首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 187 毫秒
1.
装配式地下粮仓钢-混组合仓壁节点力学性能有限元分析   总被引:5,自引:5,他引:0  
地下粮仓是构建绿色储粮新体系的重要技术支撑,结合工程实际提出了一种新型装配式钢板-混凝土组合地下粮仓。为了建立适用于装配式地下粮仓的有限元模型以模拟分析组合仓壁节点的力学性能,并通过有限元分析指导组合仓壁节点力学性能试验的开展,基于工程设计的钢板-混凝土组合仓壁及连接接头,采用ANSYS软件建立了仓壁及其节点1∶1足尺试件的有限元模型,模拟分析了无接头、有接头试件的受弯和受压性能,并开展仓壁节点抗弯、抗压试验对有限元模拟结果进行验证分析。结果表明:试件的钢板和混凝土由栓钉连接为一体,试验过程中二者未见剥离可共同工作,建模时钢板和混凝土共用结点以及接头钢板之间假定为刚性连接是适用的;同类试件挠度曲线、轴压荷载-位移曲线的试验结果与其有限元模拟结果基本一致,无接头试件和有接头试件弯曲跨中位移、轴压最大位移的试验值与对应的模拟值,相对误差分别在4%和10%以内;试验过程中试件未发生明显破坏和过大变形,应力总体上未超过工程设计允许值,数值模拟结果精度满足工程所需;有接头试件力学性能与无接头试件相近,设计的仓壁及其节点是安全、可靠的,其结构计算可以采用等同原理,即该装配式仓壁可等效为现浇一体的无接头仓壁。建立的仓壁节点有限元模型适用于新型装配式地下粮仓,研究结果为装配式地下粮仓有限元建模分析、结构计算提供参考,为组合仓壁节点试验的开展提供指导。  相似文献   

2.
装配式钢板-混凝土组合地下粮仓具有节约土地、节能减碳、绿色环保、密闭低温等优点,但是连接节点的结构形式和力学性能仍是制约其发展及推广应用的关键难题之一。为解决节点焊缝过多、施焊难度大等问题,该研究提出一种新型装配式钢板-混凝土组合地下粮仓螺栓-焊缝竖向节点,采用螺栓代替部分焊缝,减少焊缝长度、方便构件施工。依据规范要求及实际工程情况,设计了2种不同螺栓数量(单侧三螺栓连接和单侧五螺栓连接)的螺栓-焊缝竖向节点试件,利用四点弯曲试验与有限元数值分析,研究其破坏形态和受弯承载力性能。结果表明:三螺栓试件与五螺栓试件承载力的试验值分别为1 998、2 053 kN,两试件承载力基本相同;相较于五螺栓试件,三螺栓试件在破坏后具有更好的延性。在参数取值范围内,混凝土强度、内防水钢板厚度、外防水钢板厚度和内衬钢板厚度对峰值荷载回归得到的标准化系数(Beta)分别为0.993、-0.003、-0.012、0.056,表明增加混凝土强度可有效提高试件承载能力。研究成果可为装配式钢板-混凝土地下粮仓节点的设计提供科学参考和设计依据。  相似文献   

3.
为了研究装配式地下粮仓钢板-混凝土组合仓壁的轴压力学性能,该研究在仓壁试件轴压试验的基础上,对仓壁试件进行非线性有限元分析,模拟试件加载的全过程,进一步分析试件及其组件在加载过程中的受力性能及工作机理,并对钢板强度、混凝土强度、距厚比等不同的参数影响规律进行了分析.结果表明:有限元模拟结果与试验结果吻合较好,在最大试验...  相似文献   

4.
针对新型地下粮仓采用钢板作为防水层、环氧结构胶粘结钢板与加气混凝土砌块作为防潮层的构造做法,分析在粮食水平侧压力及竖向摩擦力作用下该构造层的安全性与可靠性,设计3种胶粘面积分别为A、0.8A、0.5A的试件(A为单块加气混凝土砌块与钢板的接触面积),分别对其进行竖向单向加载与水平-竖向双向加载,分析3种胶粘面积及2种受力状态对钢板加气混凝土砌块构造层的荷载-位移、承载能力、粘结强度及破坏形态的影响。研究结果表明:水平荷载即仓内储粮产生的水平侧压力对界面粘结性能是有利的;试件在水平-竖向双向加载时更有利于界面的稳定;竖向单向加载作用下胶粘面积为0.5A时的理论最大储粮高度最小,且大于实际储粮高度,说明在地下粮仓设计中,当环氧结构胶粘结面积超过加气混凝土砌块与钢板接触面积的50%时,能够满足储粮荷载作用下的承载能力及粘结强度要求。研究成果可为新型地下粮仓防水防潮构造层的安全性与可靠性提供参考依据。  相似文献   

