首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml.  相似文献   

2.
The pharmacokinetic–pharmacodynamic (PK/PD) modeling of enrofloxacin data using mutant prevention concentration (MPC) of enrofloxacin was conducted in febrile buffalo calves to optimize dosage regimen and to prevent the emergence of antimicrobial resistance. The serum peak concentration (Cmax), terminal half‐life (t1/2K10), apparent volume of distribution (Vd(area)/F), and mean residence time (MRT) of enrofloxacin were 1.40 ± 0.27 μg/mL, 7.96 ± 0.86 h, 7.74 ± 1.26 L/kg, and 11.57 ± 1.01 h, respectively, following drug administration at dosage 12 mg/kg by intramuscular route. The minimum inhibitory concentration (MIC), minimum bactericidal concentration, and MPC of enrofloxacin against Pasteurella multocida were 0.055, 0.060, and 1.45 μg/mL, respectively. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided AUC24 h/MIC values to produce effects of bacteriostatic (33 h), bactericidal (39 h), and bacterial eradication (41 h). The estimated daily dosage of enrofloxacin in febrile buffalo calves was 3.5 and 8.4 mg/kg against P. multocida/pathogens having MIC90 ≤0.125 and 0.30 μg/mL, respectively, based on the determined AUC24 h / MIC values by modeling PK/PD data. The lipopolysaccharide‐induced fever had no direct effect on the antibacterial activity of the enrofloxacin and alterations in PK of the drug, and its metabolite will be beneficial for its use to treat infectious diseases caused by sensitive pathogens in buffalo species. In addition, in vitro MPC data in conjunction with in vivo PK data indicated that clinically it would be easier to eradicate less susceptible strains of P. multocida in diseased calves.  相似文献   

3.
This study describes the pharmacokinetics of vitacoxib in healthy rabbits following administration of 10 mg/kg intravenous (i.v.) and 10 mg/kg oral. Twelve New Zealand white rabbits were randomly allocated to two equally sized treatment groups. Blood samples were collected at predetermined times from 0 to 36 hr after treatment. Plasma drug concentrations were determined using UPLC‐MS/MS. Pharmacokinetic analysis was completed using noncompartmental methods via WinNonlin? 6.4 software. The mean concentration area under curve (AUClast) for vitacoxib was determined to be 11.0 ± 4.37 μg hr/ml for i.v. administration and 2.82 ± 0.98 μg hr/ml for oral administration. The elimination half‐life (T1/2λz) was 6.30 ± 2.44 and 6.30 ± 1.19 hr for the i.v. and oral route, respectively. The Cmax (maximum plasma concentration) and Tmax (time to reach the observed maximum (peak) concentration at steady‐state) following oral application were 189 ± 83.1 ng/ml and 6.58 ± 3.41 hr, respectively. Mean residence time (MRTlast) following i.v. injection was 6.91 ± 3.22 and 11.7 ± 2.12 hr after oral administration. The mean bioavailability of oral administration was calculated to be 25.6%. No adverse effects were observed in any rabbit. Further studies characterizing the pharmacodynamics of vitacoxib are required to develop a formulation of vitacoxib for rabbits.  相似文献   

4.
The pharmacokinetic properties of three formulations of vitacoxib were investigated in horses. To describe plasma concentrations and characterize the pharmacokinetics, 6 healthy adult Chinese Mongolian horses were administered a single dose of 0.1 mg/kg bodyweight intravenous (i.v.), oral paste, or oral tablet vitacoxib in a 3-way, randomized, parallel design. Blood samples were collected prior to and at various times up to 72 hr postadministration. Plasma vitacoxib concentrations were quantified using UPLC-MS/MS, and pharmacokinetic parameters were calculated using noncompartmental analysis. No complications resulting from the vitacoxib administration were noted on subsequent administrations, and all procedures were tolerated well by the horses throughout the study. The elimination half-life (T1/2λz) was 4.24 ± 1.98 hr (i.v.), 8.77 ± 0.91 hr (oral paste), and 8.12 ± 4.24 hr (oral tablet), respectively. Maximum plasma concentration (Cmax) was 28.61 ± 9.29 ng/ml (oral paste) and 19.64 ± 9.26 ng/ml (oral tablet), respectively. Area under the concentration-versus-time curve (AUClast) was 336 ± 229 ng hr/ml (i.v.), 221 ± 94 ng hr/ml (oral paste), and 203 ± 139 ng hr/ml, respectively. The results showed statistically significant differences between the 2 oral vitacoxib groups in Tmax value. T1/2λz (hr), AUClast (ng hr/ml), and MRT (hr) were significantly different between i.v. and oral groups. The longer half-life observed following oral administration was consistent with the flip-flop phenomenon.  相似文献   

