首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feedlot producers often exceed NRC recommendations for vitamin A and D supplementation; however, increased concentrations of these vitamins have been shown to limit adipocyte differentiation in vitro. A feedlot trial was conducted using 168 Angus crossbred steers (BW = 284 ± 0.4 kg) allotted to 24 pens. The experiment had a 2 × 2 factorial arrangement of treatments: no supplemental vitamin A or D (NAND), 3,750 IU vitamin A/kg dietary DM with no supplemental vitamin D (SAND), no supplemental vitamin A and 1,860 IU vitamin D/kg dietary DM (NASD), and 3,750 IU and 1,860 IU vitamin A and D/ kg dietary DM (SASD), respectively. Serum, liver, and intramuscular and subcutaneous adipose tissue retinol concentrations were decreased in (P < 0.001) in cattle fed the no supplemental vitamin A diets (NAND and NASD combined) compared with those consuming supplemental vitamin A (SAND and SASD combined) diets. In addition, intramuscular retinol concentration was 38% less than in the subcutaneous depot. Serum 25(OH)D(3) concentrations were reduced (P < 0.001) during the first 70 d when cattle were fed no supplemental vitamin D diets (NAND and SAND combined); however, liver 25(OH)D(3) concentrations remained unchanged (P > 0.10) through d 184. Serum and liver 25(OH)D(3) concentrations increased (P < 0.001) with vitamin D supplementation (NASD and SASD combined). The DMI, ADG, G:F, and morbidity were not affected (P > 0.10) by dietary concentration of vitamin A or D. There were vitamin A and D interactions (P < 0.03) for backfat thickness and USDA Yield grade. Cattle fed the NAND diet had greater (P < 0.03) Yield grades than other treatments because of greater (P < 0.005) 12th rib backfat thickness in NAND steers than the NASD and SAND steers. Vitamin D concentrations were attenuated and minimal carcass adiposity responses to vitamin D supplementation were observed. Feeding a diet without supplemental vitamin A increased (P < 0.05) Quality grades and marbling scores and tended (P = 0.06) to increase ether extractable lipid of the LM. As retinol and 25(OH)D(3) concentrations in feedlot cattle declined as a result of a lack of dietary supplementation, adipose accretion increased, resulting in elevated Quality and Yield grades. Withdrawal of supplemental vitamin A, D, or both from the finishing diet of feedlot beef cattle had minimal impact carcass composition.  相似文献   

2.
A winter grazing/feedlot performance experiment repeated over 2 yr (Exp. 1) and a metabolism experiment (Exp. 2) were conducted to evaluate effects of grazing dormant native range or irrigated winter wheat pasture on subsequent intake, feedlot performance, carcass characteristics, total-tract digestion of nutrients, and ruminal digesta kinetics in beef cattle. In Exp. 1, 30 (yr 1) or 67 (yr 2) English crossbred steers that had previously grazed native range (n = 38) or winter wheat (n = 59) for approximately 180 d were allotted randomly within previous treatment to feedlot pens (yr 1 native range = three pens [seven steers/pen], winter wheat = two pens [eight steers/pen]; yr 2 native range = three pens [eight steers/pen], winter wheat = four pens [10 or 11 steers/pen]). As expected, winter wheat steers had greater (P < 0.01) ADG while grazing than did native range steers. In contrast, feedlot ADG and gain efficiency were greater (P < 0.02) for native range steers than for winter wheat steers. Hot carcass weight, longissimus muscle area, and marbling score were greater (P < 0.01) for winter wheat steers than for native range steers. In contrast, 12th-rib fat depth (P < 0.64) and yield grade (P < 0.77) did not differ among treatments. In Exp. 2, eight ruminally cannulated steers that had previously grazed winter wheat (n = 4; initial BW = 407 +/- 12 kg) or native range (n = 4; initial BW = 293 +/- 23 kg) were used to determine intake, digesta kinetics, and total-tract digestion while being adapted to a 90% concentrate diet. The adaptation and diets used in Exp. 2 were consistent with those used in Exp. 1 and consisted of 70, 75, 80, and 85% concentrate diets, each fed for 5 d. As was similar for intact steers, restricted growth of cannulated native range steers during the winter grazing phase resulted in greater (P < 0.001) DMI (% of BW) and ADG (P < 0.04) compared with winter wheat steers. In addition, ruminal fill (P < 0.01) and total-tract OM digestibility (P < 0.02) were greater for native range than for winter wheat steers across the adaptation period. Greater digestibility by native range steers early in the finishing period might account for some of the compensatory gain response. Although greater performance was achieved by native range steers in the feedlot, grazing winter wheat before finishing resulted in fewer days on feed, increased hot carcass weight, and improved carcass merit.  相似文献   

