首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
ABSTRACT:   Through most of the last century, three endemic kilka species supported major commercial species in the Caspian Sea. It is clear that catches and abundance of all species have changed, but catch and sampling data are limited and stock assessments are inadequate. Recent changes in the Caspian Sea ecosystem have occurred as a consequence of climatic environmental change (sea level change) and ecologic change caused by the invasive ctenophore Mnemiopsis leidyi . This paper examines the effects of these changes on the population biology and biomass of anchovy kilka Clupeonella engrauliformis in Iranian waters of the Caspian Sea from 1995 to 2004. For most years during this 10-year period, we estimated the age structure of catch, length–weight relationship, von Bertalanffy growth parameters, condition factors, sex ratios, maturity stages determined from ovarian analysis, natural and fishing mortality, age at first capture, and spawning biomass. The instantaneous coefficient of natural mortality was estimated as 0.473/year and the instantaneous coefficient of fishing mortality varied during the 10-year period between 0.541 and 2.690/year. Biomass of anchovy kilka declined from about 186 000 t in 1996 to less than 12 000 t in 2004. Recent high fishing rates were not sustainable after the introduction of Mnemiopsis , so overfishing is part of the explanation for the collapse of anchovy kilka in the Caspian Sea.  相似文献   

2.
This paper examines the changes in the population ecology parameters and biomass of golden grey mullet (Liza aurata) in Iranian waters of the Caspian Sea from 1991 to 2005. For most years during this 14-year period, we estimated the age structure of the catch, length–weight relationship, von Bertalanffy growth parameters, condition factor, natural and fishing mortality and biomass. Growth parameters were estimated as L = 62.7 cm, K = 0.15 year−1, t0 = −0.23 year−1. The instantaneous coefficient of natural mortality was estimated as 0.350 year−1 and the instantaneous coefficient of fishing mortality varied during the 14-year period between 0.111 to 0.539 year−1. Biomass estimates of golden grey mullet, from the biomass-based cohort analysis were increased from 13,527 mt in 1991–1992 to 23,992 mt in 2002–2003. In 2004–2005, it was estimated to be 23,658 mt. We concluded that at the present time, the stock of golden grey mullet is not being over-fished.  相似文献   

3.
Analysis of spawning biomass per‐recruit has been widely adopted in fisheries management. Fishing mortality expressed as spawning potential ratio (SPR) often requires a reference point as an appropriate proxy for the fishing mortality that supports a maximum sustainable yield—FMSY. To date, a single generic level between F30% and F40% is routinely used. Using records from stock assessments in the RAM Legacy Database (RAMLD), we confirm that SPR at MSY (SPRMSY) is a declining function of stock productivity quantified by FMSY. We then use general linear models (GLM) and Bayesian errors‐in‐variables models (BEIVM) to show that SPRMSY can be predicted from life‐history parameters (LHPs, including maximum lifespan, age‐ and length‐at‐maturation, growth parameters, natural mortality, and taxonomic Class) as well as gear selectivity. The calculated SPRMSY ranges from about 13% to 95% with a mean of 47%. About 64% of the stocks in the RAMLD require SPRMSY > 40%. Modelling SPRMSY reveals that LHPs plus Class explain 61% of the deviance in SPRMSY. Faster‐growing, low‐survival, and short‐lived species generally require a high SPR. With equal LHPs, elasmobranchs require about 20% higher SPRMSY than teleosts. When FMSY is estimated from fisheries that harvest older fish, increasing the vulnerable age by one year leads to about an 8% increase in SPRMSY. The BEIVM yields smaller variance and bias than the GLM. The models developed in this study could be used to predict SPRMSY reference points for new stocks using the same LHPs for calculating Fx%, but without knowledge of the stock‐recruitment parameters.  相似文献   

