②菠菜和水芹对水体中NH4+-N,NO3--N,PO43--P的平均去除率分别为94.37%,96.66%,88.95%和97.27%,94.64%,83.48%,显著高于对照(p<0.05),对以上营养元素表现出良好的吸收效率,表明2种蔬菜可以高效净化富营养化涝池水体。③2种蔬菜对TN的去除率和日均去除速率随水体中TN浓度升高而上升,去除率和日均去除速率均为:菠菜<水芹;随TP浓度升高,菠菜对TP去除率降低,水芹对TP去除率升高,去除率和日均去除速率为:菠菜>水芹,说明水芹更适宜含高浓度N的富营养化涝池水体,菠菜更适用于含高浓度P的富营养化涝池水体。[结论] 试验条件下,菠菜和水芹对3种程度富营养化水体中TN,TP的净化效果良好,2种蔬菜的吸收对水体净化起着重要作用。  相似文献   

5.
密云水库作为北京地区最重要的地表饮用水水源地,其水质优劣直接关系到首都的社会经济发展,开展密云水库水污染监测和治理研究具有重要的现实意义。以密云水库上游流域为研究区,通过不同尺度流域水体营养物质监测,分析了水库上游河流水体营养物质现状;通过分割流量过程线,划分了水体营养物质来自点源和非点源污染的比例。研究结果表明,依据标准(GB3838-2002)要求,密云水库上游河流水体TN含量几乎全部超标,且15.9%样本的TP含量超标。密云水库的营养物质平均40.3%来自点源污染,59.7%来自非点源污染;入库水体中50.1%的TN,49.1%的NO3--N,39.0%的NH4+-N,26.5%的TP和36.8%的CODMn来自点源污染;49.9%的TN,50.9%的NO3--N,61.0%的NH4+-N,73.5%的TP和63.2%的CODMn来自非点源污染。  相似文献   

6.
为确定封闭循环海水育苗系统的水处理工艺流程,了解各水处理单元的运行效果及育苗水体的水质状况,建立了一套100 m3育苗水体的生产中试系统。以海湾扇贝为实验生物进行苗种循环水培育试验,试验过程中跟踪监测各水处理单元进出水口处目标污染物的浓度,并长期监测育苗池中各理化因子水质指标。监测结果说明生物滤池能有效去除氨氮、亚硝酸氮和COD,同时各水处理单元联合对SS的去除率达80%。育苗池中氨氮、亚硝酸氮和COD的长期统计平均值分别为0.023、0.004和1.43 mg/L,水质优良。这证明该系统水处理工艺可行,能有效去除目标污染物。  相似文献   

7.
[目的] 针对涝池近年来出现的水体富营养化现状,明确涝池污染特征和水质现状,为涝池水体净化研究和水环境保护提供科学依据。[方法] 选取陕西省咸阳市14个具有代表性的涝池,从涝池的面积、深度、蓄水状况、主体功能等方面出发,测定其水体PH,DO,TN,NH4+-N,NO3--N,TP,PO43--P的浓度,应用标准指数法和综合污染指数法综合分析涝池水质状况。[结果] ①调查区域的涝池水体污染与涝池管护缺失导致的外源污染严重和乡村居民农业生产活动造成的农业面源污染有关。②大部分涝池水质处于严重污染状态,无法满足农业用水及一般景观的用水标准,其中,磷类营养盐是水体污染的主要因子。[结论] 涝池水体污染具有农村生活污水的典型特点,应根据水体污染特点有针对性地选择适宜乡村环境的治理方式。  相似文献   

8.
3 种挺水植物吸收水体NH4+、NO3-、H2PO4- 的动力学特征比较   总被引:3,自引:1,他引:2  
本文用动力学试验研究了具有景观价值的3 种挺水植物—— 水生美人蕉(Canna generalis)、细叶莎草(Cyperus papyrus)、紫芋(Colocasia tonoimo)对H2PO4-、NH4+、NO3- 的吸收特征及差异。试验结果表明: 3 种挺水植物吸收H2PO4- 时, 美人蕉的吸收速率最快, 且在较低离子浓度条件下也可以吸收该离子, 说明其具有嗜磷特性, 能够适应广范围浓度H2PO4- 环境; 吸收NO3- 时, 细叶莎草的速率最快, 但对低浓度NO3- 环境的适应能力较差, 美人蕉吸收NO3- 的特性与细叶莎草刚好相反; 吸收NH4+ 时, 细叶莎草的吸收速率最快, 且在低浓度NH4+ 环境下仍能吸收该离子, 而美人蕉的吸收速率最慢, 但能在低浓度NH4+ 环境下吸收该离子。说明不同植物对养分的吸收特性存在较大差异, 各自的污染水体修复适用范围也不同。美人蕉可用于各种浓度H2PO4- 污染的水体修复; 而NO3- 污染严重的水体最适宜用细叶莎草作先锋植物, 修复到一定程度后再种植美人蕉来维持水质; 细叶莎草在各种浓度NH4+ 污染的水体中均适用, NH4+ 污染较轻的水体也可用美人蕉修复。  相似文献   