3.
Three experiments were conducted to determine the influence of both the concentration of endophytic fungus infestation in tall fescue pastures and calf genotype on the subsequent health and performance of steers in the feedlot. In Exp. 1 and 2, Angus steers grazed fescue pastures in Georgia containing low, moderate, or high endophyte infestations for 182 d (Exp. 1) or 78 d (Exp. 2) with 12 steers per treatment. Steers were transported 1,600 km to Texas in October (Exp. 1) and July (Exp. 2), were fed a 93% concentrate diet during the finishing period, and were harvested at an estimated backfat thickness of 12 mm. In both trials, DMI over the entire feeding period and carcass characteristics were not affected (P>0.05) by endophyte infestation. In both trials, pasture ADG decreased, and feedlot ADG and gain to feed ratio increased as the previous pasture endophyte infestation increased (P<0.05). Serum cholesterol concentrations tended (P<0.10) to decrease with increasing endophyte infestation during the first 14 d in the feedlot. In Exp. 3, Angus and Brahman × British crossbred steers grazed fescue pastures in Georgia containing low, moderate, or high endophyte in each of 2 yr. Six steers of each breed group were on each treatment each year. Steers were transported to Texas in late August of each year, were fed a 93% concentrate finishing diet, and were harvested at an estimated individual backfat thickness of 12 mm. As endophyte infestation increased, serum urea N concentrations and gain to feed ratios increased (P<0.05), whereas pasture ADG, initial BW, transit shrink, serum cholesterol concentrations, final BW, and carcass weights decreased (P<0.05) in Angus steers, but not in Brahman-cross steers. In these studies, the adverse effects of high endophyte infestations in fescue pastures appeared to carry over to the feedlot for ca. 14 d. However, steers from highly infested pastures can compensate for poor pasture performance with improved performance in the feedlot when no adverse health effects occur. Any impact of the endophyte seems to be similar in Brahman-cross and Angus steers.  相似文献   

4.
Two experiments were conducted using 48 Angus x Angus-Hereford steers in each experiment to determine the effect of previous winter grazing BW gain on jugular concentrations of metabolites and hormones during feedlot finishing. In each experiment, steers were randomly assigned to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range (NR) with 0.91 kg/d of a 41% CP (DM basis) supplement. Steers grazed for 120 or 144 d in Exp. 1 and 2, respectively. Plasma and serum were collected from all steers before placement into a feedlot, and six or seven times during finishing in Exp. 1 and 2, respectively. In Exp. 1, before steers entered the feedlot, concentrations of insulin, triiodothyronine (T3), and thyroxine (T4) were greater (P < 0.05) in HGW than in LGW or NR steers, and concentrations of IGF-I and plasma urea-N were greater (P < 0.05) in steers that grazed wheat pasture than in NR steers. In Exp. 2, concentrations of glucose, T3, T4, and IGF-I were greater (P < 0.05) in steers that grazed wheat pasture than NR steers. In Exp. 1 (P < 0.19) and 2 (P < 0.86), glucose concentration did not differ among treatments during finishing. In Exp. 1, insulin concentration across days on feed was greater for HGW than LGW steers, which were greater than for NR steers (treatment x day interaction, P < 0.03). In Exp. 2, insulin concentration increased (P < 0.001) as days on feed increased. Concentrations of IGF-I were greater in steers that had grazed wheat pasture, whereas the increase in IGF-I with increasing days on feed was greater for NR steers (treatment x day interaction, P < 0.003). Concentrations of T3 and T4 during finishing were greater (P < 0.001) in HGW and LGW than in NR steers in Exp. 1. In Exp. 2, T4 concentration also differed (P < 0.009) among treatments (HGW > LGW > NR). In Exp. 2, final concentration of glucose was greater (P < 0.01) in NR than in HGW and LGW steers, and serum insulin concentration was greater (P < 0.04) in NR than LGW steers. Final concentrations of T3 (P < 0.01) and T4 (P < 0.004) were greater in NR than in HGW steers. Our data show that previous BW gain can affect blood metabolites and hormones in steers entering the feedlot. However, lower concentrations of T3, T4, and IGF-I in steers when they entered the feedlot did not inhibit the growth response of previously restricted steers.  相似文献   

5.
A feedlot trial was conducted to determine the effect of dietary vitamin A concentration and roasted soybean (SB) inclusion on carcass characteristics, adipose tissue cellularity, and muscle fatty acid composition. Angus-crossbred steers (n = 168; 295 +/- 1.8 kg) were allotted to 24 pens (7 steers each). Four treatments, in a 2 x 2 factorial arrangement, were investigated: no supplemental vitamin A, no roasted soybeans (NANS); no vitamin A, roasted SB (20% of the diet on a DM basis; NASB); with supplemental (2,700 IU/kg) vitamin A, no roasted SB (WANS); and with supplemental vitamin A, roasted SB (WASB). Diets included high moisture corn, 5% corn silage, 10 to 20% supplement, and 20% roasted SB in the SB treatments on a DM basis. The calculated vitamin A concentration in the basal diet was < 1,300 IU/kg of DM. Blood samples (2 steers/pen) were collected for serum vitamin A determination. Steers were slaughtered after 168 d on feed. Carcass characteristics and LM composition were determined. Fatty acid composition of LM was analyzed, and adipose cellularity in the i.m. and s.c. depots was determined. No vitamin A x SB interactions were detected (P > 0.10) for cattle performance, carcass composition, or muscle fatty acid composition. Low vitamin A diets (NA) did not affect (P > 0.05) ADG, DMI, or G:F. Quality grade tended (P = 0.07) to be greater in NA steers. Marbling scores and the percentage of carcasses grading > or = Choice(-) were 10% greater for NA steers, although these trends were not significant (P = 0.11 and 0.13, respectively). Backfat thickness and yield grade were not affected (P > 0.26) by vitamin A supplementation. Composition of the LM was not affected (P > 0.15) by vitamin A or SB supplementation. Serum retinol at slaughter was 44% lower (P < 0.01) for steers fed NA than for steers supplemented with vitamin A (23.0 vs. 41.1 microg/dL). A vitamin A x SB interaction occurred (P < 0.05) for adipose cellularity in the i.m. depot; when no SB was fed, vitamin A supplementation decreased cell density and increased cell size. However, when SB was fed, vitamin A supplementation did not affect adipose cellularity. Adipose cellularity at the s.c. depot was not affected (P > 0.18) by vitamin A or SB treatments. Fatty acid profile of the LM was not affected by vitamin A (P > 0.05), but SB increased (P < 0.05) PUFA (7.88 vs. 4.30 g/100 g). It was concluded that feeding NA tended to increase marbling without affecting back-fat and yield grade. It appeared that NA induced hyperplasia in the i.m. but not in the s.c. fat depot.  相似文献   

