首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical fiber separation under torsional stress   总被引:1,自引:1,他引:0  
Summary Spruce wood (Picea abies) samples were pretreated at different temperatures and, in some cases, with sodium sulfite solution under normal conditions for the chemimechanical pulping of wood chips. The pretreated samples were simultaneously subjected to torsion and compression stresses at temperatures ranging from 20 to 90 °C. The load-deformation relationship was analyzed at each temperature. The failure zones were studied using the scanning electron microscope technique. The results showed that the maximum torque decreased with increasing temperature under the deformation conditions applied. Sulfonation of the samples gave a similar effect, although to a smaller extent. The elastoplasticity of the samples, as viewed in terms of the twist angle at failure, was also affected by the pretreatment. While axial compression had a major effect, sulfonation only caused a marginal change. Microscopic studies of the failure zone showed that when the temperature increased, the fracture plane traveled around fibers instead of through them, thus causing less fiber damage. Sulfonation improved fiber separation and decreased fiber damage. The separation of ray cells from the fiber tracheids was improved, particularly by sulfonation. Increasing temperature and sulfonation changed the fracture plane from the secondary wall of fibers towards the more lignin enriched primary wall and middle lamella. Received 29 January 1997  相似文献   

2.
Summary The effect of various forms of treatment — chemical, thermal and pressure — on the tensile properties of wood was investigated. Spruce was impregnated in water, sodium sulfite and/or sodium bicarbonate, and heated at temperatures ranging from 20 to 190 °C. At the end of cooking (190 °C), decompression was applied both slowly and suddenly.A rise in temperature, an increase in heating time, from 4 to 10 min. at 190 °C, as well as fast pressure release influenced the tensile strength. The chemical treatment resulted in lignin sulfonation while carboxylation produced fiber swelling and, consequently, tensile strength decreased.The authors wish to thank the FCAR (Québec), NSERC (Canada) and Stake Tech. Co. for their financial support  相似文献   

3.
以淀粉和木粉为原料,甘油为增塑剂,通过挤出成型制备淀粉/木粉可生物降解复合材料,重点研究淀粉/木粉混合比例对复合材料性能的影响。采用扫描电镜(SEM)、X射线衍射仪(XRD)和热重分析(TGA)对复合材料进行表征,并对复合材料的力学性能和吸水性能进行测试。实验结果表明:木粉的加入破坏热塑性淀粉的连续性,使复合材料的结晶度增大。复合材料的拉伸强度、吸水率和吸水厚度膨胀率随着木粉比例增大逐渐增大,断裂伸长率却逐渐降低。TGA测试结果表明,随着木粉加入比例增大,复合材料的热分解起始温度逐渐降低,但热分解的终止温度逐渐升高,淀粉和木粉两相依赖性逐渐减弱。  相似文献   

4.
Effects of different thermal treatments (maximum treatment temperatures of 200, 210 and 220°C for 2.5 hours) on solid spruce (Picea abies L. Karst.) and ash (Fraxinus excelsior L.) were investigated in this study. The fracture behaviour in radial/longitudinal as well as in tangential/longitudinal and the change of the wood colour (CIEL*a*b* colour space) on all principal anatomical surfaces (cross sectional, radial and tangential) were analysed. The specific fracture energy and the maximum breaking load decreased almost significantly after all thermally treated samples in comparison to the untreated (standard dried) sample. The wood colour changed also significantly, in particular the lightness decreased with increasing intensity of thermal treatment on all investigated surfaces. A comparison of the percentage loss of the different fracture and colour values has shown a strong correlation between the maximum breaking load and the lightness after several thermal treatments, in both investigated crack propagation systems, on all measured surfaces and for both analysed species.  相似文献   

5.
A method for measuring the viscoelastic properties of wood under high temperature and high pressure steam was developed using a testing machine with a built-in autoclave. A newly developed load cell capable of resisting a steam pressure of 16kgf/cm2 and a temperature of 200°C was installed in the autoclave. This load cell could be used to determine precisely the loads while steaming at temperatures from 100°C to 200°C. In addition to load-detection problems, it was necessary to avoid the nonuniform thermal degradation of wood during the measurement process under steaming at high temperatures. This nonuniform degradation could be minimized by shortening the time required for the wood to attain thermal equilibrium using specimens conditioned to the fiber saturation point. According to this method, a stress relaxation curve for sugi (Cryptomeria japonica D. Don) wood being compressed while steaming at 180°C was obtained. The stress was seen to decrease rapidly with time, reaching almost zero at 3000s.  相似文献   

