首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The aim of this study was to evaluate the pharmacokinetics and bioavailability of cefquinome (CFQ) and ceftriaxone (CTX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. Using a parallel design, 24 premature calves were randomly divided into the two antibiotic groups. Each of the six animals in the first group received CFQ (2 mg/kg) through IV or IM administration. The second group received CTX (20 mg/kg) via the same administration route. Plasma concentrations of the drugs were analyzed by high‐performance liquid chromatography and noncompartmental methods. Mean pharmacokinetic parameters of CFQ and CTX following IV administration were as follows: elimination half‐life (t1/2λz) 1.85 and 3.31 hr, area under the plasma concentration–time curve (AUC0–∞) 15.74 and 174 hr * μg/ml, volume of distribution at steady‐state 0.37 and 0.45 L/kg, and total body clearance 0.13 and 0.12 L hr?1 kg?1, respectively. Mean pharmacokinetic parameters of CFQ and CTX after IM injection were as follows: peak concentration 4.56 and 25.04 μg/ml, time to reach peak concentration 1 and 1.5 hr, t1/2λz 4.74 and 3.62 hr, and AUC0–∞ 22.75 and 147 hr * μg/ml, respectively. The bioavailability of CFQ and CTX after IM injection was 141% and 79%, respectively. IM administration of CFQ (2 mg/kg) and CTX (20 mg/kg) can be recommended at 12‐hr interval for treating infections caused by susceptible bacteria, with minimum inhibitory concentration values of ≤0.5 and ≤4 μg/ml, respectively, in premature calves. However, further research is indicated to assess the pharmacokinetic parameters following multiple doses of the drug in premature calves.  相似文献   

2.
A calf tissue cage model was used to study the pharmacokinetics (PK) and pharmacodynamics (PD) of oxytetracycline in serum, inflamed (exudate) and noninflamed (transudate) tissue cage fluids. After intramuscular administration, the PK was characterized by a long mean residence time of 28.3 hr. Based on minimum inhibitory concentrations (MICs) for six isolates each of Mannheimia haemolytica and Pasteurella multocida, measured in serum, integration of in vivo PK and in vitro PD data established area under serum concentration–time curve (AUC0–∞)/MIC ratios of 30.0 and 24.3 hr for M. haemolytica and P. multocida, respectively. Corresponding AUC0–∞/MIC ratios based on MICs in broth were 656 and 745 hr, respectively. PK‐PD modelling of in vitro bacterial time–kill curves for oxytetracycline in serum established mean AUC0–24 hr/MIC ratios for 3log10 decrease in bacterial count of 27.5 hr (M. haemolytica) and 60.9 hr (P. multocida). Monte Carlo simulations predicted target attainment rate (TAR) dosages. Based on the potency of oxytetracycline in serum, the predicted 50% TAR single doses required to achieve a bacteriostatic action covering 48‐hr periods were 197 mg/kg (M. haemolytica) and 314 mg/kg (P. multocida), respectively, against susceptible populations. Dosages based on the potency of oxytetracycline in broth were 25‐ and 27‐fold lower (7.8 and 11.5 mg/kg) for M. haemolytica and P. multocida, respectively.  相似文献   

3.
The pharmacokinetics and bioavailability of levamisole were determined in red‐eared slider turtles after single intravenous (IV), intramuscular (IM), and subcutaneous (SC) administration. Nine turtles received levamisole (10 mg/kg) by each route in a three‐way crossover design with a washout period of 30 days. Blood samples were collected at time 0 (pretreatment), and at 0.25, 0.5, 1, 1.5, 3, 6, 9, 12, 18, 24, 36, and 48 hr after drug administration. Plasma levamisole concentrations were determined by a high‐performance liquid chromatography assay. Data were analyzed by noncompartmental methods. The mean elimination half‐life was 5.00, 7.88, and 9.43 hr for IV, IM, and SC routes, respectively. The total clearance and volume of distribution at steady state for the IV route were 0.14 L hr?1 kg?1 and 0.81 L/kg, respectively. For the IM and SC routes, the peak plasma concentration was 9.63 and 10.51 μg/ml, respectively, with 0.5 hr of Tmax. The bioavailability was 93.03 and 115.25% for the IM and SC routes, respectively. The IM and SC route of levamisole, which showed the high bioavailability and long t1/2?z, can be recommended as an effective way for treating nematodes in turtles.  相似文献   