4.
Maximum sustainable yield (MSY) has generally been accepted as one of the target biological reference points. Albacore, Thunnus alalunga Bonnaterre, is a temperate tuna species widely distributed in marine waters. The International Commission for the Conservation of Atlantic Tunas (ICCAT) and the International Seafood Sustainability Foundation (ISSF) had reported the southern Atlantic albacore stock status with different MSY reference points. In addition, the European Commission's Advisory Committee on Fisheries and Aquaculture (ACFA), on 15 September 2006, proposed to amend the Common Fisheries Policy according to the MSY principle, but there is little information on the verifier of the MSY estimates of this albacore stock. This study verifies the MSY estimates of this albacore (T. alalunga) stock to support the management (i.e. setting of MSY) for the southern Atlantic albacore (T. alalunga) stock. The MSY estimates of the albacore stock were evaluated and verified by different models (i.e. Bayesian surplus production model [BSPM], continuous time delay‐difference model [CD‐DM] and Fox surplus production model [SPM]). The MSY estimates from BSPM and CD‐DM were lower than those from conventional estimates; the relative biomass ratio (B2011/BMSY) and relative fishing mortality ratio (F2011/FMSY) from BSPM and CD‐DM were higher than those from ICCAT, which showed that measures should be taken for the sustainable utilisation of this fish stock.  相似文献   

5.
以东南太平洋智利竹鱼为对象、以资源量动态模型为基础,使用模拟方法构建了"真实"的智利竹鱼种群及其渔业,评估了观测误差和过程误差对智利竹鱼资源评估和管理的影响。模拟的"真实"的智利竹鱼种群及其渔业结果显示,1997—2014年太平洋智利竹鱼资源量总体上呈逐年下降趋势,且远低于B_(MSY)的50%;捕捞死亡系数波动剧烈,仅在2012—2014年低于F_(MSY)且相对稳定。渔业资源评估模拟结果显示,观测误差和过程误差使资源量和B_(MSY)被低估,捕捞死亡系数和F_(MSY)被高估,且随机误差越大,资源量、B_(MSY)被低估,而捕捞死亡系数、F_(MSY)被高估的程度越大。渔业管理模拟的结果表明,捕捞控制规则采用恒定捕捞死亡系数时,未来10年基于50%2014年捕捞死亡系数的管理措施为最佳管理措施。由于捕捞死亡系数被高估,最佳管理措施实施后使得年总可捕捞量高于预期,而年资源量低于预期,资源量增长或恢复的速度变慢,资源可能同时处于过度捕捞状态和正遭受过度捕捞。过度捕捞的风险与随机观测误差和过程误差的大小成正比。  相似文献   

6.
Maintaining fish stocks at optimal levels is a goal of fisheries management worldwide; yet, this goal remains somewhat elusive, even in countries with well‐established fishery data collection, assessment and management systems. Achieving this goal often requires knowledge of stock productivity, which can be challenging to obtain due to both data limitations and the complexities of marine populations. Thus, scientific information can lag behind fishery policy expectations in this regard. Steepness of the stock–recruitment relationship affects delineation of target biomass level reference points, a problem which is often circumvented by using a proxy fishing mortality rate (F) in place of the rate associated with maximum sustainable yield (FMSY). Because MSY is achieved in the long term only if an F proxy is happenstance with FMSY, characterizing productivity information probabilistically can support reference point delineation. For demersal stocks of equatorial and tropical regions, we demonstrate how the use of a prior probability distribution for steepness can help identify suitable F proxies. F proxies that reduce spawning biomass per recruit to a target percentage of the unfished quantity (i.e., SPR) of 40% to 50% SPR had the highest probabilities of achieving long‐term MSY. Rebuilding was addressed through closed‐loop simulation of broken‐stick harvest control rules. Similar biomass recovery times were demonstrated for these rules in comparison with more information‐intensive rebuilding plans. Our approach stresses science‐led advancement of policy through a lens of information limitations, which can make the assumptions behind rebuilding plans more transparent and align management expectations with biological outcomes.  相似文献   

