首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
耕作方式对华北农田土壤固碳效应的影响   总被引:26,自引:11,他引:15  
研究不同耕作方式对华北农田土壤固碳及碳库管理指数的影响,可为探寻有利于农田固碳的耕作方式提供科学依据。该研究在中国农业大学吴桥实验站进行,试验于2008年设置了免耕秸秆不还田(NT0)、翻耕秸秆不还田(CT0)、免耕秸秆还田(NT)、翻耕秸秆还田(CT)和旋耕秸秆还田(RT)5个处理。研究测定分析了土壤容重、有机碳、易氧化有机碳含量及不同耕作方式下的碳库管理指数。通过对不同耕作方式下0~110cm土壤的分析,结果表明,随着土层的加深,土壤有机碳含量不断下降,NT显著增加了表层(0~10cm)土壤有机碳含量,而>10~50cm有机碳含量较其他处理(NT0除外)有所下降,深层(>50~110cm)处理间差异不明显;土壤容重与有机碳含量呈显著的负相关关系(P<0.01);0~30cm土层有机碳储量以NT最高,CT与其无明显差异,二者较CT0分别高出13.1%和11.0%,而至0~50cm土层,CT的碳储量最高,但与NT无显著差异(P<0.05);与CT0相比,NT0降低了各层土壤易氧化有机碳含量,而NT则在0~10cm土层表现为增加;RT、CT分别显著增加了0~10、>10~30cm土层的碳库管理指数。结果表明,秸秆还田可改善土壤质量,提高农田碳库管理指数,同时碳库管理指数受耕作方式的影响也较大,尤其是CT和RT;NT通过减少土壤扰动、增加有机质的输入,可提高上层土壤有机碳的储量。  相似文献   

2.
Soil total organic carbon (TOC) is a composite indicator of soil quality with implications for crop production and the regulation of soil ecosystem services. Research reports on the dynamics of TOC as a consequence of soil management practices in subtropical climatic conditions, where microbial carbon (C) loss is high, are very limited. The objective of our study was to evaluate the impact of seven years of continuous tillage and residue management on soil TOC dynamics (quantitative and qualitative) with respect to lability and stratification under an annual wheat-mung bean-rice cropping sequence. Composite soil samples were collected at 0-15 and 15-30 cm depths from a three-replicate split-plot experiment with tillage treatment as the main plots and crop residue levels as the sub-plots. The tillage treatments included conventional tillage (CT) and strip tillage (ST). Residue levels were high residue level (HR), 30% of the plant height, and low residue level (LR), 15%. In addition to TOC, soil samples were analyzed for particulate organic C (POC), permanganate oxidizable C (POXC), basal respiration (BR), specific maintenance respiration rate (qCO2), microbial biomass C (MBC), potentially mineralizable C (PMC), and TOC lability and management indices. The ST treatment significantly increased the TOC and labile C pools at both depths compared with the CT treatment, with the effect being more pronounced in the surface layer. The HR treatment increased TOC and labile C pools compared with the LR treatment. The ST + HR treatment showed significant increases in MBC, metabolic quotient (qR), C pool index (CPI), C lability index (CLI), and C management index (CMI), indicating improved and efficient soil biological activities in such systems compared with the CT treatment. Similarly, the stratification values, a measure of soil quality improvement, for POC and MBC were > 2, indicating improved soil quality in the ST + HR treatment compared with the CT treatment. The ST + HR treatment not only significantly increased the contents of TOC pools, but also their stocks. The CMI was correlated with qCO2, BR, and MBC, suggesting that these are sensitive indicators of early changes in TOC. The qCO2 was significantly higher in the CT + LR treatment and negatively correlated with MBC and CMI, indicating a biologically stressed soil condition in this treatment. Our findings highlight that medium-term reduced tillage with HR management has profound consequences on soil TOC quality and dynamics as mediated by alterations in labile C pools.  相似文献   