4.
The pharmacokinetics of enrofloxacin (ENR) was studied in crucian carp (Carassius auratus gibelio) after single administration by intramuscular (IM) injection and oral gavage (PO) at a dose of 10 mg/kg body weight and by 5 mg/L bath for 5 hr at 25°C. The plasma concentrations of ENR and ciprofloxacin (CIP) were determined by HPLC. Pharmacokinetic parameters were calculated based on mean ENR or CIP concentrations using WinNonlin 6.1 software. After IM, PO and bath administration, the maximum plasma concentration (Cmax) of 2.29, 3.24 and 0.36 μg/ml was obtained at 4.08, 0.68 and 0 hr, respectively; the elimination half‐life (T1/2β) was 80.95, 62.17 and 61.15 hr, respectively; the area under the concentration–time curve (AUC) values were 223.46, 162.72 and 14.91 μg hr/ml, respectively. CIP, an active metabolite of enrofloxacin, was detected and measured after all methods of drug administration except bath. It is possible and practical to obtain therapeutic blood concentrations of enrofloxacin in the crucian carp using IM, PO and bath immersion administration.  相似文献   

5.
This study aimed to examine the bioavailability (BA) and pharmacokinetic (PK) characteristics of sulfadiazine (SDZ) in grass carp (Ctenopharyngodon idellus) after oral and intravenous administrations. Blood samples were collected at predetermined time points of 0.083, 0.17, 0.5, 1, 2, 4, 8, 16, 24, 48, 72, and 96 hr (n = 6). The samples were extracted and purified by organic reagents and determined by the ultra‐performance liquid chromatography. The software named 3P97 was used to calculate relevant PK parameters. The results demonstrated that the concentration–time profile of SDZ was best described by a one‐compartmental open model with first‐order absorption after a single oral dose. The main PK parameters of the absorption rate constant (Kα), the absorption half‐life (t1/2 Kα), the elimination rate constant (Ke), the elimination half‐life (t1/2Ke), and the area under concentration–time profile (AUC0‐∞) were 0.3 1/h, 2.29 hr, 0.039 1/h, 17.64 hr, and 855.78 mg.h/L, respectively. Following intravenous administration, the concentration–time curve fitted to a two‐compartmental open model without absorption. The primary PK parameters of the distribution rate constant (α), the elimination rate constant (β), the distribution half‐life (t1/2α), the elimination half‐life (t1/2β), the apparent distribution volume (VSS), the total clearance (CL), and AUC0‐∞ were 9.62 1/hr, 0.039 1/hr, 0.072 hr, 17.71 hr, 0.33 L/kg, 0.013 L h?1 kg?1, and 386.23 mg.h/L, respectively. Finally, the BA was calculated to be 22.16%. Overall, this study will provide some fundamental information on PK properties in the development of a new formulation SDZ in the future and is partially beneficial for the appropriate usage of SDZ in aquaculture.  相似文献   

6.
The objective of this study was to investigate the pharmacokinetics of cefquinome following single intramuscular (IM) administration in six healthy male buffalo calves. Cefquinome was administered intramuscularly (2 mg/kg bodyweight) and blood samples were collected prior to drug administration and up to 24 hr after injection. No adverse effects or changes were observed after the IM injection of cefquinome. Plasma concentrations of cefquinome were determined by high‐performance liquid chromatography. The disposition of plasma cefquinome is characterized by a mono‐compartmental open model. The pharmacokinetic parameters after IM administration (mean ± SE) were Cmax 6.93 ± 0.58 μg/ml, Tmax 0.5 hr, t½kα 0.16 ± 0.05 hr, t½β 3.73 ± 0.10 hr, and AUC 28.40 ± 1.30 μg hr/ml after IM administration. A dosage regimen of 2 mg/kg bodyweight at 24‐hr interval following IM injection of cefquinome would maintain the plasma levels required to be effective against the bacterial pathogens with MIC values ≤0.39 μg/ml. The suggested dosage regimen of cefquinome has to be validated in the disease models before recommending for clinical use in buffalo calves.  相似文献   

