首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
×Festulolium ssp. are of particular interest as autumn‐saved herbage in the winter grazing system, but information concerning their performance in this low‐input system is not available. To this end, we examined dry matter (DM) yield and forage quality in winter of four different cultivars of ×Festulolium ssp. (×Festulolium pabulare, Festulolium braunii), either with festucoid or loloid attributes, compared with Festuca arundinacea Schreb. Furthermore, pre‐utilization (accumulation since June or July) and date of winter harvest (December or January) were varied examining the influence of different sward management. DM yield, crude protein, metabolizable energy (ME) (in vitro rumen fermentation technique), acid detergent fibre (ADF) and ergosterol concentration were determined. Within all years, the festucoid cultivars (mean 3.4 t ha?1) attained significant higher yields during winter than the loloid cultivars (mean 1.6 t ha?1), but their yields were comparable with F. arundinacea (mean 3.0 t ha?1). Crude protein was decisively influenced by the different yield levels of the cultivars resulting in higher values for the loloid cultivars. Energy concentrations decreased with later winter harvest, whereas ADF as well as ergosterol concentrations frequently increased from December to January. The greatest differences between festucoid and loloid cultivars were generally observed during severe winters. Obviously, the festucoid cultivars were better adapted to a utilization as autumn‐saved herbage than the cultivars with rather loloid attributes. However, the hybrids did not surpass F. arundinacea regarding yield and quality.  相似文献   

2.
J. De Jong 《Euphytica》1982,31(2):485-492
Summary Chysanthemum cultivars were grown in 4 experiments in the greenhouse and in the phytotron. The growing conditions in the greenhouse varied from 14 C, 60 J cm2 day-1 to 17 C. 431 J cm2 day-1, those in the phytotron from 12 to 455 J cm-2 day-1 at a temperature of either 14 or 20 C.Most cultivars responded differentially to light and/or temperature, but this was only measurable when large differences in light and/or temperature were imposed. Reducing the light level in a greenhouse by 50% does not bring out cultivar×light interactions. Such interactions may be pronounced however when the performance in summer is compared with that in winter. This is also reflected in the correlation coefficients. The correlations between summer and winter performance for number of flowers per stem and the number of days to flowering are non-significant, those for the 7 other traits measured were all significant.The occurrence of interactions does not preclude the possibility of breeding cultivars adapted to a wide range of light and temperature conditions. Appropriate selection procedures are discussed.  相似文献   

3.
The investigations were based on biennial field trials carried out at two locations comprising the factors location/previous crop, winter cereal genotype (rye cv. ‘Farino’,triticale cv. ‘Modus’, wheat cv. ‘Batis’) and production intensity level. One agronomical focus was to replace the mineral N‐supply due to its energetic relevance, by either the residues of legumes, or stillage, a processing residue containing organic N. The measurement included the crop yield ha?1, the bioethanol exploitation dt?1 and the bioethanol yield ha?1. The last was closely correlated to the grain yield and thus dominated by intensity level. Highest bioethanol yields with an average peak at 4022 l ha?1, always occurred at the highest intensity level. Bioethanol exploitation however, was mainly determined by the genotype. The cultivars showed significant exploitation and yield differences. An adequate bioethanol exploitation was observed with the wheat cv. Batis in contrast to diminished grain and bioethanol yields. Considering bioethanol exploitation and bioethanol yield, the triticale cv. Modus was the outstanding genotype. Despite high grain yields, the bioethanol yields of the rye cv. Farino stayed mean, because of a genotypic lowered bioethanol exploitation. Comparing the approaches of mineral nitrogen substitution, legume N was successful, whereas stillage fertilizing, according to the examined conditions, resulted in ample decreased grain and bioethanol yields ha?1.  相似文献   

4.
Spinach is a leafy vegetable that requires a high N fertilization to have a satisfactory yield and quality, in part because it has poor nitrogen use efficiency (NUE). Therefore, there is a need to breed for cultivars with an excellent NUE. To this end the genetic diversity for NUE-related traits was studied in a diverse set of commercial cultivars. This set was evaluated in a hydroponic system using the Ingestad model; the system was set at a relative growth rate of 0.14 and 0.18 g g?1 day?1 (low and high N, respectively). Experiments were performed at low and high plant density. Traits monitored for single plants included fresh and dry weight, leaf area, specific leaf area, dry weight ratio between root and shoot, and chlorophyll content. The high density experiment showed more genotypic variation for the observed traits than the low density one. Biomass production was considerably lower at low than at high N. Path analysis revealed that leaf area had the highest direct effect on NUE, while specific leaf area was an important trait determining variation in NUE at low N. Slow and fast growing genotypes were shown to use different strategies to utilize N, and these strategies are expressed differently at high and low N availability. This indicates that improving spinach for NUE is feasible using the analysed genotypes as source material, and different strategies can be targeted for adaptation of spinach cultivars to low N conditions.  相似文献   

