首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the pharmacokinetics of cefquinome following single intramuscular (IM) administration in six healthy male buffalo calves. Cefquinome was administered intramuscularly (2 mg/kg bodyweight) and blood samples were collected prior to drug administration and up to 24 hr after injection. No adverse effects or changes were observed after the IM injection of cefquinome. Plasma concentrations of cefquinome were determined by high‐performance liquid chromatography. The disposition of plasma cefquinome is characterized by a mono‐compartmental open model. The pharmacokinetic parameters after IM administration (mean ± SE) were Cmax 6.93 ± 0.58 μg/ml, Tmax 0.5 hr, t½kα 0.16 ± 0.05 hr, t½β 3.73 ± 0.10 hr, and AUC 28.40 ± 1.30 μg hr/ml after IM administration. A dosage regimen of 2 mg/kg bodyweight at 24‐hr interval following IM injection of cefquinome would maintain the plasma levels required to be effective against the bacterial pathogens with MIC values ≤0.39 μg/ml. The suggested dosage regimen of cefquinome has to be validated in the disease models before recommending for clinical use in buffalo calves.  相似文献   

2.
Ketoprofen is a nonsteroidal anti‐inflammatory and analgesic agent that nonselectively inhibits cyclooxygenase, with both COX‐1 and COX‐2 inhibition. Recent studies on COX receptor expression in reptiles suggest that nonselective COX inhibitors may be more appropriate than more selective inhibitors in some reptiles, but few pharmacokinetic studies are available. The goal of this study was to determine single‐ and multidose (three consecutive days) pharmacokinetics of racemic ketoprofen administered intravenously and intramuscularly at 2 mg/kg in healthy juvenile loggerhead turtles (Caretta caretta). The S‐isomer is the predominant isomer in loggerhead sea turtles, similar to most mammals, despite administration of a 50:50 racemic mixture. Multidose ketoprofen administration demonstrated no bioaccumulation; therefore, once‐daily dosing will not require dose adjustment over time. S‐isomer pharmacokinetic parameters determined in this study were Cmax of 10.1 μg/ml by IM injection, C0 of 13.4 μg/ml by IV injection, AUC of 44.7 or 69.4 μg*hr/ml by IM or IV injection, respectively, and T½ of 2.8 or 3.6 hr by IM or IV injection, respectively. Total ketoprofen plasma concentrations were maintained for at least 12 hr above concentrations determined to be effective for rats and humans. A dose of 2 mg/kg either IM or IV every 24 hr is likely appropriate for loggerhead turtles.  相似文献   

3.
Metamizole (dipyrone, MET) is a nonopioid analgesic drug commonly used in human and veterinary medicine. The aim of this study was to assess two major active metabolites of MET, 4‐methylaminoantipyrin (MAA) and 4‐aminoantipyrin (AA), in goat plasma after intravenous (IV) and intramuscular (IM) administration. In addition, metabolite concentration in milk was monitored after IM injection. Six healthy female goats received MET at a dose of 25 mg/kg by IV and IM routes in a crossover design study. The blood and milk samples were analyzed using HPLC coupled with ultraviolet detector and the plasma vs concentration curves analyzed by a noncompartmental model. In the goat, the MET rapidly converted into MAA and the mean maximum concentration was 183.97 μg/ml (at 0.08 hr) and 51.94 μg/ml (at 0.70 hr) after IV and IM administration, respectively. The area under the curve and mean residual time values were higher in the IM than the IV administered goats. The average concentration of AA was lower than MAA in both groups. Over 1 μg/ml of MAA was found in the milk (at 48 hr) after MET IM administration. In conclusion, IM is considered to be a better administration route in terms of its complete absorption with long persistence in the plasma. However, this therapeutic option should be considered in light of the likelihood of there being milk residue.  相似文献   

