首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genotypes for the glume colour character have been studied in 27 cultivars of common wheat (Triticum aestivum L.) originated from old landraces, and 1 specimen of T. petropavlovskyi Udacz. et Migusch. by means of analysis of the F2 populations. The following tester lines have been used: white-glumed ‘Novosibirskaya 67’ ‘Diamant I’, and ‘Federation’, carrying the Rg1 gene alone; lines RL5405 and near-isogenic ‘Saratovskaya 29’ *5 (T. timopheevii Zhuk./T. tauschii (Coss.) Schmal.), carrying Rg2; line (1A ‘CS’ × ‘Strela’) with Rg3. The red glume colour in 21 cultivars of Triticum aestivum and in the accession of T. petropavlovskyi has been shown to be determined by the single gene Rg1, located on chromosome 1B. Five cultivars carrying the gene Rg3 for red glumes on chromosome 1A have been revealed. The cultivars ‘Zhnitsa’ and ‘Iskra’ carry the gene Rg3 alone. The red glume colour in the cultivars ‘Milturum 321’, ‘Milturum 2078’, ‘Sredneural'skaya’ is controlled by two genes, Rg1 and Rg3. In two common wheat cultivars, ‘Sarrubra’ and ‘Krasnoyarskaya 1103’ the red glume colour is determined by Rg1, inherited from local populations (‘Turka’ and ‘Kubanka’ respectively) of tetraploid wheat T. durum Desf. var. hordeiforme Host. Wide occurrence of the Rg1 gene in common wheat has been confirmed. On the contrary, none of the investigated varieties carries the gene Rg2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
An electrophoretic study of gliadin and glutenin proteins, mainly low-molecular-weight (LMW) Glutenin Subunits, was undertaken to investigate possible assoeiations between these proteins and gluten strength. Thirty-eight durum wheat cultivars having different origins and currently grown in Spam were analysed. Different electrophoretic methods were used to analyse the seed storage proteins. Protein grain content was estimated and gluten strength was measured by the SDS-sedimentation test. New patterns for LMW glutenins were observed. Besides the known patterns of LMW-1, associated with γ-gliadin 42, and LMW-2 associated with γ-gliadin 45, six cultivars had LMW-2? associated with γ-gliadin 43, one cultivar showed LMW-2* associated with γ-gliadin 44, and another cultivar, null for γ-42 and γ-45, had LMW-1?. Significant differences for gluten strength were found among groups of cultivars with different LMW patterns. High molecular weight glutenins were found in general to be poor indicators of viscoelastic properties, although band 20 showed a negative influence on quality. The results are discussed in relation to development ol cultivars with good gluten strength.  相似文献   

3.
以14个绵阳系列小麦品种为材料,研究不同品种籽粒蛋白质含量、蛋白组分和SDS-沉降值的变化规律,以及籽粒蛋白质含量及其组分与SDS-沉降值的关系,为绵阳系列小麦品种的选育提供理论依据。研究结果表明,不同小麦品种籽粒蛋白质含量不同,变幅为7.30%~13.09%,多数品种属于低蛋白质含量类型。多数品种的SDS-沉降值分布在20~30 mL范围内。不同品种籽粒蛋白组分各异。籽粒蛋白质含量、贮藏蛋白含量、谷蛋白和醇溶蛋白含量都与SDS-沉淀值成极显著的正相关关系。高的籽粒蛋白质含量和谷蛋白与醇溶蛋白含量是绵阳系列小麦品种获得较好烘烤品质的前提。  相似文献   

4.
Recombination within the closely linked genes encoding for omega and gamma gliadins at the complex Gli-B1 locus present on the short arm of chromosome 1B was detected in a durum-wheat line (Triticum durum) from Iran. This recombinant differs from a previous one the authors detected in the durum-wheat cultivar ‘Berillo’ since it shows the gamma gliadin component 45 associated with a triplet of omega components usually found linked with the allelic gamma gliadin 42. Analysis of low-molecular-weight glutenin subunits, encoded by genes at the complex Glu-B3 locus associated with the Gli-B1 locus, showed the presence of the protein type designated LMW-1 which is peculiar to durum-wheat cultivars possessing the gamma gliadin 42.  相似文献   