5.
No information is available regarding the mineral content of autumn‐saved herbage during winter grazing under Central European conditions. Therefore, P, K, Na, Mg and Ca concentrations of autumn‐saved growths of Festuca arundinacea and Lolium perenne were analysed considering the potential influence of pre‐utilization (saved from June or July), date of winter harvest (December, January, February) and year (three winters). For all years date of winter harvest was the main source of variance, whereas date of preceding cut had no relevant effect on the mineral concentrations during winter. Already in December P [2.3 to 4.0 g kg?1 dry matter (DM)], Na (0.3 to 3 g kg?1 DM) and Mg (1.0 to 2.4 g kg?1 DM) concentrations were mostly below the required levels for ruminants. The lowest values were detected in February. K levels ranged between 6.6 g kg?1 DM in February and 23.4 g kg?1 DM in December; on average, K concentrations decreased about 10 g kg?1 DM with advancing winter. Ca concentrations (2.9 to 7.4 g kg?1 DM) hardly changed during winter. Related to higher growth rates of F. arundinacea before December, P and Ca concentrations were diluted, but regarding Mg, more wintergreen F. arundinacea reached higher values than L. perenne especially at the beginning of winter.  相似文献   

6.
Italian ryegrass (Lolium multiflorum Lam.) and perennial ryegrass (L. perenne L.) can be grown for seed and forage in cold winter regions provided the stand persists well over winter. Seed yield and plant characteristics during primary growth, and forage yield during regrowth, were determined for two Italian and one perennial ryegrass cultivars in Atlantic Canada. Establishment methods and dates included sowing ryegrass in cultivated soil alone or with barley in mid‐May and, after harvesting the barley crop, by sowing ryegrass following conventional or reduced cultivation and by no‐till drilling into barley stubble in mid‐August and early September. Despite some winterkill, particularly in Italian ryegrass, seed and forage yields were adequate in post‐establishment growing seasons. Seed yield for Italian ryegrass was greatest (1270 kg ha?1) when it was sown into cultivated soil in mid‐August and least (890 kg ha?1) when sown alone in May. Italian ryegrass yielded 15–17 % more seed when plots were established in mid‐August rather than in mid‐May or early September. Italian ryegrass cv. Lemtal had a greater density of fertile tillers (1030 m?2) in the sward than cv. Ajax (860 m?2) and its tiller density was greater when seeded into cultivated soil in September than in mid‐August. There were fewer spikelets per seed head for sowing Italian ryegrass with barley in May than for the other methods of establishment. Forage yield in regrowth was greater for Italian ryegrass cv. Ajax (2770 kg ha?1) than for cv. Lemtal (2480 kg ha?1). Seed yield of perennial ryegrass was greater when seeded in mid‐May than in mid‐August or early September. The seed yield of perennial ryegrass was greater when it was sown with barley in May and harvested for grain, than when it was sown alone or with barley harvested at late milk stage. The establishment methods for mid‐August and early September sowing had little effect on seed yield. However, the no‐till and reduced tillage methods resulted in a greater tiller density than sowing into the cultivated seedbed. Fertile tillers tended to be denser under reduced cultivation for sowing in August. Forage yield of perennial ryegrass regrowth was not influenced by the sowing method and timing. In conclusion, Italian and perennial ryegrasses produce adequate seed and forage regrowth under different establishment methods and timing. However, the poor persistence of Italian ryegrass may limit commercial production after the establishment year in Atlantic Canada.  相似文献   