4.
Equine herpes myeloencephalopathy, resulting from equine herpes virus type 1 (EHV‐1) infection, is associated with substantial morbidity and mortality in the horse. As compared to other antiviral drugs, such as acyclovir, ganciclovir has enhanced potency against EHV‐1. This study investigated the pharmacokinetics of ganciclovir and its oral prodrug, valganciclovir, in six adult horses in a randomized cross‐over design. Ganciclovir sodium was administered intravenously as a slow bolus at a dose of 2.5 mg/kg, and valganciclovir was administered orally at a dose of 1800 mg per horse. Intravenously administered ganciclovir disposition was best described by a three‐compartment model with a prolonged terminal half‐life of 72 ± 9 h. Following the oral administration of valganciclovir, the mean observed maximum serum ganciclovir concentration was 0.58 ± 0.37 μg/mL, and bioavailability of ganciclovir from oral valganciclovir was 41 ± 20%. Superposition predicted that oral dosing of 1800‐mg valganciclovir two times daily would fail to produce and maintain effective plasma concentrations of ganciclovir. However, superposition suggested that i.v. administration of ganciclovir at 2.5 mg/kg every 8 h for 24 h followed by maintenance dosing of 2.5 mg/kg every 12 h would maintain effective ganciclovir serum concentrations in most horses throughout the dosing interval.  相似文献   

5.
Eleven pregnant pony mares (D270‐326) were administered ceftiofur sodium intramuscularly at 2.2 mg/kg (n = 6) or 4.4 mg/kg (n = 5), once daily. Plasma was obtained prior to ceftiofur administration and at 0.5, 1, 2, 4, 8, 12, and 24 hr after administration. Eight pony mares were re‐enrolled in the study at least 3 days from expected foaling to ensure steady‐state concentrations of drug at the time of foaling. Mares were administered ceftiofur sodium (4.4 mg/kg, IM) daily until foaling. Parturition was induced using oxytocin 1 hr after ceftiofur sodium administration. Allantoic and amniotic fluid, plasma, and colostrum samples were collected at time of foaling. Serial foal plasma samples were obtained. Placental tissues were collected. Desfuroylceftiofur acetamide (DCA) concentrations were measured in samples by high‐performance liquid chromatography (HPLC). Mean (±SD) peak serum concentrations of DCA were 3.97 ± 0.50 μg/ml (low dose) and 7.45 ± 1.05 μg/ml (high dose). Terminal half‐life was significantly (p = .014) shorter after administration of the low dose (2.91 ± 0.59 hr) than after administration of the high dose (4.10 ± 0.72 hr). The mean serum concentration of DCA from mares at time of foaling was 7.96 ± 1.39 μg/ml. The mean DCA concentration in colostrum was 1.39 ± 0.70 μg/ml. DCA concentrations in allantoic fluid, amniotic fluid, placental tissues, and foal plasma were below the limit of quantification (<0.1 μg/ml) and below the minimum inhibitory concentration of ceftiofur against relevant pathogens. These results infer incomplete passage of DCA across fetal membranes after administration of ceftiofur sodium to normal pony mares.  相似文献   

6.
The aim of this study was to evaluate the pharmacokinetics and bioavailability of cefquinome (CFQ) and ceftriaxone (CTX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. Using a parallel design, 24 premature calves were randomly divided into the two antibiotic groups. Each of the six animals in the first group received CFQ (2 mg/kg) through IV or IM administration. The second group received CTX (20 mg/kg) via the same administration route. Plasma concentrations of the drugs were analyzed by high‐performance liquid chromatography and noncompartmental methods. Mean pharmacokinetic parameters of CFQ and CTX following IV administration were as follows: elimination half‐life (t1/2λz) 1.85 and 3.31 hr, area under the plasma concentration–time curve (AUC0–∞) 15.74 and 174 hr * μg/ml, volume of distribution at steady‐state 0.37 and 0.45 L/kg, and total body clearance 0.13 and 0.12 L hr?1 kg?1, respectively. Mean pharmacokinetic parameters of CFQ and CTX after IM injection were as follows: peak concentration 4.56 and 25.04 μg/ml, time to reach peak concentration 1 and 1.5 hr, t1/2λz 4.74 and 3.62 hr, and AUC0–∞ 22.75 and 147 hr * μg/ml, respectively. The bioavailability of CFQ and CTX after IM injection was 141% and 79%, respectively. IM administration of CFQ (2 mg/kg) and CTX (20 mg/kg) can be recommended at 12‐hr interval for treating infections caused by susceptible bacteria, with minimum inhibitory concentration values of ≤0.5 and ≤4 μg/ml, respectively, in premature calves. However, further research is indicated to assess the pharmacokinetic parameters following multiple doses of the drug in premature calves.  相似文献   

