首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A field experiment comparing different arable crop rotations was conducted in Denmark during 1997–2008 on three sites varying in climatic conditions and soil types, i.e. coarse sand (Jyndevand), loamy sand (Foulum), and sandy loam (Flakkebjerg). The crop rotations followed organic farm management, and from 2005 also conventional management was included for comparison. Three experimental factors were included in the experiment in a factorial design: 1) crop rotation (organic crop rotations varying in use of whole-year green manure (O1 and O2 with a whole-year green manure, and O4 without), and a conventional system without green manure (C4)), 2) catch crop (with and without), and 3) manure (with and without). The experiment consisted of three consecutive cycles using four-course rotations with all crops present every year, i.e. 1997–2000 (1st cycle), 2001–2004 (2nd cycle), and 2005–2008 (3rd cycle). In the 3rd cycle at all locations C4 was compared with two organic rotations, i.e. O2 and O4. The O2 rotation in the third cycle included spring barley, grass-clover, potato, and winter wheat, whereas C4 and O4 included spring barley, faba bean, potato, and winter wheat. For the O2 rotation with green manure there was a tendency for increased DM yield over time at all sites, whereas little response was seen in N yield. In the O4 rotation DM and N yields tended to increase at Foulum over time, but there was little change at Flakkebjerg. The DM yield gap between organic and conventional systems in the 3rd cycle varied between sites with 34–66% at Jyndevad, 21–44% at Foulum, and 32–52% at Flakkebjerg. The inclusion of grass-clover resulted in lower cumulated yield over the rotation than the treatment without grass-clover. The use of manure reduced the DM yield gap between conventional and organic systems on an average by 15 and 21%-points in systems with and without grass-clover, respectively, and the use of catch crops reduced the yield gap by 3 and 5%-points in the respective systems. Across all crops the agronomic efficiency of N in manure (yield benefit for each kg of mineral N applied) was greater in O4 compared with O2 for all crops.  相似文献   

2.
The effects of organic versus conventional crop management practices (fertilisation, crop protection) and preceding crop on potato tuber yield (total, marketable, tuber size grade distribution) and quality (proportion of diseased, green and damaged tubers, tuber macro-nutrient concentrations) parameters were investigated over six years (2004–2009) as part of a long-term factorial field trial in North East England. Inter-year variability (the effects of weather and preceding crop) was observed to have a profound effect on yields and quality parameters, and this variability was greater in organic fertility systems. Total and marketable yields were significantly reduced by the use of both organic crop protection and fertility management. However, the yield gap between organic and conventional fertilisation regimes was greater and more variable than that between crop protection practices. This appears to be attributable mainly to lower and less predictable nitrogen supply in organically fertilised crops. Increased incidence of late blight in organic crop protection systems only occurred when conventional fertilisation was applied. In organically fertilised crops yield was significantly higher following grass/red clover leys than winter wheat, but there was no pre-crop effect in conventionally fertilised crops. The results highlight that nitrogen supply from organic fertilisers rather than inefficient pest and disease control may be the major limiting factor for yields in organic potato production systems.  相似文献   

3.
The benefits of improving nitrogen use efficiency (NUE) in crops are typically studied through the performance of the individual crop. However, in order to increase yields in a sustainable way, improving NUE of the cropping systems must be the aim. We did a model simulation study to investigate how improvement of NUE traits of individual crops affects the succeeding crops and the NUE of the crop rotation. Based on experimental results parameterization was altered for different types of improved NUE in the EU-Rotate_N model, e.g. through higher N harvest index, reduced litter loss or improved root depth penetration rate. The different ways of improving NUE have different effects on the cropping system, affecting either N uptake, the ability of the crop to hold on to N already taken up, or the fraction of crop N being harvested. Due to the different modes of action, the model simulations show that these changes in NUE traits will also have different effects on N leaching loss and on N availability and N loss in the following years. Simulations also show that the effect of genotypes with improved NUE depend on environment and crop management. This is true for the improved crop itself and when its effect is analyzed for the whole cropping system. The environmental conditions, crop choices and management will all affect the fate of the N left in the soil, and whether this will contribute mainly to leaching loss or be used for production in later crops. As an example, increasing pre-crop fertilization was shown to affect the leaching after the following oilseed rape crop with up to 50 kg N ha?1 taken up before it was lost to the environment when pre-crop fertilization as well as root depth penetration rate was high. All in all, the simulations illustrate the concept of NUE as the result of interactions between genotype, environment and crop management (G×E×M).  相似文献   