7.
The common bean breeding program coordinated by Embrapa Arroz e Feijão released 50 new cultivars from 1984 to 2010. The aim of the present study was to estimate genetic progress in terms of seed yield and other agronomic traits achieved by the black-type common bean breeding program in Brazil over the 22-year period from 1985 to 2006. Two types of field experiments were performed to assess genetic progress. In regard to experiments on lines, the three best breeding lines from each of 11 evaluation cycles constituted 33 treatments. These evaluations were made in 20 environments and served to estimate progress in seed yield and seed size because these were the criteria applied in selecting the elite lines. Cultivar evaluations included nine cultivars recommended by Embrapa during the period under investigation, and the evaluations were established in 21 environments. These evaluations served to estimate improvements in reaction to angular leaf spot, plant architecture and tolerance to lodging because cultivars usually exhibit superior phenotypes for such characteristics. Evaluations were performed from 2008 to 2010. Estimated improvement in seed yield was 25.2 kg ha?1 or 1.1 % per year. Improvements were also found in tolerance to lodging (1.7 % per year) and 100-seed weight (0.65 % per year). There was no significant progress for the plant architecture and resistance to angular leaf spot traits.  相似文献   

8.
Defining a minimum set of phenotypic traits that can integrate ontogeny and structure of Brassica napus L. is required for breeding and selection of high yielding and adapted genotypes to the short growing season of the upper Midwest, USA. Forward phenomics was instrumental in striking a balance between accuracy, timing and speed of capturing multi-level, spatiotemporal data at different scales of integration. Quantitative and categorical data digitally recorded, measured or scored on whole canopies, single plants, single leaves, and single siliques; and on random mature seed samples of entries in a phenotyping nursery of B. napus were used to identify plant traits that can integrate the effects of time (ontogeny) and space (architecture) on oil%, and to develop a multilevel-multitrait protocol based on field and laboratory characterization of phenotypic and agronomic data while accounting for fixed and random sources of variation when interpreting components of phenotypic variance. Traits conferring tolerance to low temperatures during germination and early seedling growth included fast emergence, early vigor, early flowering combined with short duration of bolting-to-flowering, and early maturity. To approximate rapeseed yield potential in the upper Midwest, USA, genotypes with biomass?>?6.0 Mg ha?1, seed?>?3.5 Mg ha?1, oil?>?1.75 Mg ha?1 and protein yield?>?0.75 Mg ha?1 are envisioned. A subset of adaptive traits has been identified that can be combined in a selection index to develop a plant ideotype for B. napus.  相似文献   

9.
The role of exogenously applied phytohormone methyl jasmonate (MeJA) in counteracting the ultraviolet B (UV‐B) stress in barley seedlings was investigated. Barley seedlings (Hordeum vulgare L., cv. Alfa) 4 days old were supplied with 5 × 10?5 m MeJA through the roots for 3 days and then exposed for 2 days for 5 h per day to UV‐B (312 nm, biological effectiveness of UV‐B radiation 28.8 kJ m?2day?1). The rate of 14CO2 fixation, PSI and PSII activities and chlorophyll content decreased, but flavonoids, H2O2, malondialdehyde, proline and UV‐B induced compounds increased after UV‐B treatment. The rate of photosynthetic oxygen evolution was more strongly inhibited by UV‐B‐irradiation than PSI and PSII efficiency. MeJA itself increased the content of free proline, which acts as a stress protector due to its radical scavenging ability. Increased superoxide dismutase, catalase and peroxidase (POX) activities in the leaves and in the roots and the POX isoforms induction revealed the MeJA involvement in plant tolerance to oxidative stress caused by UV‐B irradiation. It was shown that pre‐treatment with MeJA counteracted UV‐B stress. Therefore, it was suggested that MeJA could acts as a mediator in plant defense responses to UV‐B irradiation by enhancing the activity of antioxidant system and free radical scavenging capability of plant cells.  相似文献   

10.
Elevated ultraviolet‐B (UV‐B; between 290 and 320 nm) radiation, because of depletion of the stratospheric ozone layer, is one of the major environmental factors influencing plant metabolic processes and yield. The southern US rice cultivars contribute greatly towards US rice production, but the effects of elevated UV‐B radiation on these cultivars are not well known. The objective of this study was to determine the effects of elevated UV‐B radiation on leaf photosynthetic rate (Pn), membrane stability, pollen viability, phenolic concentration and yield of eight commercially popular southern US rice cultivars (five inbred cultivars and three hybrids). Plants were grown in a temperature‐controlled greenhouse in Beaumont, TX, USA, and were exposed to UV‐B radiation of 0, 8 or 16 kJ m?2 day?1 for 90 days. For most of the cultivars, plants grown under 8 or 16 kJ UV‐B radiation showed significant decreases in Pn, membrane stability, pollen viability, and yield compared with the plants grown under an UV‐B‐free environment, whereas there was a significant increase in leaf phenolic concentration under 16 kJ UV‐B radiation. The hybrid ‘Clearfield XL729’ performed best among the selected southern US rice cultivars under 16 kJ UV‐B radiation.  相似文献   