5.
Gliadin allele composition of Yugoslav winter wheat cultivars   总被引:9,自引:0,他引:9  
Summary The complete gliadin allele composition of 57 Yugoslav common winter wheat cultivars was studied. Large differences were found in gliadin genotypes among cultivars bred at different Yugoslav breeding centres as well as between early and recent wheats bred in the Novi Sad breeding centre. Yugoslav wheats have limited variation in gliadin alleles, of which Gli-A1a, Gli-B1b, Gli-B1l, Gli-D1b, Gli-A2e, Gli-B2b, Gli-D2a are shown to be the most frequent. Examples of favoured alleles to new cultivars are described. 40% of the studied wheat cultivars have natural biotypes differing in gliadin allele composition. The frequency of cultivars with the biotypes differs greatly among breeding centres.  相似文献   

6.
Evaluation of wheat cultivars from different eras allows breeders to determine changes in agronomic and end-use quality characteristics associated with grain yield and end-use quality improvement over time. The objective of this research was to examine the trends in agronomic and end-use quality characteristics of hard red winter wheat cultivars grown in Nebraska. Thirty historically important and popular hard red winter wheat cultivars introduced or released between 1874 and 2000 were evaluated at Lincoln, Mead and North Platte, Nebraska in 2002 and 2003. An alpha lattice design with 15 incomplete blocks of two plots and three replications was used at all locations. Agronomic (days to flowering, plant height, spike length, culm length, grain yield and yield components, and grain volume weight) and end-use quality (flour yield, SDS-sedimentation value, flour protein content, and mixograph time and tolerance) traits were measured in each environment. Highly significant differences were observed among environments, genotypes and their interactions for most agronomic and end-use quality characteristics. Unlike modern cultivars, older cultivars were low yielding, and less responsive to favorable environments for grain yield and yield components. Semidwarf cultivars were more stable for plant height than traditional medium to tall cultivars. All cultivars had high grain volume weight since it is part of the grading system and highly selected for in cultivar release. Modern cultivars were less stable than older cultivars for SDS-sedimentation and mixing tolerance. However, the stability of older cultivars was attributed to their having weak mixing tolerance and reduced SDS-sedimentation values. The reduced protein content of modern cultivars was offset by increased functionality, as measured by mixograph and SDS sedimentation. In conclusion, breeders have tailored agronomic and end-use quality traits essential for hard red winter wheat production and marketing in Nebraska.  相似文献   

7.
Genetic mapping of loci determining long glumes in the genus Triticum   总被引:1,自引:0,他引:1  
Elongated glumes are present in thetetraploid wheat species T.polonicum, T. turanicum, T.durum convar. falcatum and in thehexaploid species T. petropavlovskyi.Inheritance of glume length was studiedwith the aim to map the respective lociusing wheat microsatellite markers. In T. polonicum and T. petropavlovskyiloci conferring long glume were mapped nearthe centromere on chromosome 7A. These twoloci are designated P-A pol 1 andP-A pet 1, respectively. It isshown that both are probably homoeoallelicto each other and to the P gene ofT. ispahanicum on chromosome 7B. The loci determining elongated glumes in T. turanicum and T. durum conv. falcatum are not homoeologous to the P loci in the centromeric region of thegroup 7 chromosomes.  相似文献   

8.
Three cultivars of wheat showing different levels of spontaneous karyotypic instability were studied regarding their stability in vitro for a number of characters, i.e. chromosome structure, gliadin pattern, glume and grain colour, awn type, chlorophyll pigmentation and plant morphology. The progenies of somaclones derived from immature embryos of both aneuploid and euploid plants were used in this study along with foundation seeds and a large number of their sexual progeny in order to discriminate between pre-existent variability and any novel variation induced by the in vitro culture. Only one translocation not described before and a new gliadin pattern were detected which could be ascribed to the effects of tissue culture, suggesting that this technique is not effective for inducing novel variation for breeding purposes in wheat.  相似文献   

9.
Wheat grain size and shape are associated not only with yield but also with product and milling quality. A subspecies of cultivated tetraploid wheat, Triticum turgidum ssp. polonicum, is characterized by elongated glumes. To elucidate morphological effects of the subspecies differentiation-related gene, we conducted QTL analysis for grain and spikelet shape using a mapping population between two tetraploid wheat subspecies, polonicum and durum. P1, the gene controlling the elongated glumes, was located on chromosome 7A, and the polonicum-type allele acted in an incomplete dominance manner to express the elongated glume phenotype. The polonicum allele of the P1 locus significantly affected not only glume length but also grain shape, spike shape, awn length and seed fertility in tetraploid wheat. The elongated glume phenotype was correlated with an increase in spike length, grain length and grain weight, and with a decrease in fertility, grain number and awn length. Thus, the subspecies differentiation-related gene in subspecies polonicum dramatically affects grain shape accompanied by alteration of spikelet shape in tetraploid wheat.  相似文献   