5.
Colibacillosis is a systemic disease responsible for important economic losses in poultry breeding; fluoroquinolones, including danofloxacin, are used to treat diseased animals. The purpose of the present study was to estimate pharmacokinetic–pharmacodynamic (PK-PD) surrogates for bacteriostasis, bactericidal activity and bacterial elimination against Escherichia coli O78/K80, using a PK-PD approach, for danofloxacin in turkeys after oral administration. Eight healthy turkeys, breed BUT 9, were included in a two-way crossover study. The drug was administered intravenously (i.v.) and orally at a dose rate of 6 mg/kg bw. The values of the elimination half-life and the total body clearance after i.v. administration were 8.64 ± 2.35 h and 586.76 ± 136.67 ml kg-1h-1, respectively. After oral administration, the values of the absolute bioavailability and the elimination half-life were 78.37± 17.35% and 9.74± 2.93 h, respectively. The minimum inhibitory concentration against the investigated strain in turkey serum was 0.25 μg/ml, four times higher than in broth. The lowest effective ex vivo AUC24/MIC ratios required for bacteriostasis, bactericidal activity, and total killing of E. coliO78/K80 were 0.416 h, 1.9 h and 6.73 h, respectively. The oral dose of 6 mg/kg used in the present study could be interpreted as being sufficient to eliminate E. coli with an MIC 0.25 μ g/ml. However, considering the demand that antimicrobial resistance should be avoided by complete bacterial elimination, PK-PD considerations suggest that an even higher dose of 32 mg/kg per day or 0.7 mg/kcal per day should be evaluated in clinical trials.  相似文献   

6.
The purpose of this study was to determine the pharmacokinetics and dose‐scaling model of vitacoxib in either fed or fasted cats following either oral or intravenous administration. The concentration of the drug was quantified by UPLC‐MS/MS on plasma samples. Relevant parameters were described using noncompartmental analysis (WinNonlin 6.4 software). Vitacoxib is relatively slowly absorbed and eliminated after oral administration (2 mg/kg body weight), with a Tmax of approximately 4.7 hr. The feeding state of the cat was a statistically significant covariate for both area under the concentration versus time curve (AUC) and mean absorption time (MATfed). The absolute bioavailability (F) of vitacoxib (2 mg/kg body weight) after oral administration (fed) was 72.5%, which is higher than that in fasted cats (= 50.6%). Following intravenous administration (2 mg/kg body weight), Vd (ml/kg) was 1,264.34 ± 343.63 ml/kg and Cl (ml kg?1 hr?1) was 95.22 ± 23.53 ml kg?1 hr?1. Plasma concentrations scaled linearly with dose, with Cmax (ng/ml) of 352.30 ± 63.42, 750.26 ± 435.54, and 936.97 ± 231.27 ng/ml after doses of 1, 2, and 4 mg/kg body weight, respectively. No significant undesirable behavioral effects were noted throughout the duration of the study.  相似文献   

7.
The pharmacokinetics (PK) and pharmacodynamics (PD) of marbofloxacin (MBF) were determined in six healthy female goats of age 1.00–1.25 years after repeated administration of MBF. The MBF was administered intramuscularly (IM) at 2 mg kg?1 day?1 for 5 days. Plasma concentrations of MBF were determined by high‐performance liquid chromatography, and PK parameters were obtained using noncompartmental analysis. The MBF concentrations peaked at 1 hr, and peak concentration (Cmax) was 1.760 µg/ml on day 1 and 1.817 µg/ml on day 5. Repeated dosing of MBF caused no significant change in PK parameters except area under curve (AUC) between day 1 (AUC0–∞D1 = 7.67 ± 0.719 µg × hr/ml) and day 5 (AUC0‐∞D5 = 8.70 ± 0.857 µg × hr/ml). A slight difference in mean residence time between 1st and 5th day of administration and accumulation index (AI = 1.13 ± 0.017) suggested lack of drug accumulation following repeated IM administration up to 5 days. Minimum inhibitory concentration (MIC) demonstrated that Escherichia coli (MIC = 0.04 µg/ml) and Pasturella multocida (MIC = 0.05 µg/ml) were highly sensitive to MBF. Time‐kill kinetics demonstrated rapid and concentration‐dependent activity of MBF against these pathogens. PK/PD integration of data for E. coli and P. multocida, using efficacy indices: Cmax/MIC and AUC0–24hr/MIC, suggested that IM administration of MBF at a dose of 2 mg kg?1 day?1 is appropriate to treat infections caused by E. coli. However, a dose of 5 mg kg?1 day?1 is recommended to treat pneumonia caused by P. multocida in goats. The study indicated that MBF can be used repeatedly at dosage of 2 mg/kg in goats without risk of drug accumulation up to 5 days.  相似文献   