7.
Meta‐analyses of stock assessments can provide novel insight into marine population dynamics and the status of fished species, but the world’s main stock assessment database (the Myers Stock‐Recruitment Database) is now outdated. To facilitate new analyses, we developed a new database, the RAM Legacy Stock Assessment Database, for commercially exploited marine fishes and invertebrates. Time series of total biomass, spawner biomass, recruits, fishing mortality and catch/landings form the core of the database. Assessments were assembled from 21 national and international management agencies for a total of 331 stocks (295 fish stocks representing 46 families and 36 invertebrate stocks representing 12 families), including nine of the world’s 10 largest fisheries. Stock assessments were available from 27 large marine ecosystems, the Caspian Sea and four High Seas regions, and include the Atlantic, Pacific, Indian, Arctic and Antarctic Oceans. Most assessments came from the USA, Europe, Canada, New Zealand and Australia. Assessed marine stocks represent a small proportion of harvested fish taxa (16%), and an even smaller proportion of marine fish biodiversity (1%), but provide high‐quality data for intensively studied stocks. The database provides new insight into the status of exploited populations: 58% of stocks with reference points (n = 214) were estimated to be below the biomass resulting in maximum sustainable yield (BMSY) and 30% had exploitation levels above the exploitation rate resulting in maximum sustainable yield (UMSY). We anticipate that the database will facilitate new research in population dynamics and fishery management, and we encourage further data contributions from stock assessment scientists.  相似文献   

8.
Meta‐analysis of marine biological resources can elucidate general trends and patterns to inform scientists and improve management. Crustacean stocks are indispensable for European and global fisheries; however, studies of their aggregate development have been rare and confined to smaller spatial and temporal scales compared to fish stocks. Here, we study the aggregate development of 63 NE Atlantic and Mediterranean crustacean stocks of six species (Nephrops norvegicus, Pandalus borealis, Parapenaeus longirostris, Aristeus antennatus, Aristaeomorpha foliacea and Squilla mantis) in 1990–2013 using biomass index data from official stock assessments. We implemented a dynamic factor analysis (DFA) to identify common underlying trends in biomass indices and investigate the correlation with the North Atlantic Oscillation (NAO) index. The analysis revealed increasing and decreasing trends in the northern and southern NE Atlantic, respectively, and stable or slowly increasing trends in the Mediterranean, which were not related to NAO. A separate meta‐analysis of the fishing mortality (F) and biomass (B) of 39 analytically assessed crustacean stocks was also carried out to explore their development relative to MSY. NE Atlantic crustacean stocks have been exploited on average close to FMSY and remained well above BMSY in 1995–2013, while Mediterranean stocks have been exploited 2–4 times above FMSY in 2002–2012. Aggregate trends of European crustacean stocks are somewhat opposite to trends of fish stocks, suggesting possible cascading effects. This study highlights the two‐speed fisheries management performance in the northern and southern European seas, despite most stocks being managed in the context of the European Union's Common Fisheries Policy.  相似文献   

9.
We have modeled the prey–predator dynamics between nutrients, phytoplankton, and copepods in Hiuchi-nada, central part of the Seto Inland Sea. The model parameters were estimated by stepwise regression using data sampled from 2001 to 2005. We re-created the fluctuations in copepod biomass in the spring–summer of 2001–2004 by model simulation and investigated the relationship between the re-created copepod biomass and anchovy Engraulis japonicus reproductive success rate in Hiuchi-nada. The anchovy reproductive success rate was proportional to the copepod biomass during the last 10 days of May, a period that immediately preceded anchovy recruitment. This relationship indicates that a possible key factor in the regulation of anchovy population levels is the fluctuation in abundance of the copepod assemblage and that the crucial period for anchovy recruitment in Hiuchi-nada would be the period just before anchovy recruitment to the shirasu (body length: approx. 20–35 mm) fishery. These results provide a potential framework for forecasting the anchovy recruitment level that is based on both larval abundance and survival rate as estimated from the biomass of copepods in the pre-recruitment period of anchovy.  相似文献   