10.
Pan bread and dry white Chinese noodle quality in Chinese winter wheats   总被引:31,自引:0,他引:31  
Improvements in pan bread quality and Chinese dry white noodle (DWCN) quality are the major breeding objectives in the north China winter wheat region. Eighty-one wheat cultivars and advanced lines were sown in two locations in the 2000–2001 season to evaluate the quality of winter wheat germplasm and investigate the association between pan bread quality and DWCN quality. Significant variability was observed for grain, pan bread, and DWCN quality attributes. Six cultivars and lines showed very good pan bread quality, 23 showed excellent DWCN quality in both locations, and the cultivars Yumai 34 and Sunstate showed superior quality for both food products. Protein content and grain hardness were significantly associated with pan bread quality, while the gluten quality-related parameters SDS-sedimentation value, Farinograph stability, and Extensograph maximum resistance, were significantly associated with pan bread quality score, and accounted for 59.3–72.3% of its variation. Yellow colour (b, CIE Lab) showed a strong negative association with pan bread and DWCN quality largely due to the strong and negative association between yellow colour and gluten strength parameters in this germplasm pool. Flour ash content and polyphenol oxidase (PPO) had a negative moderate effect on noodle colour, while protein content and grain hardness were negatively associated with noodle colour, appearance, and smoothness. The association between SDS-sedimentation volume, Farinograph stability, and Extensograph maximum resistance and DWCN score fitted a quadratic regression model, accounting for 31.0%, 39.0%, and 47.0% of the DWCN score, respectively. The starch pasting parameters, peak viscosity and paste breakdown, contributed positively to DWCN quality, with r = 0.57 and 0.55, respectively. Quality requirements for pan bread and DWCN differ in colour, gluten strength, and pasting viscosity. It is suggested that PPO, yellow pigment, SDS sedimentation volume, and peak viscosity are parameters that could be used to screen for DWCN quality in the early generations of a wheat-breeding program.  相似文献   

11.
A synthetic hexaploid, Triticum timofeevii×T. tauschii, was used to transfer disease resistance genes to the commercial cultivar Saratovskaya 29 (S29) by backcrossing. After five backcrosses the resulting derivatives still showed some traits of the synthetic, namely brown spike glumes and several gliadin components. Genetic analysis showed that the derived forms had inherited the Gli-D1 allele of the synthetic, which was found to be tightly linked to a gene for glume colour. Recombination percentages between these genes was estimated to be 2.5 ± 1.7%. The development of the derivatives was also accompanied by a rearrangement within the Gli-B1 locus, resulting in the formation of a new variant of the allele in S29.  相似文献   

12.
Gliadin proteins extracted from fifteen Chinese and Yugoslav winter wheat cultivars were fractionated using a new separation technique – Capillary Zone Electrophoresis (CZE). Different CZE conditions were defined to optimize resolution and reproducibility of gliadin separations. Excellent resolution and high reproducibility of gliadin CZE patterns were obtained by using 47 cm length, 50 μm i.d. capillaries at 15 kV and 30° C in sodium borate buffer system with acetonitrile (ACN) and sodium dodecyl sulfate. By using these CZE conditions, gliadin proteins from each cultivar were easily separated into more than 35 components. This resolution is generally superior to that of one- and two-dimensional electrophoresis and RH-HPLC. Analysis of reproducibility of gliadin CZE patterns from Chinese cultivar ‘Lumai 6’ showed that the average relative standard deviation (RSD) for peak migration times and heights was 0.21% and 4.06%, respectively. Gliadin electrophoregrams of all cultivars studied showed clear qualitative and quantitative differences, including presence or absence of some major peak, migration times and heights of peaks. Specifically, some closely related cultivars that were not differentiable by A-PAGE, were readily differentiated by CZE. In addition, winter wheat cultivars from China and Yugoslavia showed greater differences in gliadin compositions revealed by CZE. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Summary Studies were made of the presence and frequency of occurrence of gliadin bands 42 and 45 in three samples of Aegilops sharonensis Eig and 59 samples of wild tetraploid wheat (Triticum dicoccoides Korn.) from natural distributions of these species in Israel.Two samples of Ae. sharonensis possessed a band in position 45 and one possessed no bands corresponding to either band 45 or band 42. In T. dicoccoides, band 45 was either present or not and 42 was always absent. In its grassy and intermediate growth habit forms, (believed to be more primitieve than the cercal forms) band 45 appeared to be more frequent than in the cereal form.The presence of band 45 in the Ae. sharonensis, and its relatively high frequency in T. dicoccoides, populations from Mt. Hermon (likely to be relatively free from introgression from cultivated tetraploid wheat) indicate the likelihood of a primary origin of the allele coding for band 45. The absence of band 42 from all Ae. sharonensis and T. dicoccoides populations in this study, indicates a more recent evolutionary origin of the allele coding for this band, possibly arising as a mutation during the domestication of tetraploid wheat.The results have implications for breeding programmes in tetraploid wheat.  相似文献   