8.
The aim of this study was to determine the pharmacokinetics/pharmacodynamics of enrofloxacin (ENR) and danofloxacin (DNX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. The study was performed on twenty‐four calves that were determined to be premature by anamnesis and general clinical examination. Premature calves were randomly divided into four groups (six premature calves/group) according to a parallel pharmacokinetic (PK) design as follows: ENR‐IV (10 mg/kg, IV), ENR‐IM (10 mg/kg, IM), DNX‐IV (8 mg/kg, IV), and DNX‐IM (8 mg/kg, IM). Plasma samples were collected for the determination of tested drugs by high‐pressure liquid chromatography with UV detector and analyzed by noncompartmental methods. Mean PK parameters of ENR and DNX following IV administration were as follows: elimination half‐life (t1/2λz) 11.16 and 17.47 hr, area under the plasma concentration–time curve (AUC0‐48) 139.75 and 38.90 hr*µg/ml, and volume of distribution at steady‐state 1.06 and 4.45 L/kg, respectively. Total body clearance of ENR and DNX was 0.07 and 0.18 L hr?1 kg?1, respectively. The PK parameters of ENR and DNX following IM injection were t1/2λz 21.10 and 28.41 hr, AUC0‐48 164.34 and 48.32 hr*µg/ml, respectively. The bioavailability (F) of ENR and DNX was determined to be 118% and 124%, respectively. The mean AUC0‐48CPR/AUC0‐48ENR ratio was 0.20 and 0.16 after IV and IM administration, respectively, in premature calves. The results showed that ENR (10 mg/kg) and DNX (8 mg/kg) following IV and IM administration produced sufficient plasma concentration for AUC0‐24/minimum inhibitory concentration (MIC) and maximum concentration (Cmax)/MIC ratios for susceptible bacteria, with the MIC90 of 0.5 and 0.03 μg/ml, respectively. These findings may be helpful in planning the dosage regimen for ENR and DNX, but there is a need for further study in naturally infected premature calves.  相似文献   

9.
Metamizole (MT), an analgesic and antipyretic drug, is rapidly hydrolyzed to the active primary metabolite 4‐methylaminoantipyrine (MAA) and relatively active secondary metabolite 4‐aminoantipyrine (AA). The aim of this study was to assess the pharmacokinetic profiles of MAA and AA after dose of 25 mg/kg MT by intravenous (i.v.), intramuscular (i.m.), oral (p.o.), and rectal (RC) routes in dogs. Six dogs were randomly allocated to an open, single‐dose, four‐treatment, four‐phase, unpaired, crossover study design. Blood was collected at predetermined times within 24 hr, and plasma was analyzed by a validated HPLC‐UV method. Plasma concentrations of MAA and AA after i.v., i.m., p.o., and RC administrations of MT were detectable from 5 (i.v. and i.m.) or 30 (p.o. and RC) min to 24 hr in all dogs. The highest concentrations of MAA were found in the i.v., then i.m., p.o., and RC groups. Plasma concentrations of AA were similar for i.v., i.m., and RC, and the concentrations were approximately double those in the PO groups. The AUCEV/IV ratio for MAA was 0.75 ± 0.11, 0.59 ± 0.08, and 0.32 ± 0.05, for i.m., p.o., and RC, respectively. The AUCEV/IV ratio for AA was 1.21 ± 0.33, 2.17 ± 0.62, and 1.08 ± 0.19, for i.m., p.o., and RC, respectively. Although further studies are needed, rectal administration seems to be the least suitable route of administration for MT in the dog.  相似文献   