6.
Two experiments evaluated effects of ractopamine hydrochloride (RAC) on performance, intake patterns, and acid-base balance of feedlot cattle. In Exp. 1, 360 crossbred steers (Brangus, British, and British x Continental breeding; initial BW = 545 kg) were used in a study with a 3 x 3 factorial design to study the effects of dose [0, 100, or 200 mg/(steer x d) of RAC] and duration (28, 35, or 42 d) of feeding of RAC in a randomized complete block design (9 treatments, 8 pens/treatment). No dose x duration interactions were detected (P > 0.10). As RAC dose increased, final BW (FBW; P = 0.01), ADG (P < 0.01), and G:F (P < 0.01) increased linearly. As duration of feeding increased, ADG increased quadratically (P = 0.04), with tendencies for quadratic effects for FBW (P = 0.06), DMI (P = 0.07), and G:F (P = 0.09). Hot carcass weight increased linearly (P = 0.02) as dose of RAC increased. Thus, increasing the dose of RAC from 0 to 200 mg/(steer x d) and the duration of feeding from 28 to 42 d improved feedlot performance, although quadratic responses for duration of feeding indicated little improvement as the duration was extended from 35 to 42 d. In Exp. 2, 12 crossbred beef steers (BW = 593 kg) were used in a completely random design to evaluate the effects of RAC [0 or 200 mg/(steer x d) for 30 d; 6 steers/treatment] on rate of intake, daily variation in intake patterns, and acid-base balance. To assess intake patterns, absolute values of daily deviations in feed delivered to each steer relative to the total quantity of feed delivered were analyzed as repeated measures. There were no differences (P > 0.10) in feedlot performance, urine pH, blood gas measurements, or variation in intake patterns between RAC and control cattle, but steers fed RAC had increased (P = 0.04) LM area, decreased (P = 0.03) yield grade, and increased (P < 0.10) time to consume 50 and 75% of daily intake relative to control steers. Our results suggest that feeding RAC for 35 d at 200 mg/(steer x d) provided optimal performance, and no effects on acid-base balance or variation in intake patterns of finishing steers were noted with RAC fed at 200 mg/(steer x d) over a 30-d period.  相似文献   

7.
To determine the effect of duration of dietary vitamin A restriction on site of fat deposition in growing cattle, 60 Holstein steers (BW = 218.4 +/- 6.55 kg) were fed a diet based on high-moisture corn, with 2,200 IU of supplemental vitamin A/kg of DM (control) or no supplemental vitamin A for a long (243 d; LR) or short (131 d; SR) restriction before slaughter at 243 d. The SR steers were fed the control diet for the first 112 d. Steers were penned individually and fed for ad libitum intake. Jugular vein blood samples for serum retinol analysis were collected on d 1, 112, and 243. Carcass samples were collected for composition analysis. Subcutaneous fat samples were collected for fatty acid composition. Fat samples from the i.m. and s.c. depots were collected to measure adipocyte size and density. Feedlot performance (ADG, DMI, and G:F) was not affected (P > 0.05) by vitamin A restriction. On d 243, the i.m. fat content of the LM was 33% greater (P < 0.05) for LR than for SR and control steers (5.6 vs. 3.9 and 4.2% ether extract, respectively). Depth of back-fat and KPH percentage were not affected (P = 0.44 and 0.80, respectively) by vitamin A restriction. Carcass weight, composition of edible carcass, and yield grade were similar among treatments (P > 0.10). Liver retinol (LR = 6.1, SR = 6.5, and control = 44.7 microg/g; P < 0.01) was reduced in LR and SR vs. control steers. On d 243, LR and SR steers had similar serum retinol concentrations, and these were lower (P < 0.01) than those of control steers (LR = 21.2, SR = 25.2, and control = 36.9 microg/dL). Intramuscular adipose cellularity (adipocytes/mm2 and mean adipocyte diameter) on d 112 and 243 was not affected (P > 0.10) by vitamin A restriction. Restricting vitamin A intake for 243 d increased i.m. fat percentage without affecting s.c. or visceral fat deposition, feedlot performance, or carcass weight. Restricting vitamin A intake for 131 d at the end of the finishing period appears to be insufficient to affect the site of fat deposition in Holstein steers.  相似文献   