7.
To determine the plasma pharmacokinetics of suppository acetaminophen (APAP) in healthy dogs and clinically ill dogs. This prospective study used six healthy client‐owned and 20 clinically ill hospitalized dogs. The healthy dogs were randomized by coin flip to receive APAP orally or as a suppository in crossover study design. Blood samples were collected up to 10 hr after APAP dosing. The hospitalized dogs were administered APAP as a suppository, and blood collected at 2 and 6 hr after dosing. Plasma samples were analyzed by ultra‐performance liquid chromatography with triple quadrupole mass spectrometry. In healthy dogs, oral APAP maximal concentration (CMAX=2.69 μg/ml) was reached quickly (TMAX=1.04 hr) and eliminated rapidly (T1/2 = 1.81 hr). Suppository APAP was rapidly, but variably absorbed (CMAX=0.52 μg/ml TMAX=0.67 hr) and eliminated (T1/2 = 3.21 hr). The relative (to oral) fraction of the suppository dose absorbed was 30% (range <1%–67%). In hospitalized ill dogs, the suppository APAP mean plasma concentration at 2 hr and 6 hr was 1.317 μg/ml and 0.283 μg/ml. Nonlinear mixed‐effects modeling did not identify significant covariates affecting variability and was similar to noncompartmental results. Results supported that oral and suppository acetaminophen in healthy and clinical dogs did not reach or sustain concentrations associated with efficacy. Further studies performed on different doses are needed.  相似文献   

8.
Chloramphenicol is commonly used in horses; however, there are no studies evaluating the pharmacokinetics of veterinary canine‐approved tablets. Studies using different formulations and earlier analytical techniques led to concerns over low bioavailability in horses. Safety concerns about human health have led many veterinarians to prescribe compounded formulations that are already in suspension or paste form. The objective of this study was to evaluate the pharmacokinetics of approved chloramphenicol tablets in horses, along with compounded preparations. The hypothesis was that chloramphenicol has low absorption and a short half‐life in horses leading to low serum concentrations and that compounded preparations have lower relative bioavailability. Seven horses were administered chloramphenicol tablets (50 mg/kg orally). In a crossover design, they were administered two compounded preparations to compare all three formulations at the same dose (50 mg/kg). Cmax was 5.25 ± 4.07 μg/ml at 4.89 hr, 4.96 ± 3.31 μg/ml at 4.14 hr, and 3.84 ± 2.96 μg/ml at 4.39 hr for the tablets, paste, and suspension, respectively. Elimination half‐life was 2.65 ± 0.75, 3.47 ± 1.47, and 4.36 ± 4.54 hr for tablets, paste, and suspension, respectively. The AUC0→∞ was 17.93 ± 7.69, 16.25 ± 1.85, and 14.00 ± 5.47 hr*μg/ml for the tablets, compounded paste, and compounded suspension, respectively. Relative bioavailability of compounded suspension and paste was 78.1% and 90.6%. Cmax after administration of all formulations did not reach the recommended MIC target of 8 μg/ml set by the Clinical Laboratory Standards Institute (CLSI) for most bacteria. Multidose studies are warranted, but the low serum concentrations suggest that bacteria with MIC values lower than CLSI recommendations should be targeted in adult horses.  相似文献   