7.
Florfenicol, a structural analog of thiamphenicol, has broad‐spectrum antibacterial activity against gram‐negative and gram‐positive bacteria. This study was conducted to investigate the epidemiological, pharmacokinetic–pharmacodynamic cutoff, and the optimal scheme of florfenicol against Escherichia coli (E. coli) with PK‐PD integrated model in the target infectious tissue. 220 E. coli strains were selected to detect the susceptibility to florfenicol, and a virulent strain P190, whose minimum inhibitory concentration (MIC) was similar to the MIC50 (8 μg/ml), was analyzed for PD study in LB and ileum fluid. The MIC of P190 in the ileum fluid was 0.25 times lower than LB. The ratios of MBC/MIC were four both in the ileum and LB. The characteristics of time‐killing curves also coincided with the MBC determination. The recommended dosages (30 mg/kg·body weight) were orally administrated in healthy pigs, and both plasma and ileum fluid were collected for PK study. The main pharmacokinetics (PK) parameters including AUC24 hr, AUC0–∞, Tmax, T1/2, Cmax, CLb, and Ke were 49.83, 52.33 μg*h/ml, 1.32, 10.58 hr, 9.12 μg/ml, 0.50 L/hr*kg, 0.24 hr?1 and 134.45, 138.71 μg*hr/ml, 2.05, 13.01 hr, 16.57 μg/ml, 0.18 L/hr*kg, 0.14 hr?1 in the serum and ileum fluid, respectively. The optimum doses for bacteriostatic, bactericidal, and elimination activities were 29.81, 34.88, and 36.52 mg/kg for 50% target and 33.95, 39.79, and 42.55 mg/kg for 90% target, respectively. The final sensitive breakpoint was defined as 16 μg/ml. The current data presented provide the optimal regimens (39.79 mg/kg) and susceptible breakpoint (16 μg/ml) for clinical use, but these predicted data should be validated in the clinical practice.  相似文献   

8.
The aims of this study were to establish optimal doses of doxycycline (dox) against Haemophilus parasuis on the basis of pharmacokinetic–pharmacodynamic (PK‐PD) integration modeling. The infected model was established by intranasal inoculation of organism in pigs and confirmed by clinical signs, blood biochemistry, and microscopic examinations. The recommended dose (20 mg/kg b.w.) was administered in pigs through intramuscular routes for PK studies. The area under the concentration 0‐ to 24‐hr curve (AUC0–24), elimination half‐life (T½ke), and mean residence time (MRT) of dox in healthy and H. parasuis‐infected pigs were 55.51 ± 5.72 versus 57.10 ± 4.89 μg·hr/ml, 8.28 ± 0.91 versus 9.80 ± 2.38 hr, and 8.43 ± 0.27 versus 8.79 ± 0.18 hr, respectively. The minimal inhibitory concentration (MIC) of dox against 40 H. parasuis isolates was conducted through broth microdilution method, the corresponding MIC50 and MIC90 were 0.25 and 1 μg/ml, respectively. The Ex vivo growth inhibition data suggested that dox exhibited a concentration‐dependent killing mechanism. Based on the observed AUC24 hr/MIC values by modeling PK‐PD data in H. parasuis‐infected pigs, the doses predicted to obtain bacteriostatic, bactericidal, and elimination effects for H. parasuis over 24 hr were 5.25, 8.55, and 10.37 mg/kg for the 50% target attainment rate (TAR), and 7.26, 13.82, and 18.17 mg/kg for 90% TAR, respectively. This study provided a more optimized alternative for clinical use and demonstrated that the dosage 20 mg/kg of dox by intramuscular administration could have an effective bactericidal activity against H. parasuis.  相似文献   