8.
Angus-crossbred steers (n = 216) were used in a 3-yr study to assess the effects of winter stocker growth rate and finishing system on finishing performance and carcass characteristics. During winter months (December to April) steers were randomly allotted to 3 stocker growth rates: low (0.23 kg x d(-1)), medium (0.45 kg x d(-1)), or high (0.68 kg x d(-1)). Upon completion of the winter phase, steers were randomly allotted within each stocker treatment to a corn silage-concentrate or pasture finishing system. All steers regardless of finishing treatment were finished to an equal-time endpoint to eliminate confounding of treatments with animal age or seasonal factors. Upon completion of the finishing period, steers were slaughtered in 2 groups (one-half of pasture and one-half of feedlot cattle each time) and carcass data were collected. Winter data were analyzed as a completely randomized design, with winter treatment, pen replicate, year, and the winter x year interaction in the model. Finishing performance and carcass data were analyzed in a split-plot design with finishing system in the whole plot, and winter growth rate and winter x finish in the split-plot. Winter treatment mean within finishing replication was the experimental unit, and year was considered a random effect. Winter stocker phase treatments resulted in differences (P < 0.001) in final BW, ADG, and ultrasound LM area between all treatments for that phase. Pasture-finished cattle had lower (P < 0.001) final BW, ADG, HCW, LM area, fat thickness, KPH, dressing percent, USDA yield grade, and USDA quality grade. Winter stocker treatment influenced (P < 0.05) final BW and HCW, with low and medium being less than high. Steers with low stocker gain had greater (P < 0.05) finishing ADG. Dressing percent was greater (P < 0.001) for high than low, and USDA quality grade was greater (P < 0.05) for high than low and medium. Carcass LM area, fat thickness, KPH, and USDA yield grade were not influenced (P > 0.05) by winter rate of gain. Cattle on low during winter exhibited compensatory gain during finishing but were unable to catch the high group regarding BW or HCW. The USDA quality grade was greater for high than low or medium. Animal performance during the winter stocker period clearly impacts finishing performance, carcass quality and beef production in both pasture- and feedlot-finishing systems, when cattle were finished to an equal-time endpoint.  相似文献   

9.
Seventy-three crossbred steers (initial BW = 170.5 +/- 5.5 kg) from The Ohio State University (Exp. 1) and 216 crossbred steers (initial BW 135.4 +/- 4.4 kg) from the University of Illinois (Exp. 2) were used to determine the effect of source of energy and rate of growth on performance, carcass characteristics, and glucose and insulin profiles on early-weaned steers. Effects of the diets used in Exp. 1 and 2 on ruminal pH and VFA concentrations were quantified using ruminally fistulated steers (Exp. 3). Cattle were weaned at an average age of 119 d in all experiments and were allotted by age, BW, and breed to one of four diets: high-concentrate, fed ad libitum (ALCONC), high-concentrate fed to achieve a gain of either 1.2 kg/d (1.2CONC) or 0.8 kg/d (0.8CONC), or high-fiber, fed ad libitum (ALFIBER). At 218 d of age, all steers were placed on the ALCONC diet until slaughter. Steers were implanted with Compudose at the initiation of all experiments and with Revalor-S when they were estimated to be 100 d from slaughter. When steers in Exp. 1 averaged 181 and 279 d of age, serum samples were collected to determine glucose and insulin concentrations. Steers were slaughtered when a fat thickness of 1.27 cm was reached (Exp. 1) or after 273 d on feed (Exp. 2). In Exp. 1, days in the feedlot (P < 0.01) and age at slaughter (P < 0.01) were lowest for ALCONC and ALFIBER steers, and greatest for 0.8CONC steers. Overall, ADG was greatest for ALCONC and lowest for 0.8CONC steers; feed efficiency was lowest (P < 0.01) for ALFIBER steers. Final BW did not differ (P > 0.57) among treatments. At 181 and 218 d of age, serum insulin was increased (P < 0.10) and intramuscular fat percentage was greatest (P < 0.07), respectively, for ALCONC steers. In Exp. 2, overall ADG (P < 0.06) and final BW (P < 0.04) were greatest for ALCONC and lowest for 1.2CONC and 0.8CONC steers. Overall feed efficiency was greatest for 0.8CONC and lowest for ALFIBER (P < 0.01). Growing phase diet did not affect marbling score at 218 d of age or at slaughter (P > 0.81). In Exp. 3, differences in ruminal pH after feeding may have been a consequence of increasing acetate (ALFIBER), propionate (ALCONC), or a combination of VFA (0.8CONC and 1.2CONC), respectively (diet x time after feeding, P < 0.10). Controlling growth by limit-feeding a high-concentrate diet for only 100 d does not extend the growth curve of early-weaned steers or enhance intramuscular fat deposition at slaughter compared to ad libitum intake of a high-concentrate or high-fiber diet.  相似文献   

10.
Seventy-two Angus crossbred steers (average initial BW, 351 ± 5.5 kg) were used to ascertain the breakpoint in BW above which intramuscular fat deposition was accelerated. Steers were randomly assigned to one of three treatments in an unbalanced study; treatment groups represented a BW at which steers would enter the feedlot (363, 408, or 454 kg). Until entering the feedlot, steers were grazed on pasture and supplemented to achieve 0.8 kg gain/d. Intramuscular fat deposition, measured ultrasonically, and live BW were acquired on d 0 and at 28-d intervals thereafter on each animal until harvest. In the feedlot, steers were fed a 13.4% CP concentrate diet until they reached a final BW of approximately 567 kg. After slaughter, carcass data were collected. No differences (P < 0.05) in ADG on pasture (0.85 ± 0.14 kg) or in the feedlot (1.70 ± 0.07 kg) occurred among treatments. There was good agreement between predicted and measured carcass quality grade (QG) (5.5 and 5.2, respectively). Based on broken-line analysis, deposition of intramuscular fat began to increase at approximately 378 kg regardless of BW at entry into the feedlot. The breakpoint BW for increased intramuscular fat accretion rate was calculated as 64% of mature BW of these steers.  相似文献   