14.
N. Watanabe  I. Imamura 《Euphytica》2002,128(2):211-217
The Chinese wheat landrace, Xinjiang rice wheat (T. petropavlovskyi Udacz. et Migusch., 2n = 42), known as ‘Daosuimai’ or rice-head wheat is characterized by long glumes, and was found in the agricultural areas in the west part of Talimu basin, Xinjiang, China in 1948. The gene for long glume from T. petropavlovskyi was introduced into a line of spring durum wheat, LD222. The gene for long glume is located approximately46.8 cm from the cn-A1 locus, which controls the chlorinatrait. Significant deviation from a 3:1 in the F2 of LDN7D(7A)/ANW5C confirmed that the long glume of T. petropavlovskyi can be controlled by a gene located on chromosome 7A. The gene locates approximately 12.4 ± 0.5 cM from the centromere on the long arm of 7A. It is considered that the gene for long glume from T. petropavlovskyi is an allele on the P 1 locus, and it should be designated as P 1a. It is suggested that T. petropavlovskyi originated from either the natural hybrid between T. aestivum that has an awn-like appendage on the glume and T. polonicum or a natural point mutation of T. aestivum. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Summary Gelprotein or SDS-insoluble gel-forming glutenin was isolated from wheat flour by extraction with an aqueous 1.5% SDS solution. Remarkable intervarietal differences were observed both in amount and subunit composition of these proteins.The amount of gelprotein and the SDS-sedimentation volume both proved to be good parameters for the bread-making quality of wheat cultivars. A high correlation was observed between amount of gelprotein and SDS-sedimentation volume. The amount of gelprotein was therefore tentatively assumed to be the essential basis of the SDS-sedimentation test.The subunit composition of the gelprotein was studied by SDS-PAGE after reduction of SS bonds by mercaptoethanol. It was found that the average bread-making quality of wheat cultivars and progeny of the cross Atlas 66 x Atys which possessed subunits 3 and 10, coded for by chromosome 1D, was significantly higher than that of wheat samples possessing subunit 2 and 11, their allelic counterparts.  相似文献   

16.
Durum wheat quality is controlled by endosperm protein content and composition. Electrophoretic, protein content and SDS sedimentation analyses were carried out on a large collection of accessions of durum wheat from Turkey, and compared with Italian cultivars. A number of patterns were detected, resulting from the combination of different alleles at genomes A and B, and new allelic variants were identified. Genotypes with the same allele at Gli-B1 showed inconsistencies in the comparison of low molecular weight glutenin subunits (LMW-GS), suggesting caution in considering γ-gliadins as genetic markers for pasta quality. Variation in protein content and SDS sedimentation values was wider in the Turkish material than in the Italian cultivars, the values of which were in line with cultivars from Australia, Canada, France, and the USA. A substantial amount of the variation in gluten properties was explained in terms of protein composition, with LMW-GS making the largest contribution. Reversed phase high performance liquid chromatography (RP-HPLC) analyses were carried out on two biotypes of the Italian cultivar Lira that differ at the Gli-B1/Glu-B3 loci (Lira 42 has γ-42, LMW-1, and poor quality; whereas Lira 45 has γ-45, LMW-2, and good quality). The results indicated that differences in quality may be due to: 1) the absolute amount of LMW glutenins which was greater in LMW-2; 2) the relative predominance of LMW-s type and LMW-m type subunits in Lira 45 glutenins which act as polymer chain extenders; and 3) the higher proportion of the α-type and γ-type glutenin subunits, in Lira 42 glutenins, which have an additional (nine) cysteine residue in the N-terminal region and act as glutenin chain terminators. The conclusion reached was that breeding for quality should consider selection for LMW-GS and against α-type and γ-type glutenin subunits. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The inheritance of isoproturon tolerance exhibited by the selected progenies of durum wheat was investigated. This tolerance to the herbicide isoproturon had been transferred from Triticum monococcum to durum wheat cultivars. It was shown to be conditioned by a single dominant gene  相似文献   