9.
Ketoprofen is a nonsteroidal anti‐inflammatory and analgesic agent that nonselectively inhibits cyclooxygenase, with both COX‐1 and COX‐2 inhibition. Recent studies on COX receptor expression in reptiles suggest that nonselective COX inhibitors may be more appropriate than more selective inhibitors in some reptiles, but few pharmacokinetic studies are available. The goal of this study was to determine single‐ and multidose (three consecutive days) pharmacokinetics of racemic ketoprofen administered intravenously and intramuscularly at 2 mg/kg in healthy juvenile loggerhead turtles (Caretta caretta). The S‐isomer is the predominant isomer in loggerhead sea turtles, similar to most mammals, despite administration of a 50:50 racemic mixture. Multidose ketoprofen administration demonstrated no bioaccumulation; therefore, once‐daily dosing will not require dose adjustment over time. S‐isomer pharmacokinetic parameters determined in this study were Cmax of 10.1 μg/ml by IM injection, C0 of 13.4 μg/ml by IV injection, AUC of 44.7 or 69.4 μg*hr/ml by IM or IV injection, respectively, and T½ of 2.8 or 3.6 hr by IM or IV injection, respectively. Total ketoprofen plasma concentrations were maintained for at least 12 hr above concentrations determined to be effective for rats and humans. A dose of 2 mg/kg either IM or IV every 24 hr is likely appropriate for loggerhead turtles.  相似文献   

10.
A two‐period cross‐over study was carried to investigate the pharmacokinetics (PK) and ex‐vivo pharmacodynamics (PD) of cefquinome when administrated intravenously (IV) and intramuscularly (IM) in seven healthy dogs at a dose of 2 mg/kg of body weight. Serum concentrations were determined by HPLC‐MS/MS assay and cefquinome concentration vs. time data after IV and IM were best fit to a two‐compartment open model. Cefquinome mean values of area under concentration–time curve (AUC) were 5.15 μg·h/mL for IV dose and 4.59 μg·h/mL for IM dose. Distribution half‐lives and elimination half‐lives after IV dose and IM dose were 0.27 and 0.44 h, 1.53 and 1.94 h, respectively. Values of total body clearance (ClB) and volume of distribution at steady‐state (Vss) were 0.49 L·kg/h and 0.81 L/kg, respectively. After IM dose, Cmax was 2.53 μg/mL and the bioavailability was 89.13%. For PD profile, the determined MIC and MBC values against K. pneumonia were 0.030 and 0.060 μg/mL in MHB and 0.032 and 0.064 μg/mL in serum. The ex vivo time‐kill curves also were established in serum. In conjunction with the data on MIC, MBC values and the ex vivo bactericidal activity in serum, the present results allowed prediction that a single cefquinome dosage of 2 mg/kg may be effective in dogs against K. pneumonia infection.  相似文献   

11.
The pharmacokinetic–pharmacodynamic (PK/PD) modeling of enrofloxacin data using mutant prevention concentration (MPC) of enrofloxacin was conducted in febrile buffalo calves to optimize dosage regimen and to prevent the emergence of antimicrobial resistance. The serum peak concentration (Cmax), terminal half‐life (t1/2K10), apparent volume of distribution (Vd(area)/F), and mean residence time (MRT) of enrofloxacin were 1.40 ± 0.27 μg/mL, 7.96 ± 0.86 h, 7.74 ± 1.26 L/kg, and 11.57 ± 1.01 h, respectively, following drug administration at dosage 12 mg/kg by intramuscular route. The minimum inhibitory concentration (MIC), minimum bactericidal concentration, and MPC of enrofloxacin against Pasteurella multocida were 0.055, 0.060, and 1.45 μg/mL, respectively. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided AUC24 h/MIC values to produce effects of bacteriostatic (33 h), bactericidal (39 h), and bacterial eradication (41 h). The estimated daily dosage of enrofloxacin in febrile buffalo calves was 3.5 and 8.4 mg/kg against P. multocida/pathogens having MIC90 ≤0.125 and 0.30 μg/mL, respectively, based on the determined AUC24 h / MIC values by modeling PK/PD data. The lipopolysaccharide‐induced fever had no direct effect on the antibacterial activity of the enrofloxacin and alterations in PK of the drug, and its metabolite will be beneficial for its use to treat infectious diseases caused by sensitive pathogens in buffalo species. In addition, in vitro MPC data in conjunction with in vivo PK data indicated that clinically it would be easier to eradicate less susceptible strains of P. multocida in diseased calves.  相似文献   