11.
Two studies were conducted to determine the effects of diet and feed additive on growth and carcass characteristics of lambs and cattle destined for all natural markets. In Exp. 1, 48 Dorset × Hampshire lambs (initial BW 29.4 ± 0.1 kg) were used in a randomized complete block experiment to determine the effects of Aspergillus oryzae extract, Amaferm (AMF) supplementation (1 g/d) in an 85% concentrate diet on growth and carcass characteristics. Lambs were allotted to 12 pens (4 lambs per pen), and blocked by sex and BW. Lambs were fed until the average BW of each pen reached a target BW (55.4 kg for wethers and 50.0 kg for ewes), at which time the entire pen of lambs was slaughtered. Amaferm resulted in a greater (P=0.07) G:F. In Exp. 2, 168 crossbred steers (initial BW 300 ± 0.7 kg) were used in a trial with a 3 × 2 factorial arrangement of treatments to examine the effects of 0.5 g/d of Saccaromyces cervisiae boulardii CNCM 1079-Levucell SB (LEV), or 3 g/d of AMF with 2 corn sources, dry whole-shelled corn or high moisture corn, on growth and carcass characteristics. Neither LEV nor AMF improved (P>0.10) carcass characteristics compared with control or non-feed-supplemented steers. Addition of LEV to high-concentrate, corn-based diets did not improve (P>0.10) growth performance of feedlot steers. However, addition of AMF to a diet composed of dry whole-shelled corn resulted in an improvement (P<0.05) in G:F (0.208 vs. 0.194). Results indicate that at the amounts fed, AMF may improve G:F for lambs and steers fed dry corn-based finishing diets.  相似文献   

12.
Effects of ractopamine hydrochloride (RAC) supplementation on growth performance and carcass characteristics of feedlot steers differing in biological type were investigated using British, Continental crossbred, and Brahman crossbred calf-fed steers (n = 420). Steers of each type were weighed at reimplantation [British, mean BW = 375 kg (SD = 38 kg); Continental crossbred, mean BW = 379 kg (SD = 42 kg); Brahman crossbred, mean BW = 340 (SD = 32 kg)] and sorted into 7 BW blocks, each block consisting of 2 pens (10 steers per pen) per type. Pens within a block x type subclass were randomly assigned to RAC treatments (0 or 200 mg x steer(-1) x d(-1) fed during the final 28 d of the finishing period). The type x RAC interaction did not affect (P > 0.05) any of the traits evaluated in this study. Feeding RAC improved (P = 0.001) ADG (1.50 vs. 1.73 +/- 0.09 kg) and G:F (0.145 vs. 0.170 +/- 0.005), but did not affect (P = 0.48) DMI of steers. Dressing percentage, adjusted fat thickness, KPH percentage, and yield grade were not affected by RAC supplementation. Carcasses of steers fed RAC had heavier (P = 0.01) HCW (359 vs. 365 +/- 4.9 kg), larger (P = 0.046) LM areas (81.7 vs. 84.0 +/- 1.1 cm(2)), and tended (P = 0.07) to have lower mean marbling scores (487 vs. 477 +/- 5.2; Slight = 400, Small = 500) than did carcasses of control steers. Among the 3 biological types, Brahman crossbred steers had the lowest DMI and produced the lightest-weight carcasses that had the lowest mean marbling score (P < 0.05). Compared with Continental crossbred and Brahman crossbred steers, British steers produced carcasses with the greatest (P = 0.001) mean marbling scores. Continental crossbred steers had the heaviest BW and greatest dressing percentages and produced the heaviest carcasses with the largest LM areas (P < 0.05) compared with British and Brahman crossbred steers. In the present study, 28 d of supplementation with RAC at a dosage rate of 200 mg x steer(-1) x d(-1) elicited consistent responses in growth performance and carcass traits among 3 diverse biological cattle types.  相似文献   

13.
Two experiments were conducted to examine the effect of previous BW gain during winter grazing on subsequent growth, carcass characteristics, and change in body composition during the feedlot finishing phase. In each experiment, 48 fall-weaned Angus x Angus-Hereford steer calves were assigned randomly to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range (NR) supplemented with 0.91 kg/d of cottonseed meal. Winter grazing ADG (kg/d) for HGW, LGW, and NR steers were, respectively, 1.31, 0.54, 0.16 (Exp. 1) and 1.10, 0.68, 0.15 (Exp. 2). At the end of winter grazing, four steers were selected randomly from each treatment to measure initial carcass characteristics and chemical composition of carcass, offal, and empty body. All remaining steers were fed a high-concentrate diet to a common backfat end point. Six steers were selected randomly from each treatment for final chemical composition, and carcass characteristics were measured on all steers. Initial fat mass and proportion in carcass, offal, and empty body were greatest (P < 0.001) for HGW, intermediate for LGW, and least for NR steers in both experiments. Live BW ADG and gain efficiency during the finishing phase did not differ (P = 0.24) among treatments, but DMI (% of mean BW) for NR and LGW was greater (P < 0.003) than for HGW steers. Final empty-body composition did not differ (P = 0.25) among treatments in Exp. 1. In Exp. 2, final carcass and empty-body fat proportion (g/kg) was greater (P < 0.03) for LGW and NR than for HGW steers. Accretion of carcass fat-free organic matter was greater (P < 0.004) for LGW than for HGW and NR steers in Exp. 1, but did not differ (P = 0.22) among treatments in Exp. 2. Fat accretion in carcass, offal, and empty body did not differ (P = 0.19) among treatments in Exp. 1, but was greater (P < 0.05) for LGW and NR than for HGW steers in Exp. 2. Heat production by NR steers during finishing was greater (P < 0.02) than by HGW steers in Exp. 1 and 2. Differences in ADG during winter grazing and initial body fat content did not affect rate of live BW gain or gain efficiency during finishing. Feeding steers to a common backfat thickness end point mitigated initial differences in carcass and empty-body fat content. However, maintenance energy requirements during finishing were increased for nutritionally restricted steers that were wintered on dormant native range.  相似文献   