3.
通过设置在甘肃省定西市李家堡镇的保护性耕作措施长期定位试验,共设4个处理(T:传统耕作;NT:免耕无覆盖;TS:传统耕作+秸秆还田;NTS:免耕+秸秆覆盖),采用春小麦豌豆双序列轮作(即小麦→豌豆→小麦和豌豆→小麦→豌豆,本文中所指春小麦地、豌豆地分别指2008年种植春小麦、豌豆的轮作次序),于2008年3月中旬对春小麦、豌豆双序列轮作下的土壤有机碳、全氮、土壤微生物量碳及土壤微生物量氮含量进行了采样测定。结果表明,经过7a的轮作后,两种轮作次序下,0-30cm土层中土壤有机碳、全氮、土壤微生物量碳、土壤微生物量氮含量均有在免耕+秸秆覆盖、传统耕作+秸秆还田处理较免耕不覆盖、传统耕作处理高的趋势,且其含量均随着土壤深度的增加而降低。其中,土壤微生物量碳含量在两种轮作次序下的排序均为:免耕+秸秆覆盖(NTS)〉传统耕作+秸秆还田(TS)〉免耕不覆盖(NT)〉传统耕作(T);而土壤微生物量氮含量在春小麦地和豌豆地的排序则分别表现为:免耕+秸秆覆盖(NTS)〉传统耕作+秸秆还田(TS)〉传统耕作(T)〉免耕不覆盖(NT)和免耕+秸秆覆盖(NTS)〉传统耕作+秸秆还田(TS)〉免耕不覆盖(NT)〉传统耕作(T)。同时,微生物量碳、微生物量氮与有机碳和全氮均呈显著正相关,说明提高土壤有机质、全氮含量的保护性耕作模式有利于土壤微生物量碳与氮的积累。  相似文献   

4.
Crop rotation and tillage impact microbial C dynamics, which are important for sequestering C to offset global climate change and to promote sustainable crop production. Little information is available for these processes in tropical/subtropical agroecosystems, which cover vast areas of terrestrial ecosystems. Consequently, a study of crop rotation in combination with no tillage (NT) and conventional tillage (CT) systems was conducted on an Oxisol (Typic Haplorthox) in an experiment established in 1976 at Londrina, Brazil. Soil samples were taken at 0–50, 50–100 and 100–200 mm depths in August 1997 and 1998 and evaluated for microbial biomass carbon (MBC) and mineralizable C and N. There were few differences due to crop rotation, however there were significant differences due to tillage. No tillage systems increased total C by 45%, microbial biomass by 83% and MBC:total C ratio by 23% at 0–50 mm depth over CT. C and N mineralization increased 74% with NT compared to CT systems for the 0–200 mm depth. Under NT, the metabolic quotient (CO2 evolved per unit of MBC) decreased by 32% averaged across soil depths, which suggests CT produced a microbial pool that was more metabolically active than under NT systems. These soil microbial properties were shown to be sensitive indicators of long-term tillage management under tropical conditions.  相似文献   

5.
Understanding the different C pools and chemical composition of soil organic carbon (SOC) in cropping system is imperative for sustaining soil quality. This study examined the effects of tillage and straw returning practices on organic C fractions and chemical composition of SOC under a rice-rape system in central China. The field experiment consisted of conventional tillage (CT); conventional tillage with straw returning (CTS); no-tillage (NT); and no-tillage with straw returning (NTS) treatments. Compared to CT, NT significantly increased SOC stocks, SCMI and C fractions of 0–20 cm depth by 6–50%. The SOC, particulate organic carbon (POC), microbial biomass carbon (MBC), easily oxidizable carbon (EOC), dissolved organic carbon (DOC) contents of 0–20 cm depth were 16, 80, 24, 22 and 13%, respectively, higher under NTS treatment. Straw returning enhanced the relative contents of O-alkyl C, carbonyl C, alkyl C, A/O-A ratio, and aromaticity. The correlations of SOC with C fractions and SCMI were significant. O-alkyl C was positively correlated with C fractions and negatively correlated with carbonyl C and alkyl C. In conclusion, long-term tillage and straw returning significantly affected the fractions and chemical compositions of SOC, could be viable option for improving the soil quality in the rice-rape rotation system.  相似文献   