10.
Anchovy, Engraulis encrasicolus, forms the basis of Italian small pelagic fisheries in the Adriatic Sea. The strong dependence of this stock on environmental factors and the consequent high variability makes the dynamics of this species particularly complicated to model. Weekly geo‐referenced catch data of anchovy obtained by means of a Fishery Observing System (FOS) from 2005 to 2011 were referred to a 0.2 × 0.2 degree grid (about 20 km2) and associated with the environmental parameters calculated by a Regional Ocean Modelling System, AdriaROMS. Generalized Additive Mixed Models (GAMM) with and without random effects were used to identify a relationship between abundance in the catch and oceanographic conditions. The outcomes of models with no random effects, with random vessel effects and with the random vessel and random week‐of‐the‐year effects were examined. The GAMM incorporating a random vessel and week‐of‐the‐year effect were selected as the best model on the basis of the Akaike information criteria (AIC). This model indicated that catches (abundance) of anchovy in the Adriatic Sea correlate well with low temperatures, salinity fronts and sea surface height, and allowed the identification of areas where high concentrations of this species are most likely to occur. The results of this study demonstrate that GAMM are a useful tool to combine geo‐referenced catch data with oceanographic variables and that the use of a mixed‐model approach with spatial and temporal random effects is an effective way to depict the dynamics of marine species.  相似文献   

11.
In Mediterranean European countries, 85% of the assessed stocks are currently overfished compared to a maximum sustainable yield reference value (MSY) while populations of many commercial species are characterized by truncated size‐ and age‐structures. Rebuilding the size‐ and age‐structure of exploited populations is a management objective that combines single species targets such as MSY with specific goals of the ecosystem approach to fisheries management (EAF), preserving community size‐structure and the ecological role of different species. Here, we show that under the current fishing regime, stock productivity and fleet profitability are generally impaired by a combination of high fishing mortality and inadequate selectivity patterns. For most of the stocks analysed, a simple reduction in the current fishing mortality (Fcur) towards an MSY reference value (FMSY), without any change in the fishing selectivity, will allow neither stock biomass nor fisheries yield and revenue to be maximized. On the contrary, management targets can be achieved only through a radical change in fisheries selectivity. Shifting the size of first capture towards the size at which fish cohorts achieve their maximum biomass, the so‐called optimal length, would produce on average between two and three times higher economic yields and much higher biomass at sea for the exploited stocks. Moreover, it would contribute to restore marine ecosystem structure and resilience to enhance ecosystem services such as reservoirs of biodiversity and functioning food webs.  相似文献   

12.
The spawning grounds of the chub mackerel (Scomber japonicus) and spotted mackerel (Scomber australasicus) in the East China Sea were estimated based on catch statistics of the Japanese large- and medium-type purse seine fishery from 1992 to 2006. Biometric data were obtained from specimens caught by purse seiners in the East China Sea from 1998 to 2006. Gonadosomatic index (GSI) at 50% sexual maturity of chub mackerel and spotted mackerel females was 2.5 and 2.6, respectively. Using this criterion for GSI, chub mackerel larger than 275 mm and spotted mackerel larger than 310 mm in fork length were considered to be mature. Mature chub mackerel was observed in the area of 15–22°C sea surface temperature (SST), and mature spotted mackerel was observed in the area of 17–25°C SST. The spawning period of chub mackerel ranged from February to June, and that of spotted mackerel ranged from February to May in the East China Sea. The spawning grounds were estimated from the distributions of catch per unit effort (CPUE) of spawners and SST. As a result, the spawning ground of chub mackerel was estimated to be in the central and southern part of the East China Sea and the area west of Kyushu in February, March, and April, and in the central part of the East China Sea, the area west of Kyushu and Tsushima Straight in May, and in Tsushima Straight and western part of the Sea of Japan in June. The spawning ground of spotted mackerel was estimated to be in the central and southern part of the East China Sea and southern coastal area of Kyushu in February, March, and April, and the central and southern part of the East China Sea and the area west of Kyushu in May.  相似文献   