10.
The objectives of this study were to investigate the pharmacokinetics of danofloxacin and its metabolite N‐desmethyldanofloxacin and to determine their concentrations in synovial fluid after administration by the intravenous, intramuscular or intragastric routes. Six adult mares received danofloxacin mesylate administered intravenously (i.v.) or intramuscularly (i.m.) at a dose of 5 mg/kg, or intragastrically (IG) at a dose of 7.5 mg/kg using a randomized Latin square design. Concentrations of danofloxacin and N‐desmethyldanofloxacin were measured by UPLC‐MS/MS. After i.v. administration, danofloxacin had an apparent volume of distribution (mean ± SD) of 3.57 ± 0.26 L/kg, a systemic clearance of 357.6 ± 61.0 mL/h/kg, and an elimination half‐life of 8.00 ± 0.48 h. Maximum plasma concentration (Cmax) of N‐desmethyldanofloxacin (0.151 ± 0.038 μg/mL) was achieved within 5 min of i.v. administration. Peak danofloxacin concentrations were significantly higher after i.m. (1.37 ± 0.13 μg/mL) than after IG administration (0.99 ± 0.1 μg/mL). Bioavailability was significantly higher after i.m. (100.0 ± 12.5%) than after IG (35.8 ± 8.5%) administration. Concentrations of danofloxacin in synovial fluid samples collected 1.5 h after administration were significantly higher after i.v. (1.02 ± 0.50 μg/mL) and i.m. (0.70 ± 0.35 μg/mL) than after IG (0.20 ± 0.12 μg/mL) administration. Monte Carlo simulations indicated that danofloxacin would be predicted to be effective against bacteria with a minimum inhibitory concentration (MIC) ≤0.25 μg/mL for i.v. and i.m. administration and 0.12 μg/mL for oral administration to maintain an area under the curve:MIC ratio ≥50.  相似文献   

11.
Sanguinarine (SA) and chelerythrine (CHE) are the main active components of the phytogenic livestock feed additive, Sangrovit®. However, little information is available on the pharmacokinetics of Sangrovit® in poultry. The goal of this work was to study the pharmacokinetics of SA, CHE, and their metabolites, dihydrosanguinarine (DHSA) and dihydrochelerythrine (DHCHE), in 10 healthy female broiler chickens following oral (p.o.) administration of Sangrovit® and intravenous (i.v.) administration of a mixture of SA and CHE. The plasma samples were processed using two different simple protein precipitation methods because the parent drugs and metabolites are stable under different pH conditions. The absorption and metabolism of SA following p.o. administration were fast, with half‐life (t1/2) values of 1.05 ± 0.18 hr and 0.83 ± 0.10 hr for SA and DHSA, respectively. The maximum concentration (Cmax) of DHSA (2.49 ± 1.4 μg/L) was higher that of SA (1.89 ± 0.8 μg/L). The area under the concentration vs. time curve (AUC) values for SA and DHSA were 9.92 ± 5.4 and 6.08 ± 3.49 ng/ml hr, respectively. Following i.v. administration, the clearance (CL) of SA was 6.79 ± 0.63 (L·h?1·kg?1) with a t1/2 of 0.34 ± 0.13 hr. The AUC values for DHSA and DHCHE were 7.48 ± 1.05 and 0.52 ± 0.09 (ng/ml hr), respectively. These data suggested that Sangrovit® had low absorption and bioavailability in broiler chickens. The work reported here provides useful information on the pharmacokinetic behavior of Sangrovit® after p.o. and i.v. administration in broiler chickens, which is important for the evaluation of its use in poultry.  相似文献   

12.
This study was performed to determine pharmacokinetic profiles of the two active metabolites of the analgesic drug metamizole (dipyrone , MET), 4‐methylaminoantipyrine (MAA), and 4‐aminoantipyrine (AA), after intravenous (i.v., intramuscular (i.m.), and oral (p.o.) administration in cats. Six healthy mixed‐breed cats were administered MET (25 mg/kg) by i.v., i.m., or p.o. routes in a crossover design. Adverse clinical signs, namely salivation and vomiting, were detected in all groups (i.v. 67%, i.m. 34%, and p.o. 15%). The mean maximal plasma concentration of MAA for i.v., i.m., and p.o. administrations was 148.63 ± 106.64, 18.74 ± 4.97, and 20.59 ± 15.29 μg/ml, respectively, with about 7 hr of half‐life in all routes. Among the administration routes, the area under the plasma concentration curve (AUC) value was the lowest after i.m. administration and the AUCEV/i.v. ratio was higher in p.o. than the i.m. administration without statistical significance. The plasma concentration of AA was detectable up to 24 hr, and the mean plasma concentrations were smaller than MAA. The present results suggest that MET is converted into the active metabolites in cats as in humans. Further pharmacodynamics and safety studies should be performed before any clinical use.  相似文献   