6.
The dynamics of soil organic carbon (SOC) is imperative for maintaining soil quality. Our objective was to investigate the effects of tillage practices on SOC and its fractions at the depth (0–60 cm) of Chromic Cambisol profile in northern China. The experiment including no-tillage with straw mulch (NTSM) and conventional tillage (CT). Our results indicated that differences in SOC concentration and stock were primarily evident in the 0–10 cm layer. The particulate organic matter carbon (POM-C), dissolved organic carbon (DOC), and microbial biomass carbon (MBC) levels in the top layers (0–10 cm) under the NTSM treatment were 28.5, 26.1 and 51.0% higher than CT. A positive correlation was observed between these labile C fractions and the SOC, and POM-C was the much more sensitive indicator of SOC quality than MBC and DOC. NTSM was unable to sustain the greater yields, and from 2006 to 2011, the mean maize yield for NTSM was significantly lower than that for CT (P < 0.05). NTSM resulted in higher SOC content and stocks in dryland farming systems but lower crop yields is a concern which needs to be addressed in order to make these systems acceptable to the farming community.  相似文献   

7.
土壤颗粒有机碳和矿质结合有机碳对4种耕作措施的响应   总被引:4,自引:1,他引:3  
以陕西关中平原中部耕作定位试验为研究对象,研究深松、旋耕、免耕和统耕作4种耕作方式在秸秆还田和不还田条件下对土壤颗粒有机碳和矿质结合态有机碳的影响。结果表明,相对于传统耕作,深松、旋耕和免耕处理都使土壤颗粒碳(POC)含量增加,但在秸秆还田下相应增加幅度更大,在0-10cm土层颗粒碳增加20.71%~69.25%,表现出深松>旋耕>免耕>传统耕作的顺序,而对其他10-20cm,20-30cm,30-40cm土层的颗粒碳影响较小。在同一种耕作模式下,秸秆还田的与无秸秆还田的相比,深松、旋耕、传统耕作使土壤POC增加了9.17%~26.61%,其中以传统耕作措施的提高幅度最大。在秸秆不还田条件下,各耕作处理矿质结合态有机碳的差异较小,但在秸秆还田条件下,旋耕促进了土壤矿质结合态有机碳(MOC)的增加,比对照(传统耕作)提高了22.98%。从土壤有机碳的角度考虑,深松和旋耕并结合秸秆还田是较适合于当地土壤条件的耕作模式。  相似文献   

8.
深松和秸秆还田对旋耕农田土壤有机碳活性组分的影响   总被引:4,自引:4,他引:4  
土壤有机碳(soil organic carbon,SOC)及其活性组分能够敏感响应耕作方式变化及有机物输入。为对比长期旋耕农田进行深松后土壤有机碳各活性组分及比例变化,该研究基于连续7a的旋耕转变为深松和秸秆管理长期定位试验,对比了旋耕无秸秆还田处理(rotary tillage with straw removal,RT)、旋耕秸秆还田处理(rotary tillage with straw return,RTS)、旋耕转变为深松无秸秆还田处理(rotary tillage conversion to subsoiling with straw removal,RT-DT)、旋耕转变为深松秸秆还田处理(rotary tillage conversion to subsoiling with straw return,RTS-DTS)下土壤有机碳(soil organic carbon,SOC)、颗粒有机碳(particulate organic carbon,POC)、易氧化有机碳(readily oxidizable organic carbon,ROC)、微生物生物量碳(microbial biomass carbon,MBC)、溶解性有机碳(dissolved organic carbon,DOC)、活性有机碳(labile organic carbon,LOC)在土壤有机碳中比例的变化及各组分间的相互关系。研究结果表明,耕作方式从旋耕转变为深松和秸秆还田对SOC及其各活性组分均产生显著影响,耕作方式转变、秸秆还田及两者的交互效应是影响SOC及其活性组分的主要因素。秸秆还田显著提高了RTS处理和RTS-DTS处理的SOC含量,分别比RT和RT-DT处理高6.1%~15.6%和19.1%~32.3%。并且转变耕作方式后RTS-DTS处理比于RTS处理SOC含量提高16.9%~20.0%。同时,RTS-DTS处理的POC含量比RTS处理高13.6%~53.8%;但RT-DT和RTS-DTS处理的土壤ROC含量较RT和RTS处理都呈下降趋势,RTS-DTS处理的ROC含量比RTS处理下降4.6%~10%;MBC含量降低23.8%~30.6%。虽然秸秆还田显著提高了各处理的DOC含量,但RTS转变为RTS-DTS处理后,其3个土层的DOC含量下降了8%~41%。相比于RT和RTS处理,RT-DT和RTS-DTS处理0~30 cm各土层中LOC在SOC中的比例显著下降。相关性分析结果表明,除POC与ROC之间无显著性相关关系外,SOC及各组分间均呈显著(P<0.05)或极显著(P<0.01)的相关关系。耕作方式转变为深松和秸秆还田提高了SOC含量的同时,显著降低了SOC中的活性有机碳组分,这更有利于SOC的有效积累,促进土壤碳库的稳定固存。  相似文献   