11.
12.
There is a lack of knowledge about factors contributing to the chilling‐induced alleviatory effects on growth of plants under salt stress. Thus, the primary objective of the study was to determine whether chilling‐induced changes in endogenous hormones, ionic partitioning within shoots and roots and/or gaseous exchange characteristics is involved in salt tolerance of two genetically diverses of wheat crops. For this purpose, the seeds of two spring wheat (Triticum aestivum) cultivars, MH‐97 (salt intolerant) and Inqlab‐91 (salt tolerant) were chilled at 3°C for 2 weeks. The chilled, hydroprimed and non‐primed (control) seeds of the two wheat cultivars were sown in both Petri dishes in a growth room and in the field after treatment with 15 dS m?1 NaCl salinity. Chilling was very effective in increasing germination rate and subsequent growth when compared with hydropriming and control under salt stress. Results from field experiments clearly indicated the efficacy of chilling over hydropriming in improving shoot dry biomass and grain yield in either cultivar, particularly under salt stress. This increase in growth and yield was related to increased net photosynthetic rate, greater potential to uptake and accumulate the beneficial mineral elements (K+ and Ca2+) in the roots and reduced uptake and accumulation of toxic mineral element (Na+) in the shoots of both wheat cultivars when grown under salt stress. Salt‐stressed plants of both wheat cultivars raised from chilled seed had greater concentrations of indoleacetic acid, abscisic acid, salicylic acid and spermine when compared with hydropriming and control. Therefore, induction of salt tolerance by pre‐sowing chilling treatment in wheat could be attributed to its beneficial effects on ionic homeostasis and hormonal balance. The results presented are also helpful to understand the chilling‐induced cross adaptation of plants in natural environments. Moreover, efficacy of pre‐sowing chilling treatment over hydropriming suggested its commercial utilization as a low risk priming treatment for better wheat crop production under stressful environments.  相似文献   

13.
Relationships between lint yield and within-boll yield components are important for genetic improvement of lint yield in cotton (Gossypium hirsutum L.) cultivars. F2 plants derived from crosses between germplasm lines and high yielding cultivars were analyzed to determine the contributions of within-boll yield components to lint yield and to select parents with desirable combining ability for multiple within-boll yield components. Forty-five F2 hybrids were planted at two field sites in 2010 and 2011 with 4 and 3 replicates, respectively. There were a total of six yield components analyzed including lint percentage (LP), seed number per boll, lint weight per seed (LW_S), seed surface area per seed, lint weight per unit seed surface area (LW_SA), and lint number per unit seed surface area (LN_SA). The contributions of these yield components to lint yield were analyzed by commonality analysis that separated the contributions to lint yield into the unique contributions of single yield components and the common contributions of the single yield components with one or more other yield components. The unique contributions of the six yield components to lint yield ranged from 1.6 to 21 % of total variation for lint yield in the 2-year experiments. The greatest common contributions to lint yield among all combinations of the six yield components were identified for a combination of four components, LP, LW_S, LW_SA, and LN_SA with 67 and 44 % of the total variation of lint yield in 2010 and 2011, respectively. Results suggest that all four of these yield components should be considered simultaneously in breeding for genetic improvement of lint yield. The germplasm line SP225 was detected as a good combiner with positive general combining ability (GCA) for LP (1.4 %), LW_SA (0.03 mg mm?2), and LN_SA (14.3 no mm?2), and favorable GCA for fineness (?3.1 mg km?1).  相似文献   