4.
不同施肥结构的增产效应和对小麦籽粒品质的影响   总被引:11,自引:0,他引:11  
朱洪勋  张翔 《华北农学报》1995,10(2):100-105
13年的定位监测研究结果表明,不同施肥结构对小麦、玉米两熟制轮作的年产量影响明显,各处理总的产量趋势是:MNPK>MNP>MN>NPK>NP>M>N>ck。基础地力的产量效应为37.9%,肥料的增产效应为62.1%;肥料增产效应中,化肥占75.8%,有机肥占24.2%,显示出化肥为主要增产途径;在化肥的增产效应中,N的增产效应为70.6%,P为23.5%,K为5.9%;以MNPK处理的产量和小麦籽粒蛋白质含量最高,这说明有机肥与无机肥配合施用,可使作物高产优质,土壤有机质含量得到提高。  相似文献   

5.
The effects of nitrogen (N) availability related to fertilizer type, catch crop management, and rotation composition on cereal yield and grain N were investigated in four organic and one conventional cropping systems in Denmark using the FASSET model. The four-year rotation studied was: spring barley–(faba bean or grass-clover)–potato–winter wheat. Experiments were done at three locations representative of the different soil types and climatic conditions in Denmark. The three organic systems that included faba bean as the N fixing crop comprised a system with manure (stored pig slurry) and undersowing catch crops (OF + C + M), a system with manure but without undersowing catch crops (OF ? C + M), and a system without manure and with catch crops (OF + C ? M). A grass-clover green manure was used as N fixing crop in the other organic system with catch crops (OG + C + M). Cuttings of grass-clover were removed from the plots and an equivalent amount of total-N in pig slurry was applied to the cropping system. The conventional rotation included mineral fertilizer and catch crops (CF + C + F), although only non-legume catch crops were used. Measurements of cereal dry matter (DM) at harvest and of grain N contents were done in all plots. On average the FASSET model was able to predict the yield and grain N of cereals with a reasonable accuracy for the range of cropping systems and soil types studied, having a particularly good performance on winter wheat. Cereal yields were better on the more loamy soil. DM yield and grain N content were mainly influenced by the type and amount of fertilizer-N at all three locations. Although a catch crop benefit in terms of yield and grain N was observed in most of the cases, a limited N availability affected the cereal production in the four organic systems. Scenario analyses conducted with the FASSET model indicated the possibility of increasing N fertilization without significantly affecting N leaching if there is an adequate catch crop management. This would also improve yields of cereal production of organic farming in Denmark.  相似文献   

6.
The Rolling Pampa is the most productive region of the Argentine Humid Pampa comprising around 10 Mha. Wheat (Triticum aestivum L.), corn (Zea mays L.), and soya bean [Glycine max (L.) Merr.] are the main grain crops produced. To develop sound cropping strategies, a better understanding of the impact of soil fertility and management on crops is needed. The objective of this study was to develop models for estimating the effects of growing season precipitation, soil fertility and management on wheat and corn yields. Data from 347 wheat and 323 corn field experiments and production fields over six growing seasons were used. Soil, management and weather characteristics were determined and yields were then evaluated. Data were analysed using linear and quadratic models and a quadratic polynomial surface model. Soil fertility, management and rainfall and interactions were analysed. Growing season precipitation correlated with wheat (R2 = 0.42) and corn (R2 = 0.25) yield. Maximum wheat yield was achieved with 350–400 mm rainfall and corn yield reached a plateau around 700 mm. Soil fertility accounted for 33 % of wheat yield variability and 5 % of corn yield variability. Management accounted for 48 and 9 % respectively. Whole polynomial models integrating rainfall, fertilizer N and P rates, soil N and P, previous crop and tillage system accounted for 67 % of wheat yield variability and 51 % of corn yield variability. Soil organic matter was not included in the models but an indirect effect on yield was detected as organic matter correlated with initial soil N levels for both crops. Soya bean as a previous crop had a positive effect on wheat and corn yields. Wheat was insensitive to tillage system but corn yield was higher under no till. N and P fertilization had a two- to three-fold greater impact on yield than soil nutrient levels. As this region is considered to be of high soil fertility and has a history of very low fertilizer consumption, adequate use of N and P fertilization will be essential to maintaining high wheat and corn yields.  相似文献   