13.
We propose a method of estimating natural mortality of marine pelagic fishes, especially for early-life stages, based on their fecundity. To estimate size-dependent fecundity, growth and mortality of Pacific anchovy (Engraulis japonicus), the most abundant fish species in coastal waters off the Korean peninsula, we undertook a synthesis of results from past studies and data. Assuming that the growth coefficient K varies with water temperature, we derived a modified von Bertalanffy growth equation covering all life stages based on otolith analysis of anchovies collected from southwestern coastal area of Korea in 1996. By revisting a past study on spawning and egg production of anchovies in the southern Korean coastal waters, we calculated a monthly-averaged fraction of mature females spawning per day to estimate that an average female anchovy spawns 36 times per year, and that the mean number of eggs produced by an average female is ca. 160 × 103 yr−1. Accepting the ‘bigger-is-better’ hypothesis, we derived a theoretical mortality curve that assumes instantaneous natural mortality as an inverse function of anchovy body length. Assuming equilibrium status of stock, estimated annual instantaneous mortality of anchovy between egg to age-1 stage was 11.3 yr−1 and estimated size-specific mortality was 1.24 d−1 mm in fork length. The derived theoretical mortality curve fit well the stage-specific mortalities, which were estimated independently based on ichthyoplankton surveys and anchovy samples collected by commercial nets, but underestimated the egg mortality (0.89 d−1 vs. 0.83 d−1).  相似文献   

14.
In 1977, Peter Larkin published his now‐famous paper, ‘An epitaph for the concept of maximum sustained yield’. Larkin criticized the concept of single‐species maximum sustained yield (MSY) for many reasons, including the possibility that it may not guard against recruitment failure, and the impossibility of maximising sustainable yields for all species simultaneously. However, in recent years, there has been a fundamental change in the perception of the fishing mortality associated with MSY (FMSY) as a limit to be avoided rather than a target that can routinely be exceeded. The concept of FMSY as a limit is embodied in several United Nations Food and Agriculture Organization (FAO) agreements and guidelines, and has now been incorporated into the US Magnuson–Stevens Fishery Conservation and Management Act. As a result, the United States now requires the development of overfishing definitions based on biological reference points that treat the FMSY as a limit reference point and must also define a lower limit on biomass below which rebuilding plans with strict time horizons must be developed. This represents a major paradigm shift from the previously mandated (but often unachieved) objective to simply maintain fishing mortalities at levels below those associated with recruitment overfishing. In many cases, it requires substantial reductions in current fishing mortality levels. Therefore, the necessity of the new paradigm is continually questioned. This paper draws on examples from several fisheries, but specifically focuses on the recent US experience illustrating the practical difficulties of reducing fishing mortality to levels below those corresponding to MSY. However, several studies suggest that even more substantial reductions in fishing mortality may be necessary if ecosystem considerations, such as multispecies interactions, maintenance of biodiversity and genetic diversity, and reduction of bycatch and waste, are taken into account. The pros and cons of moving beyond single‐species assessment and management are discussed. A US plan for improving stock assessments indicates that even a ‘basic’ objective such as ‘adequate baseline monitoring of all managed species’ may be extremely costly. Thus, the suggestion of Larkin (1983, 1997) that the costs of research and management should not exceed 10–20% of the landed value of the catch may preclude comprehensive ecosystem management. More importantly, neither single‐species nor ecosystem‐based fisheries management is likely to improve appreciably unless levels of fishing capacity are aligned with resource productivity, as is currently being promoted by FAO and several individual nations.  相似文献   