14.
Changing climatic conditions in north-western Europe are accompanied by occasional extreme weather conditions. This requires breeding of winter oilseed rape cultivars which are resilient to diverse abiotic stress factors, e.g. frost, drought and heat. The degree of vernalization requirement of winter oilseed rape has been found to be related to frost tolerance and winter hardiness. Shoot elongation before winter in particular has been identified as one decisive factor for frost tolerance in winter oilseed rape. However, the relationship between vernalization requirement and shoot elongation before winter is not known. In the present study the genetic variation for shoot elongation before winter and vernalization requirement of 19 genetic diverse breeding lines and cultivars were analyzed. Autumn and spring sown field experiments in multiple environments were performed to determine shoot elongation before winter and vernalization requirement, respectively. In spring sown field experiments, genotypes with a low vernalization requirement were characterized by the occurrence of long bolting plants with flower buds. Large and significant genotypic variation was found for shoot length in the autumn sown and spring sown environment. Broad sense heritability was quite high for shoot length in the spring sown environment (h2?=?97%), whereas it was only of medium size for shoot length before winter (h2?=?62%). Although the correlation between shoot length before winter and shoot length in the spring sown environment was positive (Spearman’s rank rS?=?0.48*), a number of genotypes with reduced shoot elongation before winter and low vernalization requirement were identified. Results indicate that genotypes with a reduced shoot elongation before winter independent of their vernalization requirement can be selected in breeding programs.  相似文献   

15.
L. Smeets 《Euphytica》1977,26(3):655-659
Summary Since 1950 growth of lettuce for winter production has been improved considerably by breeding. It has been investigated whether this improvement must be attributed to a more rapid leaf production, to larger leaves or to both. To this end the differences in growth between the cultivars Meikoningin. Proeftuin's Blackpool, Rapide, Deci-Minor and Valentine were analysed at a range of temperatures (10, 14, 17 and 20°C) under natural light conditions in autumn. The last four cultivars represent successive improvements in growth of lettuce for winter production.From the experiments it can be concluded that the improvement in growth of lettuce for winter production was initially brought about through increasing the rate of leaf production and there-after through increasing leaf size. At the same time the heat requirement for optimal growth has become higher.  相似文献   

16.
In roses the problems associated with inter-specific breeding include low percent of seed set and lack or low percent of seed germination. Low seed set is usually due to non-amenable parents, which may have different ploidy level or other divergences that result in embryo abortion at early stages of development. Lack of seed germination is mostly attributed to the mechanical restrictions such as thick pericarp or the regulatory mechanisms such as the hormonal control of dormancy. The aims of the present investigation were to optimize in vitro embryo germination technique in rose and study the ploidy of progenies resulted from interploidy hybridizations. To optimize embryo germination, seeds were surface sterilized, whole pericarp and testa were removed and embryos were placed on half strength Murashige and Skoog media supplemented with different concentrations (0, 1, 2.5, 5 mg l?1) of benzyladenine (BA) in combination with different concentrations (0, 0.5, 1, 1.5 mg l?1) of gibberellic acid. The maximum percent of in vitro embryo germination (93.40 %) was observed on medium containing 2.5 mg l?1 BA. In order to select the most fertile seed parents which could be used in interspecific hybridization, 11 commercial rose cultivars (R. × hybrida) were employed in 36 reciprocal crosses. Three rose cultivars including ‘Golden Celebration’, ‘Tess of the d’Urbervilles’ and ‘Molineux’ were selected as the maternal parents. The selected seed parents were employed in crosses with one rose species from Gallicanae section [R. damascena (2n = 4x)] and four rose species form Caninae section [R. orientalis (2n = 5x), R. iberica (2n = 5x) R. canina (2n = 5x) and R. pulverulenta (2n = 6x)]. The highest percent of hip set and in vitro embryo germination were observed in crosses between tetraploid rose cultivars and R. damascena. In all of the crosses with R. canina, the percent of hip and seed set was 0 %. However, in the crosses between tetraploid rose cultivars and other pentaploid or hexaploid rose species from Caninae section both triploid and tetraploid offsprings were attained. Future morphological analysis of the progenies is necessary to show to what extent progenies demonstrate the characteristics of the pollen parents from the Caninae section. Nevertheless, progenies from interploidy hybridizations would be beneficial in future breeding programs in order to expand the relatively small gene pool of roses.  相似文献   

17.
A relay cropping system of cereals, whereby winter wheat (Triticum aestivum L.) was undersown in two‐row spring barley (Hordeum distichum L.), was established in a field trial in central Sweden in 1999 and continued until 2000. The purpose of the study was to examine crop and weed responses to different plant densities of the undersown winter crop. Winter wheat was sown at four seed rates (187, 94, 47 and 0 kg ha?1) immediately after the sowing of barley. Barley was harvested in the first autumn after sowing and winter wheat in the second autumn. The grain yield of barley was not affected by the seed rate of wheat, and averaged 4580 kg ha?1. Winter wheat did not vernalize during the first growing season but remained at the vegetative stage. The grain yield of wheat was 1990 kg ha?1 for the lowest and 5610 kg ha?1 for the highest seed rate of wheat. Whilst the undersowing process itself stimulated weed emergence in this experiment, increasing the undersowing seed rate reduced the population of perennial weeds by 40–70 %. In the second growing season, the total biomass of weeds was 66 % higher at the highest seed rate compared with the lowest seed rate.  相似文献   