7.
In broadly conceived long-term experiments, tobacco was grown in monoculture and with different crop rotations. This paper presents results in terms of the yields achieved and the major yield components for the crops grown, and the proportion of particular tobacco quality classes obtained. In addition to tobacco monoculture (initially only fertilized and later also unfertilized) as the key crop, different types of crop rotations included, besides tobacco, the following crops: winter wheat, maize, soybean, oil-seed rape, and red clover. Experiments involved two 2-year and two 4-year crop rotations, and a 3-year, a 5-year, and a 6-year crop rotation. Experiments were set up on luvic semigley on multilayered Pleistocene sands. Average 10-year results suggest that there is an advantage of crop rotation over monoculture for tobacco leaf yields. The influence of different crop rotation types on yields of other crops was variable, tending towards higher values as the number of crops in rotation was increased. Values obtained for yield components should be considered from two angles: some of the values were primarily influenced by genetic factors, while others were influenced by ecological factors, including crop rotation as an overall biological buffer. With regard to quality classes (IB-III), the growing of flue-cured tobacco in crop rotation represents a great advancement relative to its growth in monoculture, even in a narrower crop rotation.  相似文献   

8.
As with conventional farming, the improvement of organic farming systems requires agronomic planning tools to enhance economic performance. Crop rotation planning plays a crucial role in organic arable farming systems due to the renunciation of mineral nitrogen fertilisers and pesticides. Our objective was to develop a tool for generating and evaluating site-specific and agronomically sustainable crop rotations for organic farming systems in central Europe. The resulting static rule-based model, called ROTOR, consists of two basic steps: (A) A set of annual crop production activities (CPAs) is assembled semi-automatically from single site and crop-specific field operations using a relational data base. The database includes all relevant crops recorded separately with inputs and outputs, machinery and timing. Starting from stubble tillage and ending with the last harvest measure, the CPAs describe the current best cropping practices. Different CPAs are included for each crop according to (i) the type of crop preceding and (ii) the field operations following: whether ploughing or non-inverting tillage, undersowing crops, using catch crops, manuring, straw harvesting, or mechanical weed control. The former allows for the modelling of all possible positions of a crop within a crop rotation and the consequential effects of preceding crops. The CPAs are evaluated using rule-based assessment modules for yield, economic performance, N balance, nitrate leaching, and weed infestation risks. These modules have been developed using data from field experiments, farm trials and surveys, expert knowledge and a soil–crop simulation model. (B) Within the crop generation module, all possible sequences of CPAs are linked to 3–8-year preliminary crop rotations. Agronomically sustainable crop rotations are selected according to exclusion criteria (i.e., thresholds for N balance, weed infestation risks, phytosanitary and chronological restrictions) and ranked, e.g. by economic performance. The model was tested by comparing (i) estimated with observed yields and (ii) generated with existing rotations. These comparisons, based on data obtained from two farm surveys from North Eastern Germany, indicate the validity and usability of the model approach. ROTOR was found to support the complex crop rotation planning in organic farming systems requiring rotations with overlapping undersown main and cover crops. ROTOR is able to reduce the risk of planning failures by offering a quantitative method of optimisation of weed and site-specific N management.  相似文献   

9.
Yield formation in cereal-rich crop rotations and monocultures in an extensive and intensive crop-management system
In a long duration trial, conducted from 1979/80 to 1992 at TU-Munich's research station in Roggenstein, the performance of monocultures of winter wheat, winter barley and winter rye, as well as numerous cereal-crop rotations were compared in an extensive and intensive crop-management system. The results obtained can be summarized as follows.
Over the course of 13 years, the influence of the immediately preceding crop on the yield of the main crops was of much greater significance than the rotation as a whole. With winter wheat, no yield differences could be observed between monoculture and cereal crop rotation (if the rotation did not include oats). Oats, rape, field bean, pea, potato and maize as preceding crops, however, in crop management systems, led to, on average, an increase in yield of 13 dt/ha from the following wheat. Winter barley yields were not significantly different in monoculture, cereal crop rotations and crop rotations containing 66% cereals. Furthermore, winter rye yields were the same in monocultures and cereal crop rotations. With all cereals, intensification of fertilizing and chemical plant protection led to a considerable increase in yield, but did not diminish the effects of the preceding crop. Hence, even with the use of modern agronomical techniques it is impossible to compensate for yield losses due to crop rotation.  相似文献   