6.
Fracture toughness of wood and wood composites has traditionally been characterized by a stress intensity factor, an initiation strain energy release rate (G init) or a total energy to fracture (G f). These parameters provide incomplete fracture characterization for these materials because the toughness changes as the crack propagates. Thus, for materials such as wood, oriented strand board (OSB), plywood and laminated veneer lumber (LVL), it is essential to characterize the fracture properties during crack propagation by measuring a full crack resistant or R curve. This study used energy methods during crack propagation to measure full R curves and then compared the fracture properties of wood and various wood-based composites such as, OSB, LVL and plywood. The effect of exposure to elevated temperature on fracture properties of these materials was also studied. The steady-state energy release rate (G SS) of wood was lower than that of wood composites such as LVL, plywood and OSB. The resin in wood composites provides them with a higher fracture toughness compared to solid lumber. Depending upon the internal structure of the material, the mode of failure also varied. With exposure to elevated temperatures, G SS for all materials decreased while the failure mode remained the same. The scatter associated with conventional bond strength tests, such as internal bond and bond classification tests, renders any statistical comparison using those tests difficult. In contrast, fracture tests with R curve analysis may provide an improved tool for characterization of bond quality in wood composites.  相似文献   

7.
This article reports the effects of heat treatment on compression strength parallel to the grain, the surface roughness [average roughness (Ra)], and the air-dry den-sity of wood from the river red gum tree (Eucalyptus camaldulensis Dehn.) planted in Turkey. Eucalyptus wood was heat-treated at temperatures varying from 120° to 180°C for durations of 2–10 h. Samples cut from the heat-treated wood were tested for air-dry density, compression strength parallel to grain, and surface roughness properties. Roughness measurements by the stylus method were made in the direction perpendicular to the fiber. Based on the findings in this study, the results showed that density, compression strength, and surface roughness values decreased with increasing treatment temperature and treatment times. Eucalyptus wood could be utilized by using proper heat treatment techniques without any losses in strength values in areas where working, stability, and surface smoothness, such as in window frames, are important factors.  相似文献   

8.
研究了杨木线性振动摩擦焊接的干剪切强度、湿剪切强度和木破率。为提高杨木摩擦焊接的湿剪切强度与木破率,采用表面氧化、表面磺化以及表面涂覆的方式处理杨木板材,再经线性振动摩擦焊接进行黏合,使用万能力学试验机测得其剪切强度,对比表面处理前后剪切强度的变化,并利用傅里叶红外光谱分析了其表面处理前后基材和摩擦焊接层的化学基团变化情况,对胶合性能的变化做出解释。研究结果表明:杨木经过表面氧化磺化涂覆醋酸锌处理后,摩擦焊接层的干剪切强度为5.41 MPa,木破率为63%,与未处理的杨木相比,分别提高了48.22%和96.88%;湿剪切强度从0提高到1.34 MPa;摩擦焊接时厚度损失减少了46.4%。杨木分别经过表面氧化和表面磺化处理后,摩擦焊接层的干剪切强度仅为3.45和4.10 MPa,木破率为28%和42%,湿剪切强度为0.76和0.96 MPa。摩擦焊接层的红外光谱分析表明,经表面氧化磺化涂覆醋酸锌处理后,杨木中的纤维素和半纤维素分解,使木质素的相对含量有所增加,且活化了杨木中的—OH,与醋酸锌生成多醚,消耗了亲水性的—OH。  相似文献   