9.
该研究首次将复合垂直流人工湿地同池塘养殖结合,通过构建养殖-湿地生态系统,验证人工湿地对水产养殖用水和废水净化与回用的可行性。近9个月的新建人工湿地运行结果表明,水力负荷从313、469、625 mm/d增加到781 mm/d,人工湿地对TSS、CODCr和BOD5去除率的变动范围分别为80.5%~82.9%、45.2%~64.2%和61.0%~77.0%,对NH4-N、NO-3-N、TN去除率的变动范围分别为51.5%~67.8%、-90.6%~40.0%和29.1%~68.6%,对TP和IP的去除率为72.7%~89.1%和0~33.3%,对细菌总数、总大肠菌群、藻类等生命物质也有较好的去除效果,湿地出水水质除溶氧外能达到国家渔业水质标准。初步结果表明人工湿地应用于水产养殖用水处理和回用具有广阔的前景。  相似文献   

10.
农田面源污染已成为引起水体富营养化的主要原因之一。为了减少稻田氮素流失、改善稻田局部水体养分负载过重的问题,采用盆栽试验,通过生物炭吸附富营养水中的养分后再利用于盆栽水稻,设置主区为持续淹水灌溉(IF)与干湿交替灌溉(IA),副区为1个对照(常规施氮,N1C0)与4种不同用量的氮肥与氮负载生物炭处理(N3/4C1、N3/4C2、N1/2C1、N1/2C2),其中N3/4、N1/2表示氮肥施入量为当地传统施氮量(N1)的3/4,1/2倍;C1、C2分别为10 t/hm2和20 t/hm2氮负载生物炭。结果表明:(1)减少氮肥施入配施氮负载生物炭显著提高了常规施氮处理田面水的pH;(2)常规施氮肥处理下,干湿交替灌溉(IA)田面水NH4+—N平均浓度较持续淹水灌溉(IF)高8.0%,但是添加20 t/hm2氮负载生物炭后,干湿交替灌溉田面水NH4+—N平均浓度低于持续淹水灌溉处理;(3)水稻生育后期,氮负载生物炭对NH4+—N具有明显的缓释作用,而在干湿交替灌溉中,减施氮肥配合添加氮负载生物炭处理较N1C0处理降低了田面水NO3-—N浓度;(4)减施氮肥配合添加氮负载生物炭可提高水稻分蘖率,而添加20 t/hm2氮负载生物炭在氮肥施用量较少时,有利于提高水稻的有效分蘖率。综上,氮负载生物炭不仅可以降低富营养水中30.8%含氮量,还能显著降低施肥初期水稻田面水中NH4+—N浓度,降低流失风险,延长NH4+—N的释放时间而减少1/4的施氮量和保证水稻生育末期的氮素需求,从而有利于水稻生长。  相似文献   

11.
流化床生物滤器净化循环水养鱼系统的工艺与特性研究   总被引:6,自引:3,他引:6  
封闭式集约化养鱼,需要选择和使用效果好、负荷率高的水处理方法,以提高单位水体的鱼载量和降低成本。该试验在封闭式集约养鱼系统中采用了流化床生物滤器水净化技术,并对其性能进行了研究。结果表明,在流化床生物滤器出水总氨平均值低于0.5 mg/L时,鱼载量是固定床生物滤器的2~3倍,总氨负荷是固定床生物滤器的3倍,更节省水资源。采用该系统养鱼,鱼类生长正常,管理方便,占地面积和建筑费用可减少50%。  相似文献   