5.
基于Galerkin法的地下粮仓围护结构传热特性数值模拟   总被引:3,自引:2,他引:1  
无网格伽辽金法是一种新兴的数值计算方法,具有无需单元或网格、节点任意增减、计算精度高、收敛快等优点。该文提出利用无网格伽辽金法研究地下粮仓围护结构的传热问题。以实际地下粮仓为实例,利用MATLAB软件开发了无网格伽辽金法程序,采用无网格伽辽金法实现了地下粮仓围护结构传热规律的数值模拟。将MATLAB数值模拟结果与实际地下粮仓的实测数据进行对比分析,验证了无网格伽辽金法的预测精度。分析了土壤导热系数、地表风速及顶板距地表面距离对地下粮仓围护结构传热的敏感性,探讨了保温层厚度及布置方式对围护结构传热的影响。数值模拟研究结果显示夏季地下粮仓围护结构温度实测值与预测值之间的最大偏差为-0.17℃,冬季地下粮仓围护结构温度实测值与预测值之间的最大偏差为0.24℃,说明无网格伽辽金法具有较高的预测精度。地下粮仓围护结构传热对土壤导热系数的变化非常灵敏,因此需要谨慎确定土壤导热系数。地下粮仓顶板上部区域的温度梯度较大,顶板安装保温隔热层可显著减小地下粮仓顶板的热流密度,采用内保温比外保温有更好的保温隔热效果,因此地下粮仓顶板应采用内保温的保温隔热方式。地下粮仓围护结构传热的数值模拟结果可为地下粮仓的工程设计提供参考和依据。  相似文献   

6.
设计了一种钢箍碳纤维布组合节点,可以适应原竹管材的不规则性并对其进行有效接长,采用特定方法成拱,根据需要形成不同跨度的竹拱。为研究采用此连接节点的竹拱在全跨荷载作用下的平面内稳定承载能力、变形性能以及节点的连接性能,制作了2个10 m跨度的竹拱试件并进行平面内稳定承载力试验。试验结果表明:全跨荷载作用下,有平面外侧向支撑的竹拱试件在产生较大的平面内位移后,发生平面内反对称失稳;采用连接节点的竹拱延性好;节点在受荷全过程的连接性能良好,试件失稳后的破坏区域均处于临近节点的竹管部分。试验结果及有限元分析使进一步详细研究此类节点的受力机理、承载性能具有现实意义,同时推动此类节点竹拱结构的工程应用。  相似文献   

7.
地下粮仓塑料-混凝土防水体系抗水压试验   总被引:3,自引:3,他引:0  
地下粮仓具有节能、节地、低温和绿色环保等优点,但由于地下水的影响,防水防潮一直是安全储粮的技术难题,为此提出以聚丙烯塑料(Polypropylene Plastic,PP)作为内衬材料的塑料-混凝土防水体系,其中,塑料板与混凝土采用塑料栓钉连接。考虑不同栓钉间距200、300和400 mm,设计制作了3个用于地下粮仓的塑料-混凝土水压试件,进行了水压加载试验,分析了塑料构件在水压作用下形态、破环机理、内力和变形。试验结果表明:在水压作用下,塑料板内应力和位移都随水压的增大而增大,节点位置承受较大拉力且应力最大值分布不均,跨中位置承受应力较小且最大值分布均匀;塑料板内跨中位置的位移值随水压增大呈线性增加,节点位置的位移值变化较小。在试验分析的基础上,在10 mm厚塑料板和给定连接节点条件下,提出了塑料-混凝土防水体系优化设计措施,塑料-混凝土防水体系达到水压承载力时其破坏模式随栓钉间距的变化而不同,在栓钉间距为200 mm时,其水压承载力达到180 kPa时发生节点焊缝强度破环,此类构件可通过增强节点处焊缝强度提高塑料构件的整体水压承载力;在栓钉间距为300 mm时,其水压承载力达到80 kPa时发生塑料板破环,此类构件可通过增大板厚来提高构件的整体水压承载力;在栓钉间距为400 mm时,其水压承载力达到38 kPa时发生节点焊缝强度破环,此类构件可增大节点焊缝强度来提高构件的整体水压承载力,研究结果为地下粮仓的防水设计提供参考。  相似文献   