9.
To obtain a better understanding of variability in wood properties along the stem in triploid hybrids of Populus tomentosa L., basic wood density (BWD) and fiber traits were measured at four sample heights for each tree sampled from three clonal trials. The BWD showed a similar trend at each site in that density was initially decreased then increased with increasing height position. For fiber traits, the fiber length (FL) decreased linearly with the height of the trunk, whereas fiber width and coarseness changed relatively slightly with increasing height position. In addition, the vertical wood properties distribution patterns were different from clones so that some clones showed more markedly change in height positions than others. The joint analysis indicated significant height position effect for BWD and fiber traits, in accordance with site and clonal effect. Significant site × height interaction was found on wood properties, whereas the significant clone × height interaction was only obtained at fiber width. Moreover, variation in the relationships between FL and BWD or other fiber traits showed no consistent pattern with increasing height position.  相似文献   

10.
In order to understand the reason why glycerin pre-treatment can accelerate the deformation fixation of compressed wood, the interaction between glycerin and wood at various temperatures was investigated in this study from stress relaxation approach. The compression stress relaxation curves of poplar (Populus cathayana Rehd.) samples impregnated with glycerin were measured at temperatures ranging from 25 to 180°C, together with the curves of oven-dry wood at temperatures between 100 and 180°C for comparison. The activation energy was calculated according to the Eyring’s absolute rate reaction theory. The results showed that temperature had very obvious effect on stress relaxation for both glycerin-treated wood (GTW) and oven-dry wood. The stress released very fast at higher temperatures. Glycerin showed an accelerating effect on stress relaxation. At temperatures exceeding 120°C, a complete relaxation of the stress could be expected. While for untreated wood, it cannot be reached until 160°C. By calculating the apparent activation energy (ΔE) of GTW at different temperatures, it is clear that two mechanisms are responsible for different temperature ranges. From 40 to 100°C, ΔE is only 8.24 kJ/mol, which corresponds to the hydrogen bonds formed between wood and glycerin molecules; from 120 to 180°C, ΔE reached 81.38 kJ/mol, which corresponds to the degradation of hemicelluloses or lignin, and during this process, new cross-linking would happen.  相似文献   

11.
The ability of sugi wood carbonized at 1000°C to adsorb mercury was examined using aqueous solutions of mercuric chloride. Parameters studied include contact time, pH, adsorption temperature, and initial concentration of mercury in solution. Results showed that sugi wood carbonized at 1000°C could effectively remove mercury from aqueous solutions. The carbonized wood showed high adsorption ability for mercury at a wide pH range (pH 3–9), but its ability drastically decreased at pH 11. Adsorption decreased with increases in adsorption temperatures, indicating that the processes were exothermic in nature. Adsorption was found to follow the Freundlich isotherm model. The adsorption capacity of carbonized sugi wood was comparable to that of commercial activated carbon.  相似文献   

12.
The vapor phase reaction of wood with maleic anhydride (MA) was investigated from the aspect of the mechanism of dimensional stabilization. Notably the existence of cross-links was examined by detailed analyses of dimensional stability and related properties, diffuse reflectance infrared Fourier transform (DRIFT) spectra, and changes in mechanical properties such as creep property and vibrational property. Higher reaction temperature resulted in less leaching of reagent. Also a peak in DRIFT spectra at 1730 cm−1 showed the esterification of wood components with MA, while that at around 1780 cm−1, which became remarkable with increasing reaction temperature, suggested the formation of cross-linking. The loss tangent decreased and the creep deformation was restrained for the specimens treated at high temperature. From these results it is plausible that MA mainly forms monoester with wood components at lower temperature; however, at elevated temperature cross-linking appears in addition to formation of the monoester.  相似文献   

13.
Wood heat treatment has increased significantly in recent years and is still growing as an industrial process to improve some wood properties. We studied the change of swellingand surface roughness of common alder(Alnus glutinosa(L.) Gaertn. ssp.glutinosa) and wych elm(Ulmus glabra Huds.) woods after heat treatment at two different temperatures and durations. The temperatures were 180 and 200 C and the durations were 2 and 4 h. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements by the stylus method were made in the direction perpendicular to the fiber on the wood surface. Four main roughness parameters, mean arithmetic deviation of profile(Ra), mean peak-to-valley height(Rz), root mean square roughness(Rq), and maximum roughness(Ry) were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Swelling and surface roughness parameters(Ra, Rz, Ry, and Rq) differed significantly for two temperatures and two durations of heat treatment. Swelling and surface roughness values decreased with increasing treatment temperature and treatment times.  相似文献   