9.
The objective of this study was to determine the disposition of ampicillin in plasma, uterine tissue, lochial fluid, and milk of postpartum dairy cattle. Ampicillin trihydrate was administered by intramuscular (i.m.) injection at a dose of 11 mg/kg of body weight every 24 h (n = 6, total of 3 doses) or every 12 h (n = 6, total of 5 doses) for 3 days. Concentrations of ampicillin were measured in plasma, uterine tissue, lochial fluid, and milk using HPLC with ultraviolet absorption. Quantifiable ampicillin concentrations were found in plasma, milk, and lochial fluid of all cattle within 30 min, 4 h, and 4 h of administration of ampicillin trihydrate, respectively. There was no significant effect of dosing interval (every 12 vs. every 24 h) and no significant interactions between dosing interval and sampling site on the pharmacokinetic variable measured or calculated. Median peak ampicillin concentration at steady‐state was significantly higher in lochial fluid (5.27 μg/mL after q 24 h dosing) than other body fluids or tissues and significantly higher in plasma (3.11 μg/mL) compared to milk (0.49 μg/mL) or endometrial tissue (1.55 μg/mL). Ampicillin trihydrate administered once daily by the i.m. route at the label dose of 11 mg/kg of body weight achieves therapeutic concentrations in the milk, lochial fluid, and endometrial tissue of healthy postpartum dairy cattle.  相似文献   

10.
The pharmacokinetics of enrofloxacin (ENR) was studied in crucian carp (Carassius auratus gibelio) after single administration by intramuscular (IM) injection and oral gavage (PO) at a dose of 10 mg/kg body weight and by 5 mg/L bath for 5 hr at 25°C. The plasma concentrations of ENR and ciprofloxacin (CIP) were determined by HPLC. Pharmacokinetic parameters were calculated based on mean ENR or CIP concentrations using WinNonlin 6.1 software. After IM, PO and bath administration, the maximum plasma concentration (Cmax) of 2.29, 3.24 and 0.36 μg/ml was obtained at 4.08, 0.68 and 0 hr, respectively; the elimination half‐life (T1/2β) was 80.95, 62.17 and 61.15 hr, respectively; the area under the concentration–time curve (AUC) values were 223.46, 162.72 and 14.91 μg hr/ml, respectively. CIP, an active metabolite of enrofloxacin, was detected and measured after all methods of drug administration except bath. It is possible and practical to obtain therapeutic blood concentrations of enrofloxacin in the crucian carp using IM, PO and bath immersion administration.  相似文献   

11.
This study in six cows compared serum concentrations of trimethoprim and sulphadoxine (16 mg/kg body weight (BW)) after once daily and twice daily administration, and of procaine penicillin G (20,000 IU/kg BW) after subcutaneous (SQ) and intramuscular (IM) administration, and evaluated postmortem tissue concentrations of penicillin following SQ treatment. Trimethoprim and penicillin were measured microbiologically, and sulphadoxine colorimetrically. Using minimum inhibitory concentrations (MIC), trimethoprim reached serum concentrations above 0.5 μg/mL from 15 minutes to 120 minutes, and sulphadoxine exceeded 9.5 μg/mL from 10 minutes to 12 hours, after administration. At 24 hours after treatment, both had declined to below the MIC of most organisms. A second treatment at 12 hours maintained concentrations of sulphadoxine above 9.5 μg/mL for a further 24 hours. For penicillin administered IM and SQ, concentrations that peaked at 0.88 μg/mL would inhibit most common grampositive bacteria for the entire 24 hour period and fastidious gram-negative organisms from 90 minutes to 12 hours after SQ treatment, but for virtually the entire period after IM administration. Mean ± SD concentrations (μg/mL) of penicillin at euthanasia, five days after the last SQ administration, were 1.15 ± 1.27 (injection site), 1.00 ± 0.80 (liver), 0.90 ± 0.58 (renal cortex), 0,58 ± 0.17 (renal medulla), 0.13 ± 0.11 (diaphragm), 0.10 ± 0.08 (gluteal muscle), and 0.06 ± 0.04 (fat). Therefore, except for the most sensitive organisms, twice daily injection of trimethoprim/sulphadoxine (16 mg/kg BW) may be required. Penicillin G administered SQ at 20,000 IU/kg BW should provide effective serum levels for as long as IM administration against gram-positive organisms, but for only about half as long against gram-negative bacteria. The label withdrawal time of five days cannot be used when penicillin is given SQ at 20,000 IU/kg BW for three days.  相似文献   