9.
西北旱作农田不同耕作模式对土壤性状及小麦产量的影响   总被引:5,自引:2,他引:3  
【目的】在雨养农业区,旱作区因连年翻耕而引起严重的土壤质量退化,使作物生产力下降,需定期改变其耕作方式。免耕深松隔年轮耕可以降低土壤容重,增加耕层土壤团聚体和有机碳氮的含量,增强土壤蓄水保墒能力,对改善土壤性状和提高作物产量具有重要意义。【方法】本研究于2007~2010年在宁夏南部半旱区进行了两年免耕一年深松 (NT/ST/NT)、两年深松一年免耕 (ST/NT/ST)、连年翻耕 (CT) 3种耕作模式试验,研究了其对耕层土壤容重、团聚体、土壤有机碳氮含量、土壤水分及作物产量的影响。【结果】3年耕作处理后,与连年翻耕相比,NT/ST/NT、ST/NT/ST处理0—20 cm层土壤容重分别降低了4.4%和7.3%,20—40 cm土层分别降低2.1%和5.7%,40—60 cm土层分别降低4.1%和5.5%;土壤孔隙度0—20 cm土层分别提高了4.1%和6.8%,20—40 cm土层提高了2.1%和4.3%,40—60 cm土层提高了5.5%和5.7%。0—20 cm土层,NT/ST/NT处理0.25~2 mm机械稳定性团聚体含量平均较CT处理提高了12.4%,ST/NT/ST处理 > 2 mm机械稳定性团聚体含量较CT处理平均提高了42.0%;20—40 cm土层,NT/ST/NT、ST/NT/ST处理 > 2 mm团聚体含量较CT处理平均分别提高了44.3%和50.4%。两种轮耕模式使0—40 cm土层土壤团聚体平均重量直径分别显著高于CT处理21.8%和22.5%,几何平均直径分别高于CT处理9.6%和9.5%。三个处理耕层土壤有机碳氮含量均比试验前有不同程度的增加,轮耕处理0—30 cm土层0.25~2 mm粒级有机碳含量和 < 0.25 mm粒级全氮含量显著高于CT,以ST/NT/ST处理效果最佳。NT/ST/NT和ST/NT/ST处理0—10 cm土层0.25~2 mm团聚体有机碳含量较CT处理分别显著提高7.9%和10.2%,10—20 cm土层分别提高19.0%和15.7%,20—30 cm土层分别提高10.6%和13.3%;0—10 cm土层 < 0.25 mm粒级全氮含量显著提高9.4%和10.9%,10—20 cm土层分别提高6.8%和10.2%,20—30 cm土层分别提高7.4%和9.3%。研究期间,NT/ST/NT和ST/NT/ST处理较CT处理可显著提高0—200 cm土壤贮水量,其中以ST/NT/ST处理保蓄土壤水分效果最佳。在小麦生长前期,轮耕处理土壤贮水量均高于连年翻耕,生长后期ST/NT/ST处理土壤水分含量最高,NT/ST/NT处理次之。轮耕处理的小麦生物量和籽粒产量显著高于连年翻耕,其中小麦籽粒产量分别增加9.6%和10.7%。【结论】免耕/深松轮耕可显著改善土壤的物理性状和水分环境,显著增加耕层土壤有机碳氮含量,提高作物的生产力,在宁南旱区有重要的应用前景。  相似文献   