13.
The in-vitro activity of enrofloxacin against 117 strains of bacteria isolated from bustards was determined. Minimum inhibitory concentrations for 72% of the Proteus spp., E. coli, Salmonella spp. and Klebsiella spp. (n = 61) and for 48% of the Streptococci spp. and Staphylococci spp. (n = 31) were 0.5 μ g/mL. The minimum inhibitory concentration (MIC) of 76% of Pseudomonas spp. (n = 25) was 2 μg/mL. Fourteen strains were resistant to concentrations 128 μg/mL. The elimination half-lives (t½ elim β) (mean± SEM) of 10 mg/kg enrofloxacin in eight houbara bustards (Chlamydotis undulata) were 6.80± 0.79, 6.39± 1.49 and 5.63± 0.54 h after oral (p.o.), intramuscular (i.m.) and intravenous (i.v.) administration, respectively. Enrofloxacin was rapidly absorbed from the bustard gastro-intestinal tract and maximum plasma concentrations of 1.84± 0.16 μg/mL were achieved after 0.66± 0.05 h. Maximum plasma concentration after i.m. administration of 10 mg/kg was 2.75± 0.11 μg/mL at 1.72± 0.19 h. Maximum plasma concentration after i.m. administration of 15 mg/kg in two birds was 4.86 μg/mL. Bioavailability was 97.3± 13.7% and 62.7± 11.1% after i.m. and oral administration, respectively. Plasma concentrations of enrofloxacin 0.5 μg/mL were maintained for at least 12 h for all routes at 10 mg/kg and for 24 h after i.m. administration at 15 mg/kg. Plasma enrofloxacin concentrations were monitored during the first 3 days of treatment in five houbara bustards and kori bustards (Ardeotis kori) with bacterial infections receiving a single daily i.m. injection of 10 mg/kg for 3 days. The mean plasma enrofloxacin concentrations in the clinical cases at 27 and 51 h (3.69 and 3.86 μg/mL) and at 48 h (0.70 μg/mL) were significantly higher compared with the 3 h and 24 h time intervals from clinically normal birds. The maximum plasma concentration (Cmax)/MIC ratio was ranked i.v. (10/mg/kg) > i.m. (15 mg/kg) > i.m. (10 mg/kg) > oral (10 mg/kg), but it was only higher than 8:1 for i.v and i.m. administrations of enrofloxacin at 10 mg/kg and 15 mg/kg, respectively, against a low MIC (0.5 μg/mL). A dosage regimen of 10 mg/kg repeated every 12 h, or 15 mg/kg repeated every 24 h, would be expected to give blood concentrations above 0.5 μg/mL and hence provide therapeutic response in the bustard against a wide range of bacterial infections.  相似文献   

14.
In this study the disposition kinetics and plasma availability of moxifloxacin in Muscovy ducks after single intravenous (i.v.), intramuscular (i.m.) and oral (p.o.) administrations of 5 mg kg?1 b.wt. were investigated. The concentrations of moxifloxacin in the plasma were measured using high-performance liquid chromatography (HPLC) with fluorescence detection on samples collected at frequent intervals after drug administration. Following intravenous injection, the decline in plasma drug concentration was bi-exponential with half-lives of (t1/2α) 0.22 ± 0.10 h and (t1/2β) 2.49 ± 0.26 h for distribution and elimination phases, respectively. The volume of distribution at steady-state (Vdss) was 1.02 ± 0.14 l kg?1 and the total body clearance (Cltot) was 0.32 ± 0.11 l kg?1 h?1, respectively. After intramuscular and oral administration of moxifloxacin at the same dose the peak plasma concentrations (Cmax) were 2.38 ± 0.43 and 2.11 ± 0.36 μg ml?1 and were obtained at 1.47 ± 0.26 and 1.83 ± 0.16 h (Tmax), respectively, the elimination half-lives (T1/2el) were 3.14 ± 0.42 and 2.63 ± 0.44 h, respectively, and AUC0–24 were 15.87 ± 2.35 and 14.52 ± 2.37 μg ml?1 h?1, respectively. The systemic bioavailabilities were 96.36 ± 11.54% and 86.79 ± 12.64%, respectively. In vitro plasma protein binding percent was 32%. We concluded that moxifloxacin might be clinically interesting alternative for the treatment of most sensitive bacterial infections in Muscovy ducks.  相似文献   