12.
The pharmacokinetics (PK) and pharmacodynamics (PD) of marbofloxacin (MBF) were determined in six healthy female goats of age 1.00–1.25 years after repeated administration of MBF. The MBF was administered intramuscularly (IM) at 2 mg kg?1 day?1 for 5 days. Plasma concentrations of MBF were determined by high‐performance liquid chromatography, and PK parameters were obtained using noncompartmental analysis. The MBF concentrations peaked at 1 hr, and peak concentration (Cmax) was 1.760 µg/ml on day 1 and 1.817 µg/ml on day 5. Repeated dosing of MBF caused no significant change in PK parameters except area under curve (AUC) between day 1 (AUC0–∞D1 = 7.67 ± 0.719 µg × hr/ml) and day 5 (AUC0‐∞D5 = 8.70 ± 0.857 µg × hr/ml). A slight difference in mean residence time between 1st and 5th day of administration and accumulation index (AI = 1.13 ± 0.017) suggested lack of drug accumulation following repeated IM administration up to 5 days. Minimum inhibitory concentration (MIC) demonstrated that Escherichia coli (MIC = 0.04 µg/ml) and Pasturella multocida (MIC = 0.05 µg/ml) were highly sensitive to MBF. Time‐kill kinetics demonstrated rapid and concentration‐dependent activity of MBF against these pathogens. PK/PD integration of data for E. coli and P. multocida, using efficacy indices: Cmax/MIC and AUC0–24hr/MIC, suggested that IM administration of MBF at a dose of 2 mg kg?1 day?1 is appropriate to treat infections caused by E. coli. However, a dose of 5 mg kg?1 day?1 is recommended to treat pneumonia caused by P. multocida in goats. The study indicated that MBF can be used repeatedly at dosage of 2 mg/kg in goats without risk of drug accumulation up to 5 days.  相似文献   

13.
The effects of maturation on the intravenous (IV) and intramuscular (IM) pharmacokinetics of ceftiofur sodium following a dose of 2.2 mg ceftiofur equivalents/kg body weight were evaluated in 16 one-day-old Holstein bull calves (33-53 kg body weight initially; Group 1) and 14 six-month-old Holstein steers (217-276 kg body weight initially; Group 2). Group 1 calves were fed unmedicated milk replacer until 30 days of age and were then converted to the same roughage/concentrate diet as Group 2. Groups 1-IV and 2-IV received ceftiofur sodium IV, and Groups 1-IM and 2-IM received ceftiofur sodium IM. Group 1 calves were dosed at 7 days of age and at 1 and 3 months of age; group 2 calves were dosed at 6 and 9 months of age. Blood samples were obtained serially from each calf, and plasma samples were analysed using an HPLC assay that converts ceftiofur and all desfuroylceftiofur metabolites to desfuroylceftiofur acetamide. Cmax values were similar in all calves, and were no higher in younger calves than in older calves. Plasma concentrations remained above 0.150 μg ceftiofur free acid equivalents/mL for 72 h in 7-day-old calves, but were less than 0.150 μg/mL within 48 h following IV or IM injection for 6- and 9-month-old calves. Intramuscular bioavailability, assessed by comparing the model-derived area under the curve (AUCmod) from IM and IV injection at each age, appeared to be complete. After IV administration, the AUCmod in 7-day-old and 1-month-old calves (126.92±21.1 μg-h/mL and 135.0±21.6 μg.h/mL, respectively) was significantly larger than in 3-, 6- and 9-month-old calves (74.0±10.7 μg.h/mL, 61.0±17.7 μg.h/mL and 68.5±12.8 μg.h/mL, respectively; P< 0.0001). The Vd(ss) decreased linearly within the first 3 months of life in cattle (0.345±0.0616 L/kg, 0.335±0.919 L/kg and 0.284±0.0490 L/kg, respectively; P= 0.031), indicative of the decreasing extracellular fluid volume in maturing cattle. The Clb was significantly smaller in 7-day-old and 1-month-old calves (0.0178±0.00325 L/h.kg and 0.0167±0.00310 L/h.kg, respectively) than in 3-, 6- and 9-month-old calves (0.0303±0.0046 L/h.kg, 0.0398±0.0149 L/h.kg and 0.0330±0.00552 L/h.kg, respectively; P≦0.001). This observation may be indicative of maturation of the metabolism and/or excretion processes for ceftiofur and desfuroylceftiofur metabolites. The approved dosage regimens for ceftiofur sodium of 1.1-2.2 mg/kg administered once daily for up to 5 consecutive days will provide plasma concentrations above the MIC for bovine respiratory disease pathogens for a longer period of time in neonatal calves than in older calves. Peak plasma concentrations of ceftiofur and desfuroylceftiofur metabolites were no higher in neonatal calves than in more mature cattle, highly suggestive that peak tissue concentrations would be no higher in neonatal calves than in more mature cattle.  相似文献   