10.
Soil erosion is the main process leading to soil degradation on the Loess Plateau of China. The effects of soil‐erosion intensity (sheet, rill, and gully erosion) and different land use (140 y–old secondary forest site, 16 y–old bare site, 6 y–old succession site, and 43 y–old arable site) on gross and net N mineralization, soil organic‐carbon (SOC) turnover, the size and structure of the soil microbial community (phospholipid fatty acid analysis) were assessed. Erosion intensity in the bare plot increased from top slope (sheet erosion) to down slope (gully erosion). The more severe the soil erosion the stronger was the decline of SOC, total N, and microbial biomass (MB). The MBC/SOC ratio decreased whereas the metabolic quotient (qCO2) increased. Differences in nutrient turnover in the different erosion zones of the bare plot were not significant. The microbial community changed towards less Gram negative bacteria and relative more fungi in the gully‐erosion zone. In forest soils, qCO2 and the MBC/SOC ratio demonstrate a higher substrate‐use efficiency of the microbial biomass than in bare soils. Gross N mineralization and gross NH consumption clearly indicated a higher microbial activity in forest than in bare soils. Arable land use shifted the soil microbial community towards a higher relative abundance of fungi and a lower one of actinomycetes. During 6 y of natural succession on former bare plots, soil nutrient content and turnover as well as microbial biomass and structure developed towards forest conditions.  相似文献   

11.
长期免耕旱作对冬小麦生长季土壤剖面有机碳含量的影响   总被引:1,自引:0,他引:1  
依托21a长期免耕秸秆还田定位试验,探究长期免耕加秸秆还田的田间管理方式对冬小麦生长季0−60cm土层内土壤有机碳(SOC)和土壤活性有机碳(MBC、POC、DOC)的影响。试验共设长期免耕秸秆还田(NT)与常规耕作(CT)两种耕作模式,分析0−60cm土层内土壤总有机碳(SOC)、土壤微生物量碳(MBC)、土壤颗粒有机碳(POC)、土壤可溶性碳(DOC)含量的变化。结果表明,在0−20cm土层,NT处理SOC含量显著高于CT处理,其中0−5cm和5−10cm土层平均SOC含量分别增加了81.2 %和52.9 %,冬小麦不同生育期内土壤SOC含量变化不显著;在0−30cm土层内,与CT处理相比,NT显著改变了土壤MBC、POC及DOC在播种前、越冬前、拔节期、开花期和成熟期5个生育阶段的分布情况,且显著提高了5个生育阶段内土壤活性有机碳的含量(P<0.05),其中0−5cm土层内,土壤MBC、POC及DOC含量在各个时期相较于CT处理分别增长60.8%~161.4%、71.8%~141.1%和21.9%~104.4%。0−60cm土层内,两种耕作方式下的SOC、MBC、POC、DOC均随着土壤深度的增大呈下降趋势。说明长期免耕可提高耕作层土壤有机碳含量和小麦生长季活性有机碳的水平,这为旱地土壤有机碳的高效固存提供了理论依据。  相似文献   

12.
In rainfed semi‐arid agroecosystems, soil organic carbon (SOC) may increase with the adoption of alternative tillage systems (e.g. no‐tillage, NT). This study evaluated the effect of two tillage systems (conventional tillage, CT vs. NT) on total SOC content, SOC concentration, water stable aggregate‐size distribution and aggregate carbon concentration from 0 to 40 cm soil depth. Three tillage experiments were chosen, all located in northeast Spain and using contrasting tillage types but with different lengths of time since their establishment (20, 17, and 1‐yr). In the two fields with mouldboard ploughing as CT, NT sequestered more SOC in the 0–5 cm layer compared with CT. However, despite there being no significant differences, SOC tended to accumulate under CT compared with NT in the 20–30 and 30–40 cm depths in the AG‐17 field with 25–50% higher SOC content in CT compared with NT. Greater amounts of large and small macroaggregates under NT compared with CT were measured at 0–5 cm depth in AG‐17 and at 5–10 cm in both AG‐1 and AG‐17. Differences in macroaggregate C concentration between tillage treatments were only found in the AG‐17 field at the soil surface with 19.5 and 11.6 g C/kg macroaggregates in NT and CT, respectively. After 17 yr of experiment, CT with mouldboard ploughing resulted in a greater total SOC concentration and macroaggregate C concentration below 20 cm depth, but similar macroaggregate content compared with NT. This study emphasizes the need for adopting whole‐soil profile approaches when studying the suitability of NT versus CT for SOC sequestration and CO2 offsetting.  相似文献   