12.
While composting transforms manure wastes into useful fertilizer, it also produces odors during the decomposition process. Biofiltration is a desirable method to control composting odor. This study was conducted to investigate the efficiency of using compost as a biofilter. A mixture of cattle manure and fresh compost was composted in a bin equipped with a suction-type blower. The exhaust gas was filtered through the biofilter of fresh compost. The composting temperature affected the ammonia emission. When the composting temperature was relatively high, the highest ammonia emission appeared in two experiments. The biofiltering properties were investigated according to flow rates and filter depths for two different types of fresh composts (experiment I and II). At the flow rate of 30 L/min, ammonia removal rate was 80.5% for biofilter A(detention time 56.5 s) and 99.9% for biofilter B (detention time 113 s). At the flow rate of 50 L/min, the ammonia removal rate was 82.5% for biofilter A (detention time 33.9 s) and 97.4% for biofilter B (detention time 67.8). The fresh compost could be used as a biofilter medium for odor control during composting process. The moisture content(MC) of the biofilter material increased by absorbing moisture from the exhaust gas, while the pH was decreased due to the degradation of nitrogenous compounds. As the moisture in the exhaust gas increased the MC of the biofilter, there was no need to spray water to the biofilter medium to control moisture content. While the total nitrogen(T-N) of the biofilter increased by absorbing ammonia, the total carbon (T-C) remained unchanged resulting in decrease of the C/N ratio.  相似文献   

13.
抽屉式生物滤器净化效果   总被引:5,自引:2,他引:3  
以浸没式生物滤器为对照,研究了抽屉式生物滤器对循环养殖水的净化效果和不同氧含量对NH4-N、NO2-N、化学需氧量(COD)、异养菌、弧菌去除率的影响。结果表明:抽屉式生物滤器单位体积对NH4-N、NO2-N、COD、异养菌、弧菌的去除率均显著高于浸没式生物滤器,前者分别是后者的2.68、7.37、3.33、24.87、46.67倍;高溶氧对生物滤器NH4-N、NO2-N、COD、异养菌的去除率显著高于低溶氧条件下的去除率,高溶氧可维持养殖系统较低的NH4-N、NO2-N、COD、弧菌数量。在抽屉式循环系统预计最大养殖密度下,养鱼池水质良好,NH4-N质量浓度<0.2 mg/L,NO2-N质量浓度<0.4 mg/L,鱼成活率高于98%。该试验表明:抽屉式生物滤器是一种易冲洗、占地面积小、净化效率高的生物滤器;高溶氧能提高鱼类生长率、生物滤器净化率和抑制弧菌的生长。  相似文献   

14.
The goals of the study were to determine the effectiveness of a laboratory-scale biofilter on the removal of methyl tert-butyl ether (MTBE) and investigate the operating parameter effects on biofilter performance. The experimental results show that average MTBE removals of 53.6–93.2% were observed at loads of 2.5–20.1 gm?3 h?1 and an empty-bed residence time of three minutes, after continuous operation for four months throughout the biofilter acclimation period. After a one-day recovery period operation, the biofilter system recovered from the introduction of a shock load. More than 99% removal efficiencies were achieved for the inlet MTBE concentration at 50 ppmv and with the highest residence time. MTBE removals at the bottom section of the biofilter were consistently lower than for the top section, which was attributed to insufficient microorganism growth in the bottom section. The parameters estimated by using the Michaelis-Menten equation were 1.116 ± 0.51 ppmv s?1 for the maximum removal rate (V m ), and 26.38 ± 17.21 ppmv for the half-saturation constant (Ks), evaluated at the biofilter exit.  相似文献   

15.
针对工厂化循环水养殖废弃物资源化利用难题,该研究将传统鱼菜共生技术进行改进,提出并构建一种菜-鱼复合设施种养模式。通过设计3路水循环工艺流程,将工厂化循环水养殖、蔬菜无土栽培(即鱼菜共生系统)与传统土壤种植结合,以促进水产养殖固液废弃物全循环利用。基于质量平衡原理,根据投饲量和养殖尾水排放量提出鱼菜生物量配比和发酵装置体积计算方式,以提高系统营养物质利用效率。建立一套中试系统,使用该系统同时养殖大口黑鲈、种植水培生菜和番茄160 d,结果显示:鱼类生长良好,最终养成密度为41.6 kg/m3,特定生长率为0.42%,存活率99.95%,饵料系数为1.4;蔬菜长势良好,收获水培生菜1 205 kg,收获番茄果实2 400 kg。水质情况总体稳定:总氨氮平均浓度为(0.83±1.46)mg/L、亚硝酸盐平均浓度为(0.035±0.062)mg/L、硝酸盐平均浓度为(25.1±8.06) mg/L、溶解氧浓度范围为4.25~7.16 mg/L、p H值平均为6.8;水产养殖废弃物发酵后,可使水体中总磷含量提高141%,钾离子含量提高7%;系统经济效益和生态效益较好:年利...  相似文献   