12.
This study documents the pharmacokinetics of oral tramadol in Muscovy ducks. Six ducks received a single 30 mg/kg dose of tramadol, orally by stomach tube, with blood collection prior to and up to 24 hr after tramadol administration. Plasma tramadol, and metabolites O‐desmethyltramadol (M1), and N,O‐didesmethyltramadol (M5) concentrations were determined by high‐pressure liquid chromatography (HPLC) with fluorescence (FL) detection. Pharmacokinetic parameters were calculated using a one‐compartment model with first‐order input. No adverse effects were noted after oral administration. All ducks achieved plasma concentrations of tramadol above 0.10 μg/ml and maintained those concentrations for at least 12 hr. Elimination half‐life was 3.95 hr for tramadol in ducks, which is similar to other avian species. All ducks in this study produced the M1 metabolite and maintained plasma concentrations above 0.1 μg/ml for at least 24 hr.  相似文献   

13.
The objective of this study was to determine the pharmacokinetics of meropenem in horses after intravenous (IV) administration. A single IV dose of meropenem was administered to six adult horses at 10 mg/kg. Plasma and synovial fluid samples were collected for 6 hr following administration. Meropenem concentrations were determined by bioassay. Plasma and synovial fluid data were analyzed by compartmental and noncompartmental pharmacokinetic methods. Mean ± SD values for elimination half‐life, volume of distribution at steady‐state, and clearance after IV administration for plasma samples were 0.78 ± 0.176 hr, 136.1 ± 19.69 ml/kg, and 165.2 ± 29.72 ml hr‐1 kg?1, respectively. Meropenem in synovial fluid had a slower elimination than plasma with a terminal half‐life of 2.4 ± 1.16 hr. Plasma protein binding was estimated at 11%. Based on a 3‐compartment open pharmacokinetic model of simultaneously fit plasma and synovial fluid, dosage simulations were performed. An intermittent dosage of meropenem at 5 mg/kg IV every 8 hr or a constant rate IV infusion at 0.5 mg/kg per hour should maintain adequate time above the MIC target of 1 μg/ml. Carbapenems are antibiotics of last resort in humans and should only be used in horses when no other antimicrobial would likely be effective.  相似文献   

14.
The aim of this study was to determine the pharmacokinetics/pharmacodynamics of enrofloxacin (ENR) and danofloxacin (DNX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. The study was performed on twenty‐four calves that were determined to be premature by anamnesis and general clinical examination. Premature calves were randomly divided into four groups (six premature calves/group) according to a parallel pharmacokinetic (PK) design as follows: ENR‐IV (10 mg/kg, IV), ENR‐IM (10 mg/kg, IM), DNX‐IV (8 mg/kg, IV), and DNX‐IM (8 mg/kg, IM). Plasma samples were collected for the determination of tested drugs by high‐pressure liquid chromatography with UV detector and analyzed by noncompartmental methods. Mean PK parameters of ENR and DNX following IV administration were as follows: elimination half‐life (t1/2λz) 11.16 and 17.47 hr, area under the plasma concentration–time curve (AUC0‐48) 139.75 and 38.90 hr*µg/ml, and volume of distribution at steady‐state 1.06 and 4.45 L/kg, respectively. Total body clearance of ENR and DNX was 0.07 and 0.18 L hr?1 kg?1, respectively. The PK parameters of ENR and DNX following IM injection were t1/2λz 21.10 and 28.41 hr, AUC0‐48 164.34 and 48.32 hr*µg/ml, respectively. The bioavailability (F) of ENR and DNX was determined to be 118% and 124%, respectively. The mean AUC0‐48CPR/AUC0‐48ENR ratio was 0.20 and 0.16 after IV and IM administration, respectively, in premature calves. The results showed that ENR (10 mg/kg) and DNX (8 mg/kg) following IV and IM administration produced sufficient plasma concentration for AUC0‐24/minimum inhibitory concentration (MIC) and maximum concentration (Cmax)/MIC ratios for susceptible bacteria, with the MIC90 of 0.5 and 0.03 μg/ml, respectively. These findings may be helpful in planning the dosage regimen for ENR and DNX, but there is a need for further study in naturally infected premature calves.  相似文献   