15.
Bayesian population pharmacokinetic models of florfenicol in healthy pigs were developed based on retrospective data in pigs either via intravenous (i.v.) or intramuscular (i.m.) administration. Following i.v. administration, the disposition of florfenicol was best described by a two‐compartment open model with the typical values of half‐life at α phase (t 1/2α), half‐life at β phase (t 1/2β), total body clearance (Cl), and volume of distribution (V d) were 0.132 ± 0.0289, 2.78 ± 0.166 hr, 0.215 ± 0.0102, and 0.841 ± 0.0289 L kg?1, respectively. The disposition of florfenicol after i.m. administration was best described by a one‐compartment open model. The typical values of maximum concentration of drug in serum (C max), elimination half‐life (t 1/2Kel), Cl, and Volume (V ) were 5.52 ± 0.605 μg/ml, 9.96 ± 1.12 hr, 0.228 ± 0.0154 L hr?1 kg?1, and 3.28 ± 0.402 L/kg, respectively. The between‐subject variabilities of all the parameters after i.m. administration were between 25.1%–92.1%. Florfenicol was well absorbed (94.1%) after i.m. administration. According to Monte Carlo simulation, 8.5 and 6 mg/kg were adequate to exert 90% bactericidal effect against Actinobacillus pleuropneumoniae after i.v. and i.m. administration.  相似文献   

16.
Alfaxalone (3α‐hydroxy‐5α‐pregnane‐11, 20‐dione) is a neuroactive steroid with anaesthetic properties and a wide margin of safety. The pharmacokinetic properties of alfaxalone administered intravenously and intraperitoneally in rats (n = 28) were investigated. Mean t1/2elim for 2 and 5 mg/kg i.v. was 16.2 and 17.6 min, respectively, but could not be estimated for IP dosing, due to sustained plasma levels for up to 60 min after injection. Clp for i.v. injection was calculated at 57.8 ± 23.6 and 54.3 ± 6.8 mL/min/kg, which were 24.5% and 23% of cardiac output, respectively. The observed Cmax was 3.0 mg/L for IP administration, and 2.2 ± 0.9 and 5.2 ± 1.3 mg/L for 2 and 5 mg/kg i.v. administration, respectively. AUC0–60 was 96.2 min·mg/L for IP dosing. The relative bioavailability for IP dosing was 26% and 28% compared to i.v. dosing. Differences in t1/2elim and Clp from previous pharmacokinetic studies in rats are likely due to variations in alfaxalone formulation rather than sex differences. Alfaxan® given IP caused sustained levels of alfaxalone, no apnoea and longer sleep times than i.v. dosing, although immobilization was not induced in 30% of rats given Alfaxan® IP. A pharmacodynamic study of the effects of combining IP injection of Alfaxan® with other premedication agents is worthwhile, to determine whether improved anaesthesia induction could ultimately provide an alternative anaesthetic regimen for rats.  相似文献   

17.
The objective of this study was to investigate the toxicokinetic characteristics of melamine in broilers due to the limited information available for livestock. Melamine was then administered to broiler chickens at an intravenous (i.v.) or oral (p.o.) dosage of 5.5 mg/kg of body weight, and plasma samples were collected up to 48 h. The concentration of melamine in each plasma sample was analyzed using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). Melamine was measurable up to 24 h after i.v. and p.o. administration. A one‐compartment model was developed to describe the toxicokinetics of melamine in broilers. Following i.v. administration, the values for the elimination half‐life (t1/2β), the volume of distribution (Vd), and the clearance (CL) were 4.42 ± 1.02 h, 00.52 ± 0.18 L/kg, and 0.08 ± 0.01 L/h/kg, respectively. The absolute oral bioavailability (F) was 95.63 ± 3.54%. The results suggest that most of the administered melamine is favorably absorbed from the alimentary tract and rapidly cleared by the kidneys in broiler chickens.  相似文献   