10.
Long term investigations on the combined effects of tillage systems and other agronomic practices such as mineral N fertilization under Mediterranean conditions on durum wheat are very scanty and findings are often contradictory. Moreover, no studies are available on the long term effect of the adoption of conservation tillage on grain yield of maize and sunflower grown in rotation with durum wheat under rainfed Mediterranean conditions. This paper reports the results of a 20-years experiment on a durum wheat-sunflower (7 years) and durum wheat–maize (13 years) two-year rotation, whose main objective was to quantify the long term effects of different tillage practices (CT = conventional tillage; MT = minimum tillage; NT = no tillage) combined with different nitrogen fertilizer rates (N0, N1, N2 corresponding to 0, 45 and 90 kg N ha−1 for sunflower, and 0, 90 and 180 kg N ha−1 for wheat and maize) on grain yield, yield components and yield stability for the three crops. In addition, the influence of meteorological factors on the interannual variability of studied variables was also assessed. For durum wheat, NT did not allow substantial yield benefits leading to comparable yields with respect to CT in ten out of twenty years. For both sunflower and maize, NT under rainfed conditions was not a viable options, because of the unsuitable (i.e., too wet) soil conditions of the clayish soil at sowing. Both spring crops performed well with MT. No significant N × tillage interaction was found for the three crops. As expected, the response of durum wheat and maize grain yield to N was remarkable, while sunflower grain yield was not significantly influenced by N rate. Wheat yield was constrained by high temperatures in January during tillering and drought in April during heading. The interannual yield variability of sunflower was mainly associated to soil water deficit at flowering and air temperature during seed filling. Heavy rains during this latter phase strongly constrained sunflower grain yield. Maize grain yield was negatively affected by high temperatures in June and drought in July, this latter factor was particularly important in the fertilized maize. Considering both yield and yield stability, durum wheat and sunflower performed better under MT and N1 while maize performed better under both CT and MT and with N2 rates. The results of this long term study are suitable for supporting policies on sustainable Mediterranean rainfed cropping systems and also for cropping system modelling.  相似文献   

11.
The Montepaldi Long Term Experiment (MOLTE) trial in central Italy has been comparing three agroecosystems with different management: two organic (Old Organic since 1992 and Young Organic since 2001) and one conventional. After sixteen years of comparison, the agronomic performance and environmental sustainability of the three agro-ecosystems were assessed. Crops grain yield, total C inputs and N budget at field level were evaluated. N use efficiency (NUE) at micro-agroecosystem level was determined. Soil samples were collected from the three agroecosystems in order to quantify soil C and N pools.Results showed comparable grain yields in the three agro-ecosystems. The conventional system showed a larger N surplus and a lower crop N use efficiency in comparison with the organic ones. Moreover, the organic systems presented a lower potential risk of N losses with respect to the conventional one. The Young Organic agro-ecosystem was the most effective in terms of long term soil C (13% higher than conventional) and the oldest organic agro-ecosystem was the most effective in terms of soil N storage (9% higher than conventional).The results obtained demonstrated that the application of the organic farming method could increase the environmental sustainability in stockless arable systems under Mediterranean type of climate.  相似文献   

12.
Six tropical maize cultivars were grown in Thailand on a reddish brown latosol under three nitrogen regimes, 0, 40 and 80 kg N/ha. With regard to biomass and economic yield several "cultivar by N fertilization response types" were discriminated. The low fertilization type was represented by an early and a late maturing cultivar, both yielded comparatively well without additional N and responded little to N fertilization. An opaque 2 cultivar and a commercial hybrid belonged to the high fertilization type, they had a very low yield without N and needed high N fertilization to produce a high yield. The other genotypes were of an intermediate type with comparatively high yields without N, a considerable increase in yield at 40 kg N/ha and some increase from 40 to 80 kg N/ha. Genotypic variability for the harvest index was high but values were at the usual low level of tropical cultivars. High fertilization types reacted to an additional N supply with a marked increase in kernel number/plant and little increase in kernel weight. The early maturing low fertilization type reacted quite the opposite way. All other genotypes predominantly increased kernel number from 0 to 40 kg N/ha and kernel weight from 40 to 80 kg N/ha.  相似文献   