14.
Pharmacokinetics and pharmacodynamics of alfaxalone was performed in mallard ducks (Anas platyrhynchos) after single bolus injections of 10 mg/kg administered intramuscularly (IM; n = 10) or intravenously (IV; n = 10), in a randomized cross‐over design with a washout period between doses. Mean (±SD) Cmax following IM injection was 1.6 (±0.8) µg/ml with Tmax at 15.0 (±10.5) min. Area under the curve (AUC) was 84.66 and 104.58 min*mg/ml following IV and IM administration, respectively. Volume of distribution (VD) after IV dose was 3.0 L/kg. The mean plasma clearance after 10 mg/kg IV was 139.5 (±67.9) ml min?1 kg?1. Elimination half‐lives (mean [±SD]) were 15.0 and 16.1 (±3.0) min following IV and IM administration, respectively. Mean bioavailability at 10 mg/kg IM was 108.6%. None of the ducks achieved a sufficient anesthetic depth for invasive procedures, such as surgery, to be performed. Heart and respiratory rates measured after administration remained stable, but many ducks were hyperexcitable during recovery. Based on sedation levels and duration, alfaxalone administered at dosages of 10 mg/kg IV or IM in mallard ducks does not induce clinically acceptable anesthesia.  相似文献   

15.
The pharmacokinetic (PK) profile of tulathromycin, administered to calves subcutaneously at the dosage of 2.5 mg/kg, was established in serum, inflamed (exudate), and noninflamed (transudate) fluids in a tissue cage model. The PK profile of tulathromycin was also established in pneumonic calves. For Mannheimia haemolytica and Pasteurella multocida, tulathromycin minimum inhibitory concentrations (MIC) were approximately 50 times lower in calf serum than in Mueller–Hinton broth. The breakpoint value of the PK/pharmacodynamic (PD) index (AUC(0–24 h)/MIC) to achieve a bactericidal effect was estimated from in vitro time‐kill studies to be approximately 24 h for M. haemolytica and P. multocida. A population model was developed from healthy and pneumonic calves and, using Monte Carlo simulations, PK/PD cutoffs required for the development of antimicrobial susceptibility testing (AST) were determined. The population distributions of tulathromycin doses were established by Monte Carlo computation (MCC). The computation predicted a target attainment rate (TAR) for a tulathromycin dosage of 2.5 mg/kg of 66% for M. haemolytica and 87% for P. multocida. The findings indicate that free tulathromycin concentrations in serum suffice to explain the efficacy of single‐dose tulathromycin in clinical use, and that a dosage regimen can be computed for tulathromycin using classical PK/PD concepts.  相似文献   

16.
The aim of this study was to determine the pharmacokinetics and prostaglandin E2 (PGE2) synthesis inhibiting effects of intravenous (IV) and transdermal (TD) flunixin meglumine in eight adult female Boer goats. A dose of 2.2 mg/kg was administered intravenously (IV) and 3.3 mg/kg administered TD using a cross‐over design. Plasma flunixin concentrations were measured by LC‐MS/MS. Prostaglandin E2 concentrations were determined using a commercially available ELISA. Pharmacokinetic (PK) analysis was performed using noncompartmental methods. Plasma PGE2 concentrations decreased after flunixin meglumine for both routes of administration. Mean λz‐HL after IV administration was 6.032 hr (range 4.735–9.244 hr) resulting from a mean Vz of 584.1 ml/kg (range, 357.1–1,092 ml/kg) and plasma clearance of 67.11 ml kg?1 hr?1 (range, 45.57–82.35 ml kg?1 hr?1). The mean Cmax, Tmax, and λz‐HL for flunixin following TD administration was 0.134 μg/ml (range, 0.050–0.188 μg/ml), 11.41 hr (range, 6.00–36.00 hr), and 43.12 hr (15.98–62.49 hr), respectively. The mean bioavailability for TD flunixin was calculated as 24.76%. The mean 80% inhibitory concentration (IC80) of PGE2 by flunixin meglumine was 0.28 μg/ml (range, 0.08–0.69 μg/ml) and was only achieved with IV formulation of flunixin in this study. The PK results support clinical studies to examine the efficacy of TD flunixin in goats. Determining the systemic effects of flunixin‐mediated PGE2 suppression in goats is also warranted.  相似文献   