18.
The objective of this study was to determine the pharmacokinetics of tildipirosin in rabbits after a single intravenous (i.v.) and intramuscular (i.m.) injection at a dose of 4 mg/kg. Twelve white New Zealand rabbits were assigned to a randomized, parallel trial design. Blood samples were collected prior to administration and up to 14 days postadministration. Plasma concentrations of tildipirosin were quantified using a validated ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The pharmacokinetic parameters were calculated using a noncompartmental model in WinNonlin 5.2 software. Following i.v. and i.m. administration, the elimination half-life (T1/2λ) was 81.17 ± 9.28 and 96.68 ± 15.37 hr, respectively, and the mean residence time (MRTlast) was 65.44 ± 10.89 and 67.06 ± 10.49 hr, respectively. After i.v. injection, the plasma clearance rate (Cl) and volume of distribution at steady state (Vdss) were 0.28 ± 0.10 L kg-1 h−1 and 17.78 ± 5.15 L/kg, respectively. The maximum plasma concentration (Cmax) and time to reach maximum plasma concentration (Tmax) after i.m. administration were 836.2 ± 117.9 ng/ml and 0.33 ± 0.17 hr, respectively. The absolute bioavailability of i.m. administration was 105.4%. Tildipirosin shows favorable pharmacokinetic characteristics in rabbits, with fast absorption, extensive distribution, and high bioavailability. These findings suggest that tildipirosin might be a potential drug for the prevention and treatment of respiratory diseases in rabbits.  相似文献   

19.
Clinically normal koalas (n = 6) received a single dose of intravenous enrofloxacin (10 mg/kg). Serial plasma samples were collected over 24 h, and enrofloxacin concentrations were determined via high‐performance liquid chromatography. Population pharmacokinetic modeling was performed in S‐ADAPT. The probability of target attainment (PTA) was predicted via Monte Carlo simulations (MCS) using relevant target values (30–300) based on the unbound area under the curve over 24 h divided by the minimum inhibitory concentration (MIC) (fAUC0–24/MIC), and published subcutaneous data were incorporated (Griffith et al., 2010). A two‐compartment disposition model with allometrically scaled clearances (exponent: 0.75) and volumes of distribution (exponent: 1.0) adequately described the disposition of enrofloxacin. For 5.4 kg koalas (average weight), point estimates for total clearance (SE%) were 2.58 L/h (15%), central volume of distribution 0.249 L (14%), and peripheral volume 2.77 L (20%). MCS using a target fAUC0–24/MIC of 40 predicted highest treatable MICs of 0.0625 mg/L for intravenous dosing and 0.0313 mg/L for subcutaneous dosing of 10 mg/kg enrofloxacin every 24 h. Thus, the frequently used dosage of 10 mg/kg enrofloxacin every 24 h subcutaneously may be appropriate against gram‐positive bacteria with MICs ≤ 0.03 mg/L (PTA > 90%), but appears inadequate against gram‐negative bacteria and Chlamydiae in koalas.  相似文献   

20.
Enrofloxacin, a key antimicrobial agent in commercial avian medicine, has limited bioavailability (60%). This prompted its chemical manipulation to yield a new solvate‐recrystallized enrofloxacin hydrochloride dihydrate entity (enroC). Its chemical structure was characterized by means of mass spectroscopy, Fourier transformed infrared spectroscopy, X‐ray powder diffraction, and thermal analysis. Comparative oral pharmacokinetics (PK) of reference enrofloxacin (enroR) and enroC in broiler chickens after oral administration revealed noticeable improvements in key parameters and PK/PD ratios. Maximum serum concentration values were 2.61 ± 0.21 and 5.9 ± 0.42 μg/mL for enroR and enroC, respectively; mean residence time was increased from 5.50 ± 0.26 h to 6.20 ± 0.71 h and the relative bioavailability of enroC was 336%. Considering Cmax/MIC and AUC/MIC ratios and the MIC values for a wild‐type Escherichia coli O78/H12 (0.25 μg/mL), optimal ratios will only be achieved by enroC (Cmax/MIC = 23.6 and AUC/MIC = 197.7 for enroC; vs. Cmax/MIC = 10.4 and AUC/MIC = 78.1 for enroR). Furthermore, enroC may provide in most cases mutant prevention concentrations (Cmax/MIC ≥ 16). Ready solubility of powder enroC in drinking water at concentrations regularly used (0.01%) to provide an additional advantage of enroC in the field. Further development of enroC is warranted before it can be recommended for clinical use in veterinary medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号