15.
Pharmacokinetic (PK) studies of oral firocoxib in large animal species have been limited to horses, preruminating calves, and adult camels. The aim of this study was to describe pharmacokinetics and bioavailability of firocoxib in adult goats. Ten healthy adult goats were administered 0.5 mg/kg firocoxib intravenously (i.v.) and per os (p.o.) in a randomized, crossover study. Plasma firocoxib concentrations were measured over a 96‐hr period for each treatment using HPLC and mass spectrometry, and PK analysis was performed. The p.o. formulation reached mean peak plasma concentration of 139 ng/ml (range: 87–196 ng/ml) in 0.77 hr (0.25–2.00 hr), and half‐life was 21.51 hr (10.21–48.32 hr). Mean bioavailability was 71% (51%–82%), indicative of adequate gastrointestinal absorption of firocoxib. There were no negative effects observed in any animal, and all blood work values remained within or very near reference range at the study's conclusion. Results indicate that oral firocoxib is well‐absorbed and rapidly reaches peak plasma concentrations, although the concentration also decreased quickly prior to the terminal phase. The prolonged half‐life may suggest tissue accumulation and higher plasma concentrations over time, depending on dosing schedule. Further studies to determine tissue residue depletion, pharmacodynamics, and therapeutic concentrations of firocoxib in goats are necessary.  相似文献   

16.
Levosulpiride (LSP) is the l‐enantiomer of sulpiride, and LSP recently replacing sulpiride in several EU countries. Several studies about LSP in humans are present in the literature, but neither pharmacodynamic nor pharmacokinetic data of LSP is present for veterinary species. The aim of this study was to assess the pharmacokinetic profile of LSP after intravenous (IV), intramuscular (IM), and oral (PO) administration in goats. Animals (n = 6) were treated with 50 mg LSP by IV, IM, and PO routes according to a randomized cross‐over design (3 × 3 Latin‐square). Blood samples were collected prior and up to 24 hr after LSP administration and quantified using a validated HPLC method with fluorescence detection. IV and IM administration gave similar concentration versus time curve profiles. The IM mean bioavailability was 66.97%. After PO administration, the drug plasma concentrations were detectable only in the time range 1.5–4 hr, and the bioavailability (4.73%) was low. When the AUC was related to the administered dose in mg/kg, there was a good correlation in the IV and IM groups, but very low correlation for the PO route. In conclusion, the IM and IV administrations result in very similar plasma concentrations. Oral dosing of LSP in goats is probably not viable as its oral bioavailability was very low.  相似文献   

17.
The objectives of this study were to examine the pharmacokinetics of tobramycin in the horse following intravenous (IV), intramuscular (IM), and intra‐articular (IA) administration. Six mares received 4 mg/kg tobramycin IV, IM, and IV with concurrent IA administration (IV+IA) in a randomized 3‐way crossover design. A washout period of at least 7 days was allotted between experiments. After IV administration, the volume of distribution, clearance, and half‐life were 0.18 ± 0.04 L/kg, 1.18 ± 0.32 mL·kg/min, and 4.61 ± 1.10 h, respectively. Concurrent IA administration could not be demonstrated to influence IV pharmacokinetics. The mean maximum plasma concentration (Cmax) after IM administration was 18.24 ± 9.23 μg/mL at 1.0 h (range 1.0–2.0 h), with a mean bioavailability of 81.22 ± 44.05%. Intramuscular administration was well tolerated, despite the high volume of drug administered (50 mL per 500 kg horse). Trough concentrations at 24 h were below 2 μg/mL in all horses after all routes of administration. Specifically, trough concentrations at 24 h were 0.04 ± 0.01 μg/mL for the IV route, 0.04 ± 0.02 μg/mL for the IV/IA route, and 0.02 ± 0.02 for the IM route. An additional six mares received IA administration of 240 mg tobramycin. Synovial fluid concentrations were 3056.47 ± 1310.89 μg/mL at 30 min after administration, and they persisted for up to 48 h with concentrations of 14.80 ± 7.47 μg/mL. Tobramycin IA resulted in a mild chemical synovitis as evidenced by an increase in synovial fluid cell count and total protein, but appeared to be safe for administration. Monte Carlo simulations suggest that tobramycin would be effective against bacteria with a minimum inhibitory concentration (MIC) of 2 μg/mL for IV administration and 1 μg/mL for IM administration based on Cmax:MIC of 10.  相似文献   