14.
Three experiments were conducted to determine effects of restricting intake of the final finishing diet as a means of dietary adaptation compared with diets increasing in grain over a period of 20 to 22 d on overall cattle performance, carcass characteristics, digestibility, digesta kinetics, and ruminal metabolism. In Exp. 1, 84 Angus x Hereford yearling steers (initial BW = 418 +/- 29.0 kg) were fed for 70 d. Restricting intake during adaptation had no effect (P > 0.10) on overall ADG:DMI, but decreased (P < 0.05) DMI compared with ad libitum access to adaptation diets, which resulted from differences during the initial 28 d of the experiment. In Exp. 2, 150 mixed crossbred steer calves (initial BW = 289 +/- 22.9 kg) were fed for an average of 173 d. Restricting intake decreased (P < 0.01) overall daily gain (1.51 vs 1.65 kg/d) and DMI (8.68 vs 9.15 kg/d) compared with ad libitum fed steers; however, ADG:DMI was not influenced (P > 0.10) by adaptation method. Experiment three used eight ruminally and duodenally fistulated steers (initial BW = 336 +/- 20 kg) in a completely random design. Total tract digestibility, digesta kinetics and ruminal metabolism were determined. Restricting intake reduced (P < 0.10) daily DMI variation from d 1 through 7, 8 through 14, and 22 through 28 compared with ad libitum feeding of three adaptation diets. Restricted steers had reduced (adaptation method x period interaction, P < 0.05) intakes and fecal excretions of ADF and greater OM digestibilities on d 4 through 7, 11 through 14, and 18 through 21. Digesta kinetics and ruminal metabolism were generally not affected (P > 0.10) by adaptation method. Our results suggest that restricted-feeding of the final diet as a means of dietary adaptation can be used in finishing cattle with few problems from acidosis or related intake variation. In light-weight steers (Exp. 2), disruptions in intake during the adaptation period might have resulted in restriction for an extended period, which decreased (P < 0.01) hot carcass weight compared with calves fed ad libitum. Effects of limit feeding during the initial 28 d of the feeding period on site and extent of digestion, digesta kinetics, and ruminal metabolism were minimal, supporting few differences in performance across the finishing period for yearling cattle.  相似文献   

15.
Three experiments were conducted to evaluate management strategies designed to decrease heat stress of cattle finished during the summer. In Exp. 1, 144 Angus crossbred yearling steers were assigned to three treatments: 1) ad libitum access to feed at 0800 (ADLIB); 2) fed at 1600 with feed amount adjusted so that no feed was available at 0800 (BKMGT); and 3) fed at 1600 at 85% of predicted ad libitum levels (LIMFD). Treatments were imposed for 23 d of an 82-d study, after which all steers were fed ad libitum at 0800. Treatment did not affect (P > 0.10) overall DMI, although ADLIB cattle tended to consume less feed. Overall water intake was decreased (P < 0.05) by 6.8 L x animal(-1) x d(-1) for LIMFD vs. ADLIB steers. In Exp. 2, 96 Angus crossbred yearling steers were assigned to three treatments: 1) control, no water application; 2) water applied to the pen surfaces between 1000 and 1200 (AM); and 3) water applied to pen surfaces between 1400 and 1600 (PM). Water intake and DMI did not differ among treatments; however, feed efficiency of AM steers was superior (P = 0.06) to that of PM steers. Conversely, marbling scores of PM steers were higher (P = 0.06) than those of AM steers. In Exp. 3, 192 crossbred steers were used to determine the effects of feeding time (0800 [AMF] vs. 1400 [PMF]), with (WET) and without (DRY) sprinkling (20 min every 1.5 h between 1000 and 1750). Feed DMI did not differ among treatments; however, water intake and marbling scores were highest (P < 0.05) for AMF/DRY steers. During these experiments, bunk scores (0 = <10% of feed delivered remaining; 1 = 10 to 50% of feed remaining; 2 = >50% of feed remaining) were assigned to each pen at various times during the day. In Exp. 1, bunk scores of BKMGT pens remained similar (P > 0.20) under varying environmental conditions, whereas LIMFD steers had lower scores (P < 0.05) as days on feed increased, even under hot environmental conditions. In Exp. 3, bunk scores of PMF/WET steers tended to be lower (P < 0.10) at 1700 and 2000 compared with PMF/ DRY pens under mild heat stress but not under severe heat stress. Alternative feeding regimens and sprinkling can alter the feed intake pattern of steers. Heat stress management strategies imposed in these experiments had minimal effects on cattle performance. Such strategies would be most useful for decreasing the susceptibility of cattle to hyperthermia and reducing related feedlot cattle deaths without adversely affecting performance.  相似文献   