8.
带约束拉杆钢管/竹胶板组合空芯短柱的偏心抗压性能   总被引:1,自引:1,他引:0  
采用冷弯薄壁方型钢管和胶合竹板通过横向约束拉杆和结构胶黏剂复合成顺纹抗压的组合空芯短柱(thin-walled steel tube/bamboo-plywood composite hollow short column with binding bars,SBCCB),采用9个试件研究SBCCB试件的偏心抗压破坏模式、抗压承载力和影响规律。结果表明,SBCCB试件受压破坏形态主要为柱端开胶破坏、横向约束拉杆之间基体胶合界面开胶剥离破坏和胶合竹板局部压屈破坏;SBCCB抗压极限荷载随胶合竹净横截面积增大而提高,随着长细比和荷载偏心率的增大而降低,随空心率增大而增大;约束拉杆可有效延迟SBCCB的开胶剥离破坏,改变屈曲破坏模式,有助于试件抗压承载力的提高;相对于不带约束拉杆试件,SBCCB抗压极限应力提高约17.64%;局部翘曲随约束拉杆间距减小而减小,相对拉杆间距比3.0以下能确保较小的局部翘曲变形。薄壁钢管和胶合竹板能形成较好的复合抗压结构单元,该批试件平均值抗压强度达到18.54 MPa,展现了优异的抗压性能。SBCCB可作为绿色建筑材料广泛应用于现代装配式工程结构,同时拓展竹材的应用途径,实现"以竹代木,以竹代钢",具有很好的工程价值和应用前景。  相似文献   

9.
为研究新疆农村装配式轻钢-沙漠砂轻骨料混凝土剪力墙结构墙肢中钢丝替代钢筋的可行性,以及检验各墙肢在水平地震作用下的抗震性能和破坏形态是否符合预期的多道抗震设防工作目标,对2个边缘墙、2个窗间墙、1个窗下墙及1个普通钢筋混凝土剪力墙试件进行拟静力试验,对比分析各试件的滞回曲线、骨架曲线、位移延性、耗能能力和承载能力。结果表明:边缘墙、窗间墙及普通钢筋混凝土剪力墙试件发生延性的压弯破坏,窗下墙试件发生脆性的剪切破坏;窗间墙与普通剪力墙在配筋率相同的条件下抗震性能指标接近,剪力墙中钢丝可代替钢筋;经比较,边缘墙试件极限位移角、延性系数、黏滞阻尼系数值最大,分别为1/50、3.37和0.163,其抗震性能最优,窗间墙试件次之,窗下墙最差,符合预期的工作目标;边缘墙、窗间墙可按偏心受压构件的正截面计算理论计算其水平受荷承载力。  相似文献   

10.
混凝土防渗渠道冬季输水运行中冻胀与抗冻胀力验算   总被引:1,自引:15,他引:1  
为了明确渠道冬季输水时防渗衬砌层结构的抵抗渠床基土冻胀破坏作用的能力,该文理论分析了大气负温下,介入刚性防渗面层对渠基土冻胀的约束,得到作用于坡板上冻胀力的作用形式为法向冻胀力和指向坡顶的切向冻胀力,对被视为底端简支、板内无接缝、受冻胀作用的构件受力进行理论分析,得到冬季输水渠道边坡板的冻胀问题属于非垂直非全周的冻拔问题的结果,并进一步根据力学基本原理研究了刚性面层(衬砌层)承受荷载力的求解方法。依据桩的抗冻拔验算和拉弯构件的强度验算可实现冬季输水渠道抗冻胀力的计算,建立了适用于防渗渠道刚性衬砌结构设计的方法,为冬季输水梯形混凝土防渗抗冻胀渠道衬砌层厚度的准确确定提供了计算方法。  相似文献   