15.
Recent assessments of Chilean shrimp, Heterocarpus reedi, in central Chile have been conducted separately for the northern and southern zones of the fishery and treating them as two separate stocks. However, it is not clear whether H. reedi of the two zones interact with one another or whether they share similar characteristics. Such knowledge is necessary to determine whether they should be modeled as separate “stocks” or as a single stock. This has motivated the use of the Pella–Tomlinson model to test whether there are spatial differences in the population dynamics of H. reedi in the two zones and whether sharing information between the zones improves management advice. We test if it is better, from a stock assessment point of view, to model the stock as one unit in the whole area, or as two separate stocks. In the single-stock model, we sum the catch data of both zones, but each catch-per-unit-of-effort index is fit as a separate data set, using a joint likelihood. Under the single-stock hypothesis, the best model fit was the symmetric production function (i.e. the Schaefer model for which the biomass that supports maximum sustainable yield as a proportion of carrying capacity (BMSY/B0) = 0.5), with different catchability coefficients for each CPUE index, but a shared standard deviation of the log-normal likelihood function. Under the two-stock hypotheses, both catch and CPUE data were separated for each zone in the model. In this case, the best model fit is also the one with symmetrical production curve, and the only parameter that differed between the zones was B0. However, B0 per unit of habitat was similar for the two zones. Also, the precision of estimated management quantities was improved by modeling the appropriate spatial structure and sharing information among zones. The results suggest that the demographic parameters are similar for the two zones. It appears that the main difference between the two zones is the exploitation history, with the catch in the southern zone being reduced earlier than in the northern zone and consequently the biomass in the southern zone increased earlier than in the northern zone. This implies that local depletion can occur in this stock and that differences in management among zones may require explicitly modeling sub-stocks in the assessment of this and other species.  相似文献   

16.
有限数据渔业种群资源评估与管理——以小黄鱼为例   总被引:1,自引:1,他引:0  
传统的渔业资源评估方法需以翔实的调查和渔业数据为基础,而现有的大多数种类面临着着渔获量、基础生物学、有效捕捞努力量等数据缺失问题,因此并不适合采用数据需求较高的模型进行评估和管理。面临着渔业资源衰退的严峻形势和渔获量限额管理的迫切要求,基于有限数据的评估方法和渔获量相关的管理方案正被越来越多的国家采用。本研究以东海小黄鱼(Larimichthys polyactis)种群为例,根据渔获量、自然死亡、消减率、生物学参数、开捕体长等数据,采用 54 种有限数据评估方法,模拟 3 种捕捞动态,对小黄鱼进行管理策略评价和资源评估。结果显示,以相对产量(relative yield, RY)不低于 50%、过度捕捞概率(probability of overfishing, POF)小于 50%,生物量低于最大可持续生物量的 10%(B<0.1BMSY)的概率小于 20%为风险控制水平,捕捞强度随机波动和增长情景下,分别有 6个管理方案(management procedures, MPs)满足既定管理目标;“一般型”和“增长型”捕捞强度情景下, 14个 MPs 满足管理目标。权衡分析 3 种捕捞动态下的 MPs, 50%FMSY 基准法(FMSYref50)可作为小黄鱼渔业最佳的管理方案, POF 介于 5.46%~6.70%, B<0.5BMSY概率介于 15.66%~22.73%,长期获得的相对产量介于 52%~100%;然而, FMSYref50确定的可接受生物学渔获量(acceptable biological catch, ABC)仅有 1.08×10^4 t,与当前产量相差较大。因此,考虑到降低捕捞强度为渔业管控的发展趋势,建议采用动态 F 比值法(DynF)为小黄鱼渔业管理方案,“下降型”捕捞强度情景下,POF为 37.84%, B<0.5BMSY概率为 38.63%,长期获得的相对产量为 84%, ABC为 4.03×10^4 t。根据敏感性分析,发现 DynF 评估的 ABC 对捕捞产量、资源丰度指数不敏感,而对自然死亡系数、最大可持续捕捞死亡系数与自然死亡系数比值(FMSY_M)和当前资源量均较为敏感,参数值增加会导致 ABC 增加,表明在开展渔业资源评估时需要着重提高这 3 种参数的准确性。  相似文献   

17.
The Caspian roach (Rutilus rutilus caspicus) is regarded as one of the most important commercial species in the Caspian Sea. Despite the commercial and conservation importance of the species, information on genetic relationships and diversities at the molecular level in Rutilus rutilus caspicus is scarce. Six microsatellite loci were analysed to study the genetic variation in two major populations of Caspian roach in the Iranian waters of the Caspian Sea: the Anzali Wetland and Gorgan Bay. The Fst value between populations was 0.07, suggesting that the genetic differentiation was significant (P<0.01). Both the studied populations deviated from Hardy–Weinberg equilibrium proportions at a number of loci, mostly due to the deficiency of heterozygosities. The genetic distance between populations was 0.29, which indicates that the genetic difference among the studied populations is pronounced. The differences between both populations were not statistically significant (P>0.05), neither for average number of alleles per locus nor for observed heterozygosities. The data generated in this study provide useful information on the genetic variation and differentiation in populations of Caspian roach.  相似文献   