16.
Three experiments were conducted to examine the effects of an Aspergillus oryzae extract containing alpha-amylase activity on performance and carcass characteristics of finishing beef cattle. In Exp. 1, 120 crossbred steers were used in a randomized complete block design to evaluate the effects of roughage source (alfalfa hay vs. cottonseed hulls) and supplemental alpha-amylase at 950 dextrinizing units (DU)/kg of DM. Significant roughage source x alpha-amylase interactions (P < 0.05) were observed for performance. In steers fed cottonseed hulls, supplemental alpha-amylase increased ADG through d 28 and 112 and tended (P < 0.15) to increase ADG in all other periods. The increases in ADG were related to increased DMI and efficiency of gain during the initial 28-d period but were primarily related to increased DMI as the feeding period progressed. Supplemental alpha-amylase increased (P = 0.02) the LM area across both roughage sources. In Exp. 2, 96 crossbred heifers were used in a randomized complete block design with a 2 x 3 factorial arrangement of treatments to evaluate the effects of corn processing (dry cracked vs. high moisture) and supplemental alpha-amylase concentration (0, 580, or 1,160 DU/kg of DM). Alpha-amylase supplementation increased DMI (P = 0.05) and ADG (P = 0.03) during the initial 28 d on feed and carcass-adjusted ADG (P = 0.04) across corn processing methods. Longissimus muscle area was greatest (quadratic effect, P = 0.04), and yield grade was least (quadratic effect, P = 0.02) in heifers fed 580 DU of alpha-amylase/kg of DM across corn processing methods. In Exp. 3, 56 crossbred steers were used in a randomized complete block design to evaluate the effects of supplemental alpha-amylase (930 DU/kg of DM) on performance when DMI was restricted to yield a programmed ADG. Alpha-amylase supplementation did not affect performance when DMI was restricted. We conclude that dietary alpha-amylase supplementation of finishing beef diets may result in increased ADG through increased DMI under certain dietary conditions and that further research is warranted to explain its mode of action and interactions with dietary ingredients.  相似文献   

17.
Three experiments were conducted to examine the effect of dietary vitamin E on receiving performance and health and on finishing performance of beef cattle. One hundred twenty beef steers (Exp. 1; initial BW = 173 kg) and 200 beef heifers (Exp. 2; initial BW = 204 kg) were assigned randomly to one of three treatment diets formulated to supply 285, 570, or 1,140 IU/animal daily of supplemental vitamin E during the receiving period. Average daily gain, gain:feed, and DMI were calculated every 14 d, with pen as the experimental unit. Morbidity and retreatment data were analyzed using a nonparametric procedure. After the receiving period, cattle were assigned to a grazing period followed by a finishing program and fed until slaughter. In Exp. 3, 17 beef steers were used to evaluate effects of the same three vitamin E levels on humoral immune response to an ovalbumin vaccine given on d 0 and 14. Jugular blood samples were collected on d 0, 7, 14, and 21. In Exp. 1, vitamin E did not affect (P > 0.10) ADG, DMI, or gain:feed for d 0 to 14, 14 to 28, or 0 to 28. No effects were noted for percentage of morbidity; however, cattle receiving 1,140 IU/d had a numerically (P = 0.15) lower incidence of retreatment. During the 91-d finishing phase, a quadratic effect (P < 0.08) was noted for DMI, ADG, backfat thickness, longissimus muscle area, and yield grade. In Exp. 2, a tendency for a linear (P = 0.10) increase in ADG was observed for the first 14 d of receiving; however, ADG decreased linearly (P = 0.06) with vitamin E concentration thereafter. For the 28-d period, ADG and DMI did not differ among treatments, but gain:feed decreased linearly (P < 0.05) for d 14 to 28 and for d 0 to 28. No effects on percentage morbidity were noted in Exp. 2, and no differences were detected for ADG, gain:feed, or DMI for the 98-d finishing period. There was a linear increase in yield grade (P < 0.05) and a linear (P < 0.08) decrease in longissimus muscle area with increasing vitamin E. Heifers receiving 570 IU of vitamin E during the receiving period tended to have a higher (P < 0.09) dressing percentage at slaughter. In Exp. 3, no significant differences were detected in serum IgG titers to ovalbumin on d 0, 7 or 14; however, on d 21, a linear increase (P = 0.07) in serum IgG titers was noted with supplemental vitamin E. Supplemental vitamin E had limited effects on performance; however, effects on humoral immune response and recovery from respiratory disease warrant further research.  相似文献   

18.
One hundred forty-three Angus x Simmental crossbred steers (initial BW = 155.1 +/- 4.5 kg) were used in a 2-yr study (yr 1, n = 67; yr 2, n = 76) to determine the effects of weaning age, implant regimen, and the weaning age x implant regimen interaction on steer growth and performance, organ mass, carcass characteristics, and cooked beef palatability. Steers were early-weaned at an average age of 108 d (EW) or normally weaned at an average age of 202 d (NW) and allotted by weight to an aggressive or nonaggressive implant regimen. On their respective weaning dates, EW and NW steers were penned individually and fed a grain-based diet until they were slaughtered at a final BW of 546 kg. A subsample of steers (n = 2 per treatment) were slaughtered at 254 kg. At 254 kg, EW steers implanted with the aggressive implant regimen had 64% greater backfat depth than those implanted with the nonaggressive implant regimen; conversely, NW steers implanted with the aggressive implant regimen had 52% lower backfat depth than those implanted with the nonaggressive implant regimen (weaning status x implant regimen interaction; P < 0.01). A similar interaction was observed for empty visceral organ weights. Early-weaned steers were younger (354.7 vs 372.4 d; P < 0.01) at final slaughter but were in the feedlot longer (246.5 vs 169.6 d; P < 0.01) than NW steers, whereas the aggressive implant regimen decreased days fed (203.3 vs 212.7; P < 0.07) compared to the nonaggressive implant regimen. Overall ADG was greater for EW than for NW steers (1.61 vs 1.50 kg/d; P < 0.01) and for the aggressive compared with the nonaggressive implant regimen (1.59 vs 1.52 kg/d; P < 0.02). Early-weaned steers consumed less DM per day (7.4 vs 8.5 kg/d; P < 0.01) and were more efficient (0.217 vs 0.208 kg/kg; P < 0.02) but consumed more total DM (1,817 vs 1,429 kg; P < 0.01) than NW steers while in the feedlot. Implant regimen did not affect DMI (P > 0.37) or feed efficiency (P > 0.15). Weaning status did not affect carcass characteristics (P > 0.14), final empty body composition (P > 0.25), or final longissimus muscle composition (P > 0.18); however, steaks from EW steers had higher (P < 0.05) taste panel tenderness and juiciness ratings than steaks from NW steers. The aggressive implant regimen decreased yield grade (P < 0.02), but did not affect quality grade (P > 0.86) compared to the nonaggressive implant regimen. Placing early-weaned steers on an aggressive implant regimen is a viable management option.  相似文献   