13.
  目的  探究不同保护性耕作措施对黑土有机碳组分的影响,对于保持黑土生态稳定性及其高肥力水平具有重要意义。  方法  以农田黑土为研究对象,玉米为供试作物,采用随机区组设计,设置传统翻耕(CT)、传统翻耕 + 秸秆还田(CTSI)、免耕(NT)、免耕 + 秸秆还田(NTSI)、深松(ST)和深松 + 秸秆还田(STSI),共6个处理,采用密度分组法,研究不同保护性耕作措施对耕层土壤(0 ~ 20 cm)有机碳组分含量、结构特征及玉米产量的影响。  结果  与CT处理相比,不同保护性耕作处理土壤总有机碳含量均显著提高(P < 0.05)。ST处理轻组有机碳、粗颗粒有机碳和细颗粒有机碳组分含量均较CT处理显著增加(P < 0.05),与不还田相比,秸秆还田处理有机碳各组分含量均增加,NTSI处理较CTSI处理显著提高轻组有机碳含量,STSI处理较CTSI处理显著提高粗颗粒有机碳和细颗粒有机碳含量。主成分分析表明,与CT处理相比,NT、NTSI、ST和STSI处理均能提高轻组有机碳多糖和碳水化合物官能团的相对含量;保护性耕作措施较CT处理不仅增加了粗颗粒有机碳和细颗粒有机碳组分活性官能团相对含量,还增加了稳定性官能团相对含量,有利于土壤稳定性结构的形成,促进碳的固存。耕作与秸秆还田显著影响了玉米产量,ST较CT和NT处理分别显著提高了22.37%和21.42%(P < 0.05),秸秆还田处理有利于玉米产量提升,STSI处理增产效果最佳;相关性分析表明,粗颗粒有机碳能有效指示土壤有机碳的变化,其与细颗粒有机碳在维持和提升玉米产量中具有重要贡献。  结论  采用深松结合秸秆还田的保护性耕作措施对于稳定与提高黑土有机碳含量、固持土壤碳库和增加玉米产量具有重要作用。  相似文献   

14.
冀北辽河源油松天然林土壤微生物碳代谢特征研究   总被引:3,自引:0,他引:3  
立天宇  康峰峰  韩海荣  高晶  宋小帅 《土壤》2015,47(3):550-557
本文以冀北辽河源地区不同林龄油松天然林为研究对象,研究其土壤微生物生物量碳、微生物呼吸及微生物代谢熵随油松林龄的变化趋势。结果表明:随着油松天然林林龄的增加,土壤微生物生物量碳逐渐增加;而土壤微生物呼吸则呈现出先减小后增加的趋势;微生物代谢熵表现为随油松林林龄的增加而降低。相关性分析表明,土壤微生物生物量碳、微生物呼吸分别与微生物代谢熵之间呈现高度的极显著线性负相关。微生物生物量碳与微生物呼吸呈极显著正相关,但线性相关程度较弱。土壤微生物生物量碳和微生物呼吸与土壤温度和含水量均呈极显著正相关,而土壤微生物代谢熵则与土壤温度、土壤含水量呈极显著负相关。上述结果表明,在冀北辽河源地区,土壤微生物生物量碳、微生物呼吸、微生物代谢熵与油松天然林林龄密切相关。随着油松天然林林龄的增加,其土壤微生物活性增强,碳代谢效率增加,土壤质量及可持续利用潜力更高,土壤生态体系更加成熟。  相似文献   