18.
The ability to discriminate local stocks of Japanese anchovy Engraulis japonicus was assessed based on data from four elements (K, Na, P, and Sr) using an electron probe micro analyzer (EPMA) and data from three elements (Ba, Mn, and Sr) using inductively coupled plasma mass spectrometry (ICP-MS) from the otoliths of 40 anchovy (23.6–47.0 mm body length). Anchovy were caught at three sites (Aki-nada, Hiuchi-nada, and Osaka Bay) in the Seto Inland Sea, and one site (Kuroshio extension) in the Pacific Ocean in 2002. In order to discriminate different spawning grounds, EPMA data from the core portion (from core to 30 μm in the core-posterior axis) were used. Results showed that it was difficult to discriminate between the Seto Inland Sea and the Pacific anchovy by EPMA data. Conversely, it was possible to discriminate between the Seto Inland Sea and the Pacific anchovy by ICP-MS data from bulk otoliths. Our results showed that Mn contents of otoliths using ICP-MS discriminate between spawning grounds most, and Ba and Sr discriminate less. The difference in elemental compositions in anchovy otoliths between the Seto Inland Sea and the Pacific Ocean might be reflected by cumulative experienced elemental composition of ambient sea water during life history between the Seto Inland Sea and the Pacific anchovy.  相似文献   

19.
Fisheries management typically aims at controlling exploitation rate (e.g., Fbar) to ensure sustainable levels of stock size in accordance with established reference points (e.g., FMSY, BMSY). Population selectivity (“selectivity” hereafter), that is the distribution of fishing mortality over the different demographic components of an exploited fish stock, is also important because it affects both Maximum Sustainable Yield (MSY) and FMSY, as well as stock resilience to overfishing. The development of an appropriate metric could make selectivity operational as an additional lever for fisheries managers to achieve desirable outcomes. Additionally, such a selectivity metric could inform managers on the uptake by fleets and effects on stocks of various technical measures. Here, we introduce three criteria for selectivity metrics: (a) sensitivity to selectivity changes, (b) robustness to recruitment variability and (c) robustness to changes in Fbar. Subsequently, we test a range of different selectivity metrics against these three criteria to identify the optimal metric. First, we simulate changes in selectivity, recruitment and Fbar on a virtual fish stock to study the metrics under controlled conditions. We then apply two shortlisted selectivity metrics to six European fish stocks with a known history of technical measures to explore the metrics’ response in real‐world situations. This process identified the ratio of F of the first recruited age–class to Fbar (Frec/Fbar) as an informative selectivity metric for fisheries management and advice.  相似文献   

20.
In the present study, we developed a larval anchovy growth model in relation to sea temperature and food availability via food consumption and metabolic process terms, based on biological data from previous laboratory experiments and field surveys from 2003 to 2006 in Hiuchi-nada Sea, central part of Seto Inland Sea, Japan. To investigate when food shortage for larval anchovy and then recruitment failure occur in Hiuchi-nada Sea, anchovy food requirements were estimated by using the growth model, and we compared the food requirement with anchovy food availability. We applied an estimation method for growth model parameters, Hewett?CJohnson p and Q 10, by minimizing the sum of squares of difference between mass-specific growth rates estimated by the models and those by otolith growth analysis. Parameter p was 0.86, slightly higher than typical values, and Q 10 was 2.11, close to the value used for the biological model of larval northern anchovy. Food shortage for anchovy larvae did not occur in Hiuchi-nada Sea, although it was indicated that low food availability led to a low reproductive success rate. The newly developed growth model is considered optimal at present and useful to link environmental conditions and larval growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号