14.
To improve interfacial adhesion between wood veneer and high-density polyethylene (HDPE) film, wood veneer was thermally modified in an oven or chemically modified by vinyltrimethoxysilane. The wood veneers were used to prepare plastic-bonded wood composites (PBWC) in a flat-press process using HDPE films as adhesives. The results showed that both modifications reduced veneer hydrophilicity and led to enhancement in shear strength, wood failure, and water resistance of the resulting PBWC. The thermal treatment significantly decreased the storage modulus close to 130 °C (the melting temperature of plastic). Thermal-treated wood veneer maintains mechanical interlocking for bonding and veneer strength which then declined under thermal treatment due to hemicellulose degradation and cellulose de-polymerization. In the silane-treated PBWC, enhanced interlocking and a stronger bonding structure resulted from the reaction between the silane-treated veneer and HDPE. This strong bonding structure allowed thermal stability improvement demonstrated by high modulus and low tanδ values. However, the strength of silane-treated PBWC was still much lower than thermosetting resin-bonded composites at higher temperatures due to the melting behavior of thermoplastic polymer, precluding its use in certain applications.  相似文献   

15.
Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used to study ambient-aged wood fibers and their effects on the mechanical properties of medium-density fiberboard (MDF). It was found that MDF made with ambient-aged fibers had poorer mechanical properties than MDF made with fresh fibers; this difference resulted from the alterations of surface characteristics of wood fibers after ambient aging, which led to poor wettability of the urea–formaldehyde (UF) resin applied to the aged wood fibers. After 6 months of ambient aging, the concentration of carbonyl groups in the fibers increased by 144%, while the pH value of wood fiber decreased from 5.2 to 4.7. SEM showed that much more UF resin agglomerated on the surface of ambient-aged fibers and the breakage of MDF made with aged fiber frequently occurred at the resin-fiber interfaces, indicated the poorer wettability of UF resin to fibers due to the decrease in surface energy after aging.  相似文献   

16.
This article presents an experimental study into thermal softening and thermal recovery of the compression strength properties of structural balsa wood (Ochroma pyramidale). Balsa is a core material used in sandwich composite structures for applications where fire is an ever-present risk, such as ships and buildings. This article investigates the thermal softening response of balsa with increasing temperature, and the thermal recovery behavior when softened balsa is cooled following heating. Exposure to elevated temperatures was limited to a short time (15 min), representative of a fire or postfire scenario. The compression strength of balsa decreased progressively with increasing temperature from 20° to 250°C. The degradation rates in the strength properties over this temperature range were similar in the axial and radial directions of the balsa grains. Thermogravimetric analysis revealed only small mass losses (<2%) in this temperature range. Environmental scanning electron microscopy showed minor physical changes to the wood grain structure from 190° to 250°C, with holes beginning to form in the cell wall at 250°C. The reduction in compression properties is attributed mostly to thermal viscous softening of the hemicellulose and lignin in the cell walls. Post-heating tests revealed that thermal softening up to 250°C is fully reversible when balsa is cooled to room temperature. When balsa is heated to 250°C or higher, the post-heating strength properties are reduced significantly by decomposition processes of all wood constituents, which irreversibly degrade the wood microstructure. This study revealed that the balsa core in sandwich composite structures must remain below 200°–250°C when exposed to fire to avoid permanent heat damage.  相似文献   

17.
参考芬兰Thermo-Wood~?工艺规程,对落叶松板材分别在160、180和200℃常压过热蒸汽环境下进行高温热改性处理;随后对经过热改性后的板材及常规室干对照板材分别进行了天然植物油涂饰处理,分别使用商品化木蜡油(底油和面油)、自制木油(预聚合大豆油)。在人工模拟高湿环境下测试各类植物油涂饰后的木材相对吸湿率、平衡含水率及橫纹相对变形率等各项技术指标。结果表明,热改性木材经植物油表面涂饰处理后,天然植物油蜡成分有效地浸入木材细胞壁组织,木材表层组织对环境湿度变化的敏感性降低。三种涂饰处理方法中,涂饰商品化木蜡油底油、木蜡油面油的方案最为有效,其木材横纹相对变形率均较未涂饰木材显著降低;随着热改性温度的升高,各类涂饰试件的平衡含水率、相对吸湿率呈现总体下降趋势,加热温度对各类试件的平衡含水率、相对吸湿率存在显著影响。  相似文献   