13.
为进一步验证和优化马铃薯的施肥指标体系,以标准的“3414”试验作为试验方案,同时增加“2水平+有机肥”处理,以常规高产马铃薯栽培施肥作对照处理,共设16个处理,对马铃薯植株农艺性状进行测定。结果表明:试验各小区的马铃薯收获期植株农艺性状包括株高、生物鲜重、基茎粗、商品薯、商品率、理论产量、绿叶面积指数等显著差异,马铃薯理论产量与施肥量不成正比关系,最大差异高达129.30%,缺N的相对产量为69.88%,少施P的相对产量为112.16%,缺K的相对产量为95.79%,最佳施肥量为N、P、K配合为1:0.54:1.11(N=10.22、P=5.54;K=11.36)。试验结果还表明,试验区土壤中P含量已经较高,P的施用量对马铃薯产量影响不大,施肥的N、P、K三元二次方程为:Y=890.75+159.64N-74.68P+22.56K-4.96N2+6.73P2-0.01K2-2.53NP-2.20NK+2.02PK;按“3414”试验的结果,每公顷的最高施肥量为N:100.5 kg;P:52.2 kg;K:222.75 kg,这可为南方稻田冬种马铃薯高产栽培的“少P、追N、补K”施肥技术模式提供科学理论依据。  相似文献   

14.
通过长期定位试验,研究不同施肥处理对河北省低平原区土壤有机质、不同氮形态含量及作物产量的影响,旨在为该区冬小麦–夏玉米轮作系统秸秆全量还田下土壤肥力和作物产量的提高提供理论依据。结果表明,经过36个小麦玉米轮作周期的不同施肥处理后,与不施肥处理(CK)相比,施肥可以提高土壤有机质和全氮含量,且随化肥施用量的增加而逐渐增加。在化肥施用量≤N 360kg/hm2+P2O5 240kg/hm2时,秸秆还田较不还田可显著提高土壤有机质和全氮含量,在化肥施用量为N 540kg/hm2+P2O5 360kg/hm2时,增加速度减缓。与CK相比,长期施肥提高了土壤碱解氮和硝态氮含量,而对土壤铵态氮含量没有显著影响。单施化肥时,表层土壤碱解氮和硝态氮含量随氮肥施用量的增加而增加;在秸秆还田下,N360+P240+S9000处理表层土壤碱解氮和硝态氮含量最高。施肥显著提高了作物产量,单施化肥处理,小麦、玉米产量均随施肥量的增加而逐渐增加;秸秆还田条件下,小麦产量在化肥施用量≤N 360kg/hm2+P2O5 240kg/hm2时较单独施用化肥的处理增产。由以上结果可知,长期施肥可提高土壤肥力,增加土壤有机质和全氮含量,适宜的氮肥施用量配合秸秆还田可固持土壤有机碳和全氮,过量氮肥不利于土壤有机质的累积。长期单施化肥或化肥配合秸秆还田均可提高土壤碱解氮和硝态氮含量,对土壤铵态氮含量无显著影响。长期施肥可提高作物产量,在秸秆还田条件下,化肥施用量为N 360kg/hm2+P2O5 240kg/hm2时,增产效果较好。  相似文献   

15.
In this review, the genetic potential and efforts made on different aspects of potato breeding for nitrogen-use efficiency (NUE) and the possible physiological and genetic mechanisms determining NUE in potato in relation to other model crops are presented. Strategies to utilize the diverse gene pool of potato and improve the NUE in contrasting N environments are currently evaluated under field conditions using different selection approaches. So far, focused efforts have been made on the identification of potato genotypic differences which will allow for the analysis of specific components of nitrogen-use efficiency and the effect of nitrogen fertilizer on a range of physiological processes and morphological traits of potato. To my knowledge, despite the availability of genome sequence and QTLs identified for NUE and related agronomic and physiological traits in potato, and genomic information from other model crops, candidate genes on NUE have not yet been identified in potato. To maximize the success rate of potato breeding for NUE, basic knowledge how plants respond to different N regimes and other environmental conditions and use of DNA marker technology are vital.  相似文献   