18.
A. Blum    Bebi  Sinmena  G. Golan  J. Mayer 《Plant Breeding》1987,99(3):226-233
Landraces of tetraploid and hexaploid wheat from the Northern Negev in Israel were evaluated over two years for their grain quality attributes. Twenty-one populations of tetraploid wheat (Triticum durum, represented by 56 accessions) and 8 populations of hexaploid wheat (T. aestivum and T. compactum, represented by 13 accessions) were compared with 3 and 4 modern improved Israeli cultivars of tetraploid and hexaploid reheat, respectively. This comparison allowed to estimate the progress made in the improvement of gram quality m present-day cultivars. Except for grain protein content in the hexaploids, significant variation was revealed among landraces in kernel weight, protein content (tetraploids), sedimentation, mixograph score and carotin content. The best modern cultivars were comparable to the best landraces in kernel weight and carotin content (tetraploids), indicating that modern wheat breeding maximized kernel weight and carotin content, as compared with the tested landraces. Gram protein content and/or quality was not maximized in modern cultivars and its improvement was deemed possible by introgression from the best landraces in this respect.  相似文献   

19.
Over recent years, quality has become an important commercial issue for durum wheat breeders. Modern breeding methods are most efficient for producing and supplying the best quality raw materials to the pasta industry. Here we assessed the effectiveness of molecular marker-assisted selection of quality traits in durum wheat. To this end, DNA and quality trait markers were jointly used to analyze quality-related traits in a durum wheat collection. A total of 132 durum wheat (Triticum turgidum ssp. durum) Mediterranean landraces, international lines, and Moroccan cultivars were analyzed for seven important qualityrelated traits including thousand-kernel weight (TKW), test weight (TW), gluten strength, yellow pigment (YP), and grain protein content (GPC). Additionally, 18 simple sequence repeat (SSR) markers previously reported to be associated with different quality traits were analyzed. Of these, 14 (78%) were polymorphic and four were monomorphic. There were between two and seven alleles per locus, with an average of four alleles per locus. The average phenotypic variation value (R2) ranged from 2.81 to 20.43%. Association analysis identified nine markers significantly associated with TKW, TW, and YP, followed by eight markers associated with GPC, six markers associated with yellow index b, four markers associated with brightness L, and three markers associated with SDS-sedimentation volume. This study highlights the efficiency of SSR technology, which holds promise for a wide range of applications in marker-assisted wheat breeding programs.  相似文献   

20.
F. Wu    Z. X. Han    Y. Liu    Z. F. Pan    G. B. Deng    M. Q. Yu 《Plant Breeding》2007,126(5):498-502
Cultivated Chinese wheat germplasm has been a valuable genetic resource in international plant breeding. Patterns of gliadin among cultivated Chinese accessions are unknown, despite the proven value and potential novelty. The objective of this work was to analyse the diversity within improved Chinese wheat germplasm. The electrophoretic banding patterns of gliadin in winter wheat cultivars and advanced lines were determined by acid-polyacrylamide gel electrophoresis. For 148 leading commercial cultivars and promising advanced lines used in this study, 48 patterns were identified, 29 corresponding to ω -gliadin, nine to γ -gliadin, five to β -gliadin and five to α -gliadin. The most frequent patterns were A6 in ω ; B in γ ; B in β and A in the region of α . A total of 116 band types appeared in the 148 samples: 94 accessions had unique gliadin types, and 22 gliadin, types while not unique, were found in 54 accessions. The gliadin patterns of Chinese wheat cultivars and lines greatly differed from the patterns of wheat lines from other countries. Three patterns, E, J, H, M, N and O in the ω -zone had not been reported previously. Three wheat zones of China, the Northern Winter Wheat Region, the Yellow and Huai Valley River valleys Winter Wheat Region and the Southwestern Winter Wheat Region, showed different frequencies in their gliadin patterns. This information can be used to monitor genetic diversity with Chinese wheat germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号