18.
Minocycline is commonly used to treat bacterial and rickettsial infections in adult horses but limited information exists regarding the impact of feeding on its oral bioavailability. This study's objective was to compare the pharmacokinetics of minocycline after administration of a single oral dose in horses with feed withheld and with feed provided at the time of drug administration. Six healthy adult horses were administered intravenous (2.2 mg/kg) and oral minocycline (4 mg/kg) with access to hay at the time of oral drug administration (fed) and with access to hay delayed for 2 hr after oral drug administration (fasted), with a 7‐day washout between treatments. Plasma concentration versus time data was analyzed based on noncompartmental pharmacokinetics. Mean ± SD bioavailability (fasted: 38.6% ± 4.6; fed: 15.7% ± 2.3) and Cmax (fasted: 1.343 ± 0.418 μg/ml; fed: 0.281 ± 0.157 μg/ml) were greater in fasted horses compared to fed horses (p < .05 both). Median (range) Tmax (hr) in fasted horses was 2.0 (1.5–3.5) and in fed horses was 5.0 (1.0–8.0) and was not significantly different between groups. Overnight fasting and delaying feeding hay 2 hr after oral minocycline administration improve drug bioavailability and thus plasma concentrations.  相似文献   

19.
Detection times and screening limits (SL) are methods used to ensure that the performance of horses in equestrian sports is not altered by drugs. Drug concentration–response relationship and knowledge of concentration–time profiles in both plasma and urine are required. In this study, dexamethasone plasma and urine concentration–time profiles were investigated. Endogenous hydrocortisone plasma concentrations and their relationship to dexamethasone plasma concentrations were also explored. A single dose of dexamethasone‐21‐isonicotinate suspension (0.03 mg/kg) was administered intramuscularly to six horses. Plasma was analysed for dexamethasone and hydrocortisone and urine for dexamethasone, using UPLC‐MS/MS. Dexamethasone was quantifiable in plasma for 8.3 ± 2.9 days (LLOQ: 0.025 μg/L) and in urine for 9.8 ± 3.1 days (LLOQ: 0.15 μg/L). Maximum observed dexamethasone concentration in plasma was 0.61 ± 0.12 μg/L and in urine 4.2 ± 0.9 μg/L. Terminal plasma half‐life was 38.7 ± 19 h. Hydrocortisone was significantly suppressed for 140 h. The plasma half‐life of hydrocortisone was 2.7 ± 1.3 h. Dexamethasone potency, efficacy and sigmoidicity factor for hydrocortisone suppression were 0.06 ± 0.04 μg/L, 0.95 ± 0.04 and 6.2 ± 4.6, respectively. Hydrocortisone suppression relates to the plasma concentration of dexamethasone. Thus, determination of irrelevant plasma concentrations and SL is possible. Future research will determine whether hydrocortisone suppression can be used as a biomarker of the clinical effect of dexamethasone.  相似文献   

20.
The pharmacokinetics and bioavailability of levamisole were determined in red‐eared slider turtles after single intravenous (IV), intramuscular (IM), and subcutaneous (SC) administration. Nine turtles received levamisole (10 mg/kg) by each route in a three‐way crossover design with a washout period of 30 days. Blood samples were collected at time 0 (pretreatment), and at 0.25, 0.5, 1, 1.5, 3, 6, 9, 12, 18, 24, 36, and 48 hr after drug administration. Plasma levamisole concentrations were determined by a high‐performance liquid chromatography assay. Data were analyzed by noncompartmental methods. The mean elimination half‐life was 5.00, 7.88, and 9.43 hr for IV, IM, and SC routes, respectively. The total clearance and volume of distribution at steady state for the IV route were 0.14 L hr?1 kg?1 and 0.81 L/kg, respectively. For the IM and SC routes, the peak plasma concentration was 9.63 and 10.51 μg/ml, respectively, with 0.5 hr of Tmax. The bioavailability was 93.03 and 115.25% for the IM and SC routes, respectively. The IM and SC route of levamisole, which showed the high bioavailability and long t1/2?z, can be recommended as an effective way for treating nematodes in turtles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号