15.
Over the past 20 years, conservation tillage has been used on the loess plateau of north‐west China to improve the sustainability of local agriculture. There had been particular concern about loss of soil organic matter associated with traditional tillage. We examined the influence of four tillage treatments: conventional tillage (CT), subsoiling tillage (SST), rotary tillage (RT) and no‐tillage (NT), with two straw residue management treatments (return and removal) on the distribution with soil depth (0–20 cm, 20–40 cm) of total organic carbon, labile organic carbon (KMnO4‐C) and bound organic carbon. The study was carried out on a Loutu soil (Earth‐cumuli‐Orthic Anthrosol) over seven consecutive years of a winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) crop rotation. By the end of this period, conservation tillage (SST, RT and NT) led to greater storage of soil organic carbon (SOC) (22.7, 14.9 and 16.3% with straw return in contrast to 21.4, 15.8 and 12.3% with no straw return, respectively) compared with CT in the surface soil (0–20 cm). The reduced tillage treatments (SST and RT) both increased significantly the highly labile organic carbon (HLOC) content of the surface soil (50% in both SST and RT) and mildly labile organic matter (MLOC) (49.4 in SST and 53.5% in RT) when straw was removed. The largest pool of bound carbon was observed in the Humin‐C pool, and the smallest in the free humic acids C (FHA‐C) in each tillage treatment. Conservation tillage led to an increased content of FHA‐C and CHA‐C. Results from correlation analyses indicate that SOC enrichment might have resulted from the increase in HLOC, MLOC, FHA‐C and CHA‐C over a short period. Labile organic carbon was associated with the organic carbon that was more loosely combined with clay (FHA‐C and CHA‐C). We conclude that both SST and RT are effective in maintaining or restoring organic matter in Loutu soils in this region, and the effect is greater when they are used in combination with straw return.  相似文献   

16.
Abstract

Distribution of dissolved (DOC) and soil organic carbon (SOC) with depth may indicate soil and crop‐management effects on subsurface soil C sequestration. The objectives of this study were to investigate impacts of conventional tillage (CT), no tillage (NT), and cropping sequence on the depth distribution of DOC, SOC, and total nitrogen (N) for a silty clay loam soil after 20 years of continuous sorghum cropping. Conventional tillage consisted of disking, chiseling, ridging, and residue incorporation into soil, while residues remained on the soil surface for NT. Soil was sampled from six depth intervals ranging from 0 to 105 cm. Tillage effects on DOC and total N were primarily observed at 0–5 cm, whereas cropping sequence effects were observed to 55 cm. Soil organic carbon (C) was higher under NT than CT at 0–5 cm but higher under CT for subsurface soils. Dissolved organic C, SOC, and total N were 37, 36, and 66%, respectively, greater under NT than CT at 0–5 cm, and 171, 659, and 837% greater at 0–5 than 80–105 cm. The DOC decreased with each depth increment and averaged 18% higher under a sorghum–wheat–soybean rotation than a continuous sorghum monoculture. Both SOC and total N were higher for sorghum–wheat–soybean than continuous sorghum from 0–55 cm. Conventional tillage increased SOC and DOC in subsurface soils for intensive crop rotations, indicating that assessment of C in subsurface soils may be important for determining effects of tillage practices and crop rotations on soil C sequestration.  相似文献   

17.
Continuous conventional tillage can cause serious soil degradation in rain‐fed agriculture, which reduces crop productivity. Adopting suitable tillage practices is very important for improving the soil and increasing crop productivity. Between 2007 and 2010, a 3‐year field study was conducted in semi‐arid areas of southern Ningxia, China, to determine the effects of rotational tillage practices on bulk density, soil aggregate, organic carbon concentration and crop yields. Three tillage treatments were tested: no‐tillage the first and third year and subsoiling the second year (NT/ST/NT); subsoiling the first and third year and no‐tillage the second year (ST/NT/ST); and conventional tillage each year (CT). A conventional tillage treatment was used as the control. Under the rotational tillage treatments, the mean soil bulk density at a depth of 0–60 cm was significantly (P < 0.05) decreased by 4.9% compared with CT, and with the best effect under ST/NT/ST. The soil organic carbon (SOC) concentration and aggregate size fractions and stability at 0–40 cm depth were significantly (P < 0.05) increased in rotational tillage treatments when compared with the conventional tillage, and the ST/NT/ST treatment produced the highest increases. Significant differences were detected in the SOC concentration in 2 to 0.25–mm size fractions at 0–30 cm depth between rotational tillage treatments and conventional tillage. Biomass and grain yield with the rotational tillage practices were significantly positively influenced over 3 years, and ST/NT/ST produced the highest average crop yields among the three treatments. Therefore, it was concluded that the application of rotational tillage with subsoiling every 2 years and no‐tillage every other year (ST/NT/ST) should be of benefit in promoting the development of dryland farming in semi‐arid areas of northwest China.  相似文献   