16.
The CropSyst model was parameterized and verified for garlic with data from six field experiments carried out in southern Spain from 2008 to 2011. The model simulated well crop dry matter production, N uptake, and yield from field plots with different N fertilization treatments. A garlic–wheat rotation was then simulated for a 30-year period to evaluate the role of wheat after garlic as a catch crop that utilizes and reduces the loss of residual soil N left at the time of garlic harvest. The scenarios studied were the combination of seven rates of mineral N fertilization in garlic (0, 50, 100, 150, 200, 250 and 300 kgN/ha) and three rates in wheat (30, 70 and 110 kgN/ha). Fertilization rates of 150 kgN/ha in garlic and 70 kgN/ha in wheat were found to provide the best tradeoff between N loss reductions (N leaching and N gas emissions) while attaining near-maximum yields. Increasing fertilization to 200 and 110 kgN/ha for garlic and wheat, respectively, rates not atypical in the region, had a minimum effect on yields but increased average N losses over the rotation by 19 kgN/ha/2-year (29%). Further reductions of N losses by decreasing N fertilization below the best tradeoff point are possible at the expense of crop yield.  相似文献   

17.
Irrigation induces processes that may either decrease or increase greenhouse gas emissions from cropping systems. To estimate the net effect of irrigation on the greenhouse gas emissions, it is necessary to consider changes in the crop yields, the content of soil organic carbon and nitrous oxide emissions, as well as in emissions from the use and production of machinery and auxiliary materials. In this study the net greenhouse gas emissions of a cropping system on a sandy soil in northeast Germany were calculated based on a long-term field experiment coupled with two-year N2O flux measurements on selected plots. The cropping system comprised a rotation of potato, winter wheat, winter oil seed rape, winter rye and cocksfoot each under three nitrogen (N) fertilization intensities with and without irrigation. Total greenhouse gas emissions ranged from 452 to 3503 kg CO2-eq ha−1 and 0.09 to 1.81 kg CO2-eq kg−1 yield. Application of an adequate amount of N fertilizer led to a decrease in greenhouse gas emissions compared to zero N fertilization whereas excessive N fertilization did not result in a further decrease. Under N fertilization there were no significant differences between irrigation and non-irrigation. Increases in greenhouse gas emissions from the operation, production and maintenance of irrigation equipment were mainly offset by increases in crop yield and soil organic carbon contents. Thus, on a sandy soil under climatic conditions of north-east Germany it is possible to produce higher yields under irrigation without an increase in the yield-related greenhouse gas emissions.  相似文献   

18.
The trend towards specialization in conventional farming led to large agricultural areas in Germany and in Europe lacking livestock. Also stockless organic farming has increased during recent years. In organic farming clover/grass-ley (CG) provides nitrogen (N) to the whole cropping system via symbiotic N2 fixation and also controls certain weeds. A common practice in organic farming, when ruminants are not present, is to leave the biomass from CG in the field for their residual fertility effect. CG biomass, crop residues (CR) and cover crops (CC) represent a large unexploited energy potential. It could be used by anaerobic digestion to produce biogas. A field experiment was carried out by implementing a whole cropping system with a typical crop rotation for such farming systems on the research station Gladbacherhof from 2002 to 2005. The crop rotation consisted of six crops (two legumes and four non-legume crops). The aim was to evaluate whether the use of N could be improved by processing biomass from CG, CR and CC in a biogas digester and using the effluents as a fertilizer, compared to common practice. In the control treatment, represented by the usual stockless system, the CG, CR and CC biomass were left on the ground for green manure purposes. In the biogas systems these substrates were harvested for digestion in a biogas plant. The effluents of digestion were used to manure the non-legumes in the same crop rotation. Results indicate that digestion of CG, CR and CC can increase the crop dry matter and N yields and the N content of wheat grains in organic stockless systems. Harvesting and digestion of residues and their reallocation after digestion resulted in a better and more even allocation of N within the whole crop rotation, in a higher N input via N2 fixation and lower N losses due to emissions and probably in a higher N availability of digested manures in comparison to the same amounts of undigested biomass.  相似文献   