18.
Thermal treatment is used to preserve the wood without any addition of any toxic chemicals. This process increases the dimensional stability and darkens the color of the wood. The improvement of the resistance to decay of wood by thermal treatment is also often suggested in the literature. However, some latest works contested if the durability of heat-treated wood is improved when it is used in contact with ground. The objective of this study was to investigate the possibility of thermally treating electrical poles which are larger compared to the standard wood lumber. One of the applications for thermally treated wood poles could be their use in environmental sensitive areas (along rivers, for example) as a replacement for untreated western red cedar (WRC) poles which are more expensive. Green and pre-dried red pine (Pinus resinosa) and jack pine (Pinus banksiana) poles, both with circular and square cross-sections, were heated to high temperatures under humid and inert atmosphere. Operating parameters such as maximum treatment temperature, maintenance time at this temperature, heating rate and gas humidity were varied in order to find most suitable treatment conditions for the poles. The tests showed that most of the cracks are formed during the drying process while thermal treatment only widened already existing cracks. The circular shape seems to promote crack formation during the drying period since the directional dependence of shrinking creates more stresses in circular poles compared to the square poles. A slight decrease in flexibility of the wood with increasing temperatures was observed. The protecting effect of gas humidity against oxidation of wood and the importance of the application of a moderate heating rate for poles with large cross-sections are also demonstrated in this article. The impact of the heat treatment on the resistance to decay of electrical wood pole will be presented in a future publication.  相似文献   

19.
Influence of heating and drying history on micropores in dry wood   总被引:1,自引:1,他引:0  
To investigate the influence of heating and drying history on the microstructure of dry wood, in addition to the dynamic viscoelastic properties, CO2 adsorption onto dry wood at ice.water temperature (273 K) was measured, and the micropore size distribution was obtained using the Horvath-Kawazoe (HK) method. Micropores smaller than 0.6 nm exist in the microstructures of dry wood, and they decreased with elevating out-gassing temperature and increased again after rewetting and drying. Dry wood subjected to higher temperatures showed larger dynamic elastic modulus (E′) and smaller loss modulus (E″). This is interpreted as the result of the modification at higher temperature of the instability caused by drying. Drying history influenced the number of micropores smaller than 0.6 nm in dry wood not subjected to high temperature, although the difference in the number of micropores resulting from the drying history decreased with increasing out-gassing temperature. A larger number of micropores smaller than 0.6 nm exist in the microstructure of dry wood in more unstable states, corresponding to smaller E′ and larger E″ than in the stable state. Consequently, unstable states are considered to result from the existence of temporary micropores in the microstructures of dry wood, probably in lignin. Part of this report was presented at the 55th Annual Meeting of the Japan Wood Research Society, Kyoto, March 2005, and at the 56th Annual Meeting of the Japan Wood Research Society, Akita, August 2006  相似文献   

20.
Pseudo-lignin induced by high-severity dilute acid treatment of lignocellulose has been widely studied because of its detrimental effect on enzymatic hydrolysis. However, cooling-induced pseudo-lignin (CIPL) formed during the cooling process after treatment has always been ignored and never been characterized systematically. To investigate the formation and chemistry of CIPL, liquid hot water treatments of poplar wood were conducted. Samples of treated wood and hydrolysate were taken out from digester at various temperatures during the cooling process for characterization. SEM images evidenced a progressive deposition of CIPL on the surface of the treated wood during cooling process with a yield of 19.6 mg/g treated wood. However, the treated wood which was collected isothermally at reaction temperature showed no pseudo-lignin. Variation of organic compounds in hydrolysate from lignocellulose degradation during cooling process revealed that depolymerized lignin and furfural accounted for 80.4 and 10.6 % of CIPL, respectively, while soluble saccharides from carbohydrate hydrolysis were independent from CIPL formation. These findings stress the importance of isothermal separation of treated wood and hydrolysate. Otherwise, CIPL should hinder enzymatic hydrolysis for biofuels production or delignification for cellulosic fiber production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号