16.
A pilot-scale biofiltration unit was constructed at a pig finishing building on the University College Dublin research farm. The biofiltration system was investigated over three trial periods. Exhaust air from a single pen was extracted by a variable speed centrifugal fan and passed through a humidifier and biofilter. A 0·5 m depth of woodchips of over 20 mm screen size was used as the biofilter medium. The moisture content of the medium was maintained at 64±4% (wet weight basis) for trial one and 69±4% (wet weight basis) for trials two and three using a load cell method. The volumetric loading rate varied from 769 to 1898 m3 [air] m−3 [medium] h−1 during the three trial periods. Odour and ammonia removal efficiencies ranged from 77 to 95% and 54 to 93%, respectively. The pH of the biofilter leachate remained between 6 and 8 throughout the experimental periods. The pressure drop across the biofilter ranged from 14 to 64 Pa. It is concluded that a wood chip media particle size >20 mm is suitable for use in biofiltration systems on intensive pig production facilities. This will minimize the pressure drop on the system fans to reduce overall operation costs. It is recommended that a filter bed moisture content (wet weight basis) of greater than 63% be used to maintain overall efficiency. An efficient air moisturizing system (humidification and bed sprinkling) along with a properly designed air distribution system must be incorporated in the overall design when operating at such high volumetric loading rates.  相似文献   

17.
The compost media biofilter is one of the most important biological processes applied to treat waste gases. Research on a pilot-scale compost media biofilter treatment of volatile organic compounds (VOCs) was performed. The volume of biofilter media was 4.3 m3 and the biofilter operated for 57 days. Fluctuation of water content in the biofilter media was investigated. With continuous switching of air flow direction, the water content of the biofilter media could be managed without any addition of exterior water. The range of average temperature of each stage measured between 18°C to 73°C. When the air flow direction switched from upward to downward, temperatures of lower stages increased and temperatures of upper stages decreased. Temperatures of one side of the media were usually higher than those of the opposite side at the same depth. Compost has the advantages of different types of nutrients present in the media. With the compost media, the removal efficiency of the biofilter could be maintained at more than 99% for the experimental period.  相似文献   

18.
The performance of a lab-scale model biofilter system was investigated to treat CH4 gas emitted from modern sanitary landfills using landfill cover soil as the filter bed medium. From the batch experiment to measure the influence of moisture content and temperature of the filter medium on CH4 removal capacity of a biofilter system, the optimum moisture content and temperature were found to be 10–15% by weight and 25–35°C, respectively. From the model biofilter experiment to measure the influence of inlet CH4 concentration and landfill gas inflow rate on CH4 removal capacity of a biofilter system, it was found that the removal percentage of CH4 increased as the inlet CH4 concentration decreased. Up to a landfill gas inflow rate of 1,000 mL min?1 (empty bed retention time?=?7.7 min), the CH4 removal efficiency of the biofilter was able to reach 100%. Up to CH4 loading rate of 278.5 g CH4 m?3 h?1, the ratio of elimination capacity to CH4 loading rate was 1 while they were 0.68 and 0.34 at CH4 loading rate of 417.8 and 557.1 g CH4 m?3 h?1, respectively. The CH4 removal by biofilter was also confirmed by measuring the change of temperature and moisture content of the filter medium in the model biofilter. The results demonstrated that the installation of a properly managed biofilter system should be effective to reduce atmospheric CH4 emissions from modern sanitary landfills at the low CH4 generation stage.  相似文献   

19.
Biological treatment systems such as biofilters offer a potential alternative to the existing physicochemical techniques for the removal of volatile organic compounds from gaseous emissions. In this experimental work, continuous phase biofiltration of xylene vapors were performed in a laboratory scale compost biofilter that was inoculated with a xylene-acclimatized consortium. The performance was assessed by continuously monitoring the removal efficiency (RE) and elimination capacity (EC) of the biofilter at loading rates varying between 2–220 g?m?3?h?1. The steady-state removal efficiencies were maintained between 60% and 90% up to a loading rate of 80 g?m?3?h?1. The removal efficiency decreased significantly at loading rates higher than 100 g?m?3?h?1. The pressure drop values were consistently less and insignificant in affecting the performance of the system. The present study also focuses in evaluating the stability of biofilter during shut down, restart, and shock-loading operations. An immediate restoration of biological activity after few days of starvation indicated their capability to handle discontinuous treatment situations which is more common to industrial biofilters. The sensitiveness of the biofilm to withstand shock loads was tested by abruptly increasing/decreasing the loading rates between 9–55 g?m?3?h?1, where, removal efficiencies between 60–90% were achieved. These results prove the resilience of the biomass and the stability of the compost biofilter. Anew, results from kinetic analysis reveal that, steady-state xylene removal in the biofilter can be adequately represented by Michaelis–Menten type kinetics, and the kinetic constants namely, ECmax (120.4 g?m?3?h?1) and K s (2.21 g?m?3) were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号