19.
The effect of nitrogen (N) supply through animal and green manures on grain yield of winter wheat and winter rye was investigated from 1997 to 2004 in an organic farming crop rotation experiment in Denmark on three different soil types varying from coarse sand to sandy loam. Two experimental factors were included in the experiment in a factorial design: (1) catch crop (with and without), and (2) manure (with and without). The four-course crop rotation was spring barley undersown with grass/clover – grass/clover – winter wheat or wheat rye – pulse crop. All cuttings of the grass–clover were left on the soil as mulch. Animal manure was applied as slurry to the cereal crops in the rotation in rates corresponding to 40% of the N demand of the cereal crops.Application of 50 kg NH4–N ha?1 in manure increased average wheat grain yield by 0.4–0.9 Mg DM ha?1, whereas the use of catch crops did not significantly affect yield. The use of catch crops interacts with other management factors, including row spacing and weed control, and this may have contributed to the negligible effects of catch crops. There was considerable variation in the amount of N (100–600 kg N ha?1 year?1) accumulated in the mulched grass–clover cuttings prior to ploughing and sowing of the winter wheat. This was reflected in grain yield and grain N uptake. Manure application to the cereals in the rotation reduced N accumulation in grass–clover at two of the locations, and this was estimated to have reduced grain yields by 0.1–0.2 Mg DM ha?1 depending on site. Model estimations showed that the average yield reduction from weeds varied from 0.1 to 0.2 Mg DM ha?1. The weed infestation was larger in the manure treatments, and this was estimated to have reduced the yield benefit of manure application by up to 0.1 Mg DM ha?1. Adjusting for these model-estimated side-effects resulted in wheat grain yields gains from manure application of 0.7–1.1 Mg DM ha?1.The apparent recovery efficiency of N in grains (N use efficiency, NUE) from NH4–N in applied manure varied from 23% to 44%. The NUE in the winter cereals of N accumulated in grass–clover cuttings varied from 14% to 39% with the lowest value on the coarse sandy soil, most likely due to high rates of N leaching at this location. Both NUE and grain yield benefit in the winter cereals declined with increasing amounts of N accumulated in the grass–clover cuttings. The model-estimated benefit of increasing N input in grass–clover from 100 to 500 kg N ha?1 varied from 0.8 to 2.0 Mg DM ha?1 between locations. This is a considerably smaller yield increase than obtained for manure application, and it suggests that the productivity in this system may be improved by removing the cuttings and applying the material to the cereals in the rotation, possibly after digestion in a biogas reactor.Cereal grain protein content was increased more by the N in the grass–clover than from manure application, probably due to different timing of N availability. Green-manure crops or manures with a relatively wide C:N ratio may therefore be critical for ensuring sufficiently high protein contents in high yielding winter wheat for bread making.  相似文献   

20.
Many studies have been conducted in examining the effects of N fertilizers on cereal yields and nitrogen (N) uptake, the effects of different kind of crop residues and their management practices on cereal yield, nitrogen uptake and simple N balance have not been studied extensively. We studied the effects of antecedent leguminous (white clover and field pea) and non-leguminous (perennial ryegrass and winter wheat) crop residues, each subjected to four different residue management practices (ploughed, rotary hoed, mulched and burned) on grain yield, nitrogen uptake by succeeding winter wheat crops, soil N mineralization and simple N balance. Grain yield and N uptake by the first wheat crop were significantly higher under leguminous than non-leguminous residues, following the order of white clover>pea>ryegrass>wheat. Grain yield under the mulched treatment was significantly lower than those of other management treatments due to lower plant population established. While N uptake was significantly lower under rotary hoed and mulched treatments as compared to other treatments, mulching had a positive residual effect on the grain yield of second wheat crop. Similar to grain yield, total soil N mineralization was greater under leguminous residues during the growing period of first wheat crop and was significantly correlated with C/N ratio of the residues. The calculated simple N balance showed that positive N balances occurred under white clover after one wheat crop when N inputs from only crop residue tops was considered. This also occurred even after two wheat crops when total N inputs from crop residues (tops+roots) were considered. However, with pea, the positive N balance occurred only after the first wheat crop when total N input from crop residues (tops+roots) were considered. These calculations demonstrated the important contribution of root-N to the N economy of the cropping system, which was largely ignored in most studies. The burning of residues showed no significant advantage over other residue management treatments. This was also evident from N balance calculations, which showed, in general, N balance was lower or more negative under residue-burned treatment as compared with other treatments. Overall, present results showed that it is beneficial to retain crop residues in the field, even though non-leguminous residues may cause substantial soil N immobilization initially reducing N availability to the first wheat crop, this N eventually became available to subsequent wheat crops and also increase the fertility of soils in the long-term. Thus, N inputs from crop residues are far more beneficial to the cropping system as compared to the burning of crop residues in the field or their removal from the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号