19.
Two experiments with a randomized complete block design were conducted to determine the effects of phase feeding of CP on performance, blood urea nitrogen (BUN), manure N:P ratio, and carcass characteristics of steers fed in a feedlot. In Exp. 1, 45 crossbred steers (initial BW = 423 +/- 3.3 kg) were individually fed a diet formulated to contain 13.0% CP (DM basis) for 62 d. On d 63, the dietary CP was maintained at 13.0% or formulated to contain 11.5 or 10.0% CP until slaughter. Actual CP values were 12.8, 11.8, and 9.9%, respectively. Reducing the CP concentration of the diet did not affect ADG of steers from d 62 to 109 (P = 0.54) or over the 109-d feeding period (1.45, 1.50, and 1.49 kg/d for 13.0, 11.5, and 10.0% CP, respectively; P = 0.85). No differences (P > 0.12) among treatments were detected for BUN concentrations on d 0, 62, or 109. Gain:feed, DMI, and carcass characteristics did not differ among treatments (P > 0.10). In Exp. 2, 2 trials were conducted using 184 (initial BW = 406 +/- 2.6 kg) and 162 (initial BW = 342 +/- 1.9 kg) crossbred steers. Data from the 2 trials were pooled for statistical analysis, and trial effect was added to the statistical model. Steers were fed a diet formulated to contain 13.0% CP until reaching approximately 477 kg. When the average BW of the pen was 477 kg, diets were maintained at 13.0% CP or reduced to contain 11.5 or 10.0% CP. Actual CP values were 12.4, 11.5, and 9.3% CP for treatments 13.0, 11.5, and 10.0% CP, respectively. Reducing the CP content of the diet did not affect ADG after the diet changed (P = 0.16) or throughout the finishing period (P = 0.14). Immediately before slaughter, steers fed the 13.0% CP diet had greater (P < 0.001) BUN concentrations than steers fed the 11.5 and 10.0% CP diets. Carcasses from cattle fed the 11.5% CP diet had greater (P = 0.02) fat thickness than the 13.0 and 10.0% CP treatments, whereas carcasses from cattle fed 13.0% CP had greater (P = 0.004) marbling scores than steers fed the 11.5 or 10.0% CP diets. Other carcass characteristics, DMI, and G:F did not differ (P > 0.10) among treatments. The N:P ratio was increased with the 10.0% CP diet (P = 0.02) compared with the 11.5 or 13.5% CP treatments; however, manure composition did not differ (P > 0.10) among treatments. These results indicate that reduced CP concentration during the finishing period does not affect feedlot performance but can improve the N and P relationship in the manure.  相似文献   

20.
Two experiments were conducted to evaluate dried full-fat corn germ (GERM) as a supplemental fat source in cattle finishing diets. In Exp. 1, 24 pens totaling 358 crossbred beef steers with an initial BW of 319 kg were allowed ad libitum access to diets containing dry-rolled corn, 35% wet corn gluten feed, and 0, 5, 10, or 15% GERM on a DM basis. Increasing GERM decreased (linear; P < 0.02) DMI and increased (quadratic; P < 0.02) ADG. Steers fed 10% GERM had the greatest ADG (quadratic; P < 0.02) and G:F (quadratic; P < 0.05). The addition of GERM increased (linear; P < 0.05) fat thickness, KPH, and the percentage of USDA Yield Grade 4 carcasses (quadratic; P < 0.03), with steers fed 15% GERM having the greatest percentage of USDA Yield Grade 4 carcasses. In Exp. 2, 48 pens totaling 888 crossbred beef heifers with an initial BW of 380 kg were allowed ad libitum access to diets containing steam-flaked corn, 35% wet corn gluten feed, and either no added fat (control), 4% tallow (TALLOW), or 10 or 15% GERM on a DM basis, with or without 224 IU of added vitamin E/kg of diet DM. No fat x vitamin E (P > or = 0.08) interactions were detected. Fat addition, regardless of source, decreased (P < 0.01) DMI, marbling score, and the number of carcasses grading USDA Choice. Among heifers fed finishing diets containing TALLOW or 10% GERM, supplemental fat source did not affect DMI (P = 0.76), ADG (P = 0.54), G:F (P = 0.62), or carcass characteristics (P > or = 0.06). Increasing GERM decreased DMI (linear; P < 0.01) and ADG (quadratic; P < 0.02), with ADG by heifers fed 10% GERM slightly greater than those fed control but least for heifers fed 15% GERM. Increasing GERM improved (quadratic; P < 0.03) G:F of heifers, with heifers fed 10% GERM having the greatest G:F. Increasing GERM decreased HCW (linear; P < 0.02), marbling score (linear; P < 0.01), and the percentage of carcasses grading USDA Choice (linear; P < 0.01). The addition of vitamin E increased (P < 0.04) the percentage of carcasses grading USDA Select and decreased (P < 0.01) the percentage of carcasses grading USDA Standard. These data suggest that GERM can serve as a supplemental fat source in cattle finishing diets, and that the effect of vitamin E did not depend on source or concentration of supplemental fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号