18.
长期免耕对东北地区玉米田土壤有机碳组分的影响   总被引:6,自引:0,他引:6  
Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates ( 2000 μm) was higher in NT than that in CT, while small macroaggregates (250-2000 μm) showed an opposite trend. Therefore, the total proportion of macroaggregates ( 2000 and 250-2000 μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM m) and microaggregates occluded within macroaggregates (iPOM mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM m and iPOM mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i.e., iPOM m and iPOM mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage.  相似文献   

19.
连续秸秆还田和免耕对土壤团聚体及有机碳的影响   总被引:10,自引:3,他引:7  
选取湖北省武穴市8年田间定位试验中的传统耕作(CT)、秸秆还田配合传统耕作(CTS)、免耕(NT)和秸秆还田配合免耕(NTS)4种处理,研究连续秸秆还田和免耕措施对表层(0—20cm)和亚表层(20—40cm)土壤团聚体稳定性及有机碳(SOC)的影响。结果表明:CTS、NT和NTS均显著增加了表层5mm水稳性团聚体的含量和团聚体平均重量直径(MWD),秸秆还田显著增加了亚表层土壤水稳性团聚体的MWD。与CT比较,CTS、NT、NTS处理的SOC含量分别增加20.83%,21.98%,32.76%。CTS和NTS处理显著提高了表层5,5~2,0.25mm团聚体中SOC含量,NT则显著提高了5,5~2mm团聚体中SOC含量;CTS显著增加了亚表层0.25 mm团聚体中SOC的含量。秸秆还田增加了表层土壤的碳(C)、氢(H)、氮(N)和氧(O)的含量,免耕降低了H的含量,增加了其他3种元素的含量,但是免耕处理增加了亚表层土壤中H的含量。NT和NTS处理较CT和CTS处理降低了土壤的H/C值,表明土壤的脂肪族成分在不断增加。秸秆还田主要增加了土壤中醇、酚类,芳香类,脂肪族化合物和碳水化合物的含量,而免耕主要增加脂肪族化合物的含量。这些有机组分的增加有助于团聚体稳定性的增强。  相似文献   

20.
Soil organic carbon (SOC) plays an essential role in the sustainability of natural and agricultural systems. The identification of sensitive SOC fractions can be crucial for an understanding of SOC dynamics and stabilization. The objective of this study was to assess the effect of long‐term no‐tillage (NT) on SOC content and its distribution between particulate organic matter (POM) and mineral‐associated organic matter (Min) fractions in five different cereal production areas of Aragon (north‐east Spain). The study was conducted under on‐farm conditions where pairs of adjacent fields under NT and conventional tillage (CT) were compared. An undisturbed soil nearby under native vegetation (NAT) was included. The results indicate that SOC was significantly affected by tillage in the first 5 cm with the greatest concentrations found in NT (1.5–43% more than in CT). Below 40 cm, SOC under NT decreased (20–40%) to values similar or less than those under CT. However, the stratification ratio (SR) never reached the threshold value of 2. The POM‐C fraction, disproportionate to its small contribution to total SOC (10–30%), was greatly affected by soil management. The pronounced stratification in this fraction (SR>2 in NT) and its usefulness for differentiating the study sites in terms of response to NT make POM‐C a good indicator of changes in soil management under the study conditions. Results from this on‐farm study indicate that NT can be recommended as an alternative strategy to increase organic carbon at the soil surface in the cereal production areas of Aragon and in other analogous areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号