11.
开放系统预制混凝土梯形渠道冻胀破坏力学模型及验证   总被引:6,自引:5,他引:1  
预制混凝土衬砌渠道在中国北方寒冷地区得到普遍应用,而其在高地下水位条件下的冻胀力学分析尚无简捷、可靠的方法。该文假定渠道基土服从Winkler假设,从而在特定地区相似的土质、气候条件下衬砌板各点的基土冻胀强度仅与相应点的水分补给强度有关,结合冻胀力、基土冻胀率和地下水埋深三者相互间的函数关系,提出了一种计算渠道衬砌冻胀受力分布的方法。将其应用到一类预制板尺寸适中的预制混凝土衬砌梯形渠道中,建立了冻胀破坏力学模型。结合力学分析和工程实践,对预制混凝土衬砌结构可能发生的冻胀破坏形式和原因进行了分类,并确定了相应的冻胀破坏验算控制截面,提出了相应的冻胀破坏判断准则。采用单位荷载法提出了一种对板间接缝处法向冻胀位移进行直接验算的方法。最后,结合工程实例进行了计算,结果表明,模型合理可靠,可为工程设计提供一定的参考和理论依据。  相似文献   

12.
梯形渠道衬砌冻胀破坏弹性地基板模型   总被引:1,自引:1,他引:0  
为探讨开放系统中梯形混凝土衬砌渠道的冻胀问题,根据衬砌板与冻土地基的相互关系,采用 Winkler弹性地基板理论建立了考虑冻胀力和冻结力作用的衬砌板冻胀破坏力学模型,使用解析法得到了衬砌板变形和内力解,对不同地下水埋深、衬砌板几何参数的影响规律进行了分析。通过与已有现场观测值和计算值进行对比,验证了弹性地基板理论计算结果的正确性。研究结果表明:坡板在非均匀分布的冻胀力作用下,挠度、弯矩和剪力也表现为非均匀分布,挠度最大值在坡顶距坡脚2/3处,弯矩最大值靠近底板位置,拉应力分布与内力分布规律一致,与已有研究结果吻合。与梁理论相比,板理论计算结果表明衬砌板的挠度和内力沿板宽方向为非均匀分布,挠度和弯矩在自由边界(纵向伸缩缝)处增大,扭矩主要分布在衬砌板的拐角处。切向冻结力对渠道冻胀影响较小,在原渠道工况下,不考虑切向冻结力与考虑最大切向冻结力之间,最大挠度相差0.7 mm。针对不同地下水位的渠道,给出了衬砌板的安全厚度,可为现浇混凝土梯形渠道的抗冻胀设计提供参考和理论依据。  相似文献   

13.
混凝土预制板衬砌梯形断面渠道的冻胀破坏受力分析   总被引:1,自引:23,他引:1  
为了探讨寒区混凝土预制板衬砌渠道的受力问题,该文经过大量的野外实地调查研究,总结了寒区混凝土预制板衬砌梯形渠道通常发生的冻害形式,同时分析了该衬砌结构发生冻胀破坏的机理。在此基础上,通过合理假设并运用力学基本理论提出了衬砌结构受冻胀破坏的力学模型,推导出渠坡衬砌板、渠底衬砌板最大内力计算公式,只要根据有关规范或试验确定了最大冻结力,混凝土预制板的内力即可求解;在理论推导的基础上,结合工程实践给出了判断衬砌结构发生冻胀破坏的3个准则。该研究可为今后的工程设计提供一定的理论依据。  相似文献   

14.
准确快速地获得粮仓储粮的数量是保障国家仓储安全的关键问题。该文构建了基于压力传感器的粮仓数量在线检测的理论模型,揭示了粮仓储量与粮仓底面和侧面压强的理论关系;同时针对粮仓底面压强分布的不均匀性和随机性,提出了基于内外圈两圈布置的压力传感器布置模型和基于多项式展开的粮仓数量在线检测模型,并给出了具体的建模算法。实仓检测结果表明:所提出的粮仓储量在线检测模型检测误差低于2.5%,且检测系统成本低,可满足国家粮仓储量在线实时监测的实际需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号