17.
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml.  相似文献   

18.
The objective of this study was to describe the pharmacokinetics (PK) of flunixin in 12 nonlactating sows following transdermal (TD) flunixin (3.33 mg/kg) and intravenous (IV; 2.20 mg/kg) flunixin meglumine (FM) administration using a crossover design with a 10‐day washout period. Blood samples were collected postadministration from sows receiving IV FM (3, 6, 10, 20, 40 min and 1, 3, 6, 12, 16, 24, 36, and 48 hr) and from sows receiving TD flunixin (10, 20, 40 min and 1, 2, 3, 4, 6, 8, 12, 16, 24, 36, 48, 60, and 72 hr). Liquid chromatography and mass spectrometry were used to determine plasma flunixin concentrations, and noncompartmental methods were used for PK analysis. The geometric mean ± SD area under the plasma concentration–time curve (AUC) following IV injection was 26,820.59 ± 9,033.88 and 511.83 ± 213.98 hr ng/ml for TD route. Mean initial plasma concentration (C0) was 26,279.70 ± 3,610.00 ng/ml, and peak concentration (Cmax) was 14.61 ± 7.85 ng/ml for IV and TD administration, respectively. The percent mean bioavailability of TD flunixin was 1.55 ± 1.00. Our results demonstrate that topical administration is not an efficient route for delivering flunixin in mature sows.  相似文献   

19.
The pharmacokinetics and bioavailability of cefquinome in Beagle dogs were determined by intravenous (IV), intramuscular (IM) or subcutaneous (SC) injection at a single dose of 2 mg/kg body weight (BW). The minimum inhibitory concentrations (MIC) of cefquinome against 217 Escherichia coli isolated from dogs were also investigated. After IV injection, the plasma concentration‐time curve of cefquinome was analyzed using a two‐compartmental model, and the mean values of t1/2α (h), t1/2β (h), Vss (L/kg), ClB (L/kg/h) and AUC (μg·h/mL) were 0.12, 0.98, 0.30, 0.24 and 8.51, respectively. After IM and SC administration, the PK data were best described by a one‐compartmental model with first‐order absorption. The mean values of t1/2Kel, t1/2Ka, tmax (h), Cmax (μg/mL) and AUC (μg·h/mL) were corresponding 0.85, 0.14, 0.43, 4.83 and 8.24 for IM administration, 0.99, 0.29, 0.72, 3.88 and 9.13 for SC injection. The duration of time that drug levels exceed the MIC (%T > MIC) were calculated using the determined MIC90 (0.125 μg/mL) and the PK data obtained in this study. The results indicated that the dosage regimen of cefquinome at 2 mg/kg BW with 12‐h intervals could achieve %T > MIC above 50% that generally produced a satisfactory bactericidal effect against E. coli isolated from dogs in this study.  相似文献   

20.
Mebendazole is approved for use in aquatic animals and is widely used in Chinese aquaculture. We developed a pharmacokinetic and residue analysis for mebendazole levels in the goldfish (Carassius auratus). Plasma and muscle samples of C. auratus were taken after oral administration of 10 mg/kg mebendazole. The maximal drug plasma concentration of 0.55 mg/L was achieved at 48 hr and then declined with the elimination half‐life (T1/2β) of 7.99 hr. Administration of 10 mg/kg by oral gavage for 5 successive days resulted in a peak mebendazole concentration of 0.70 mg/kg in muscle at 96 hr after the last dose. The drug was then eliminated at a relatively slow rate from muscle with T1/2β of 68.41 hr. There was no detectable mebendazole in any muscle samples at 24 days postadministration. The AUClast in plasma and muscle was 19.42 and 105.33 mg hr/L, respectively. These data provide information for dosage recommendations and withdrawal time determinations for mebendazole use in aquariums.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号