18.
Nitrogen management strategies have been investigated for winter wheat grown under humid Mediterranean conditions, in which a global N recommendation is adapted to the specific requirement of each location and season by mean of a chlorophyll meter. Application of N fertilizers is split in three topdressings, and additional applications are justified mainly, when seeking for grain quality. We evaluated the role of the chlorophyll meter to: (i) identify sites in which application of a third dressing increases yield; (ii) decide if a supplemental N application would increase grain N concentration; (iii) predict wheat yield and grain N concentration at harvest. The meters were tested over a 6 year period on 24 N response experiments located in Navarra (Spain). Experiments were sown with winter wheat (Triticum aestivum L.), cv. Soissons or cv. Marius. Readings with two chlorophyll meters, N-Tester® (Hydro-Agri) or SPAD-502® (Minolta), were carried out at different growth stages. The relationship of relative yield and grain N concentration with chlorophyll meter readings, either absolute or normalized, was studied by mean of a quadratic model and a Cate–Nelson statistical procedure. Readings at GS-37 were able to identify treatments that would show yield response to a third N fertilizer application 91% of the cases. Using normalized readings allowed to compare between different cultivars and chlorophyll meters, and reduced error. For cv. Soissons, when readings at GS > 45 were lower than 600, grain N concentration was below 2.1%, and N fertilization is needed to increase it; when readings were above 700, grain N concentration was over 2.6%. The error in the prediction of the yield and the grain N concentration with readings after GS-55 was low; therefore, chlorophyll meters could be useful tools for planning harvest and storage necessities.  相似文献   

19.
Maize is the major staple food in southern Africa with human consumption averaging 91 kg capita?1 year?1, and normal maize is nutritionally deficient in two essential amino acids: tryptophan and lysine. Despite the development of quality protein maize (QPM) with high tryptophan and lysine, stunting and kwashiorkor remain high in sub-Saharan Africa due to lack of high yielding and adapted QPM varieties. This study aimed at evaluating a new generation of QPM varieties for yield and related agronomic traits. Before the QPM varieties were validated on-farm, they were simultaneously selected on-station under five different management conditions. In the 2014/2015 season, 10 elite QPM varieties were selected from on-station trials based on high grain yield and stability, and were compared with the best commercial check varieties on-farm. During the 2015/2016 season, some poorly performing QPM varieties were dropped while new ones were added, resulting in 12 elite QPM varieties being evaluated on-farm. Analysis of variance for the 2014/2015 season showed non-significant hybrid × management condition interaction. Mean grain yields across management conditions ranged from 1.5 to 4 t ha?1 and were higher under mild stress (2.3–5.5 t ha?1) compared to random stress conditions (1.1–2.9 t ha?1). Broad sense heritability estimates were low to moderate (11–69%), and thus could still permit effective selection of better genotypes. Yield advantage ranged from 12 to 25% across the 2 years, suggesting effective genetic gains in QPM breeding. QPM hybrids CZH132044Q, CZH142238Q and CZH142236Q were stable and high yielding. Promotion of such QPM hybrids may help reduce protein energy malnutrition.  相似文献   

20.
Chemical regulation using plant growth regulators has proved to be potentially beneficial in water‐saving agriculture. This experiment was conducted with winter wheat (Triticum aestivum L. cv. ‘Jingdong 6’) to study the effect of chemical regulation on alleviation of water deficit stress during the grain filling stage. Uniconazole, a plant growth regulator, was foliar sprayed at 85 % (adequate irrigation) and 60 % (deficit irrigation) field capacity. Results showed that the distribution of 3H‐H2O in roots and flag leaf, characteristics of vascular bundle in primary roots and internode below spike, roots activity, transpiration rate and stomatal conductance of flag leaf were negatively affected by deficit irrigation after flowering. Foliar spraying at the early jointing stage with 13.5 gha?1 uniconazole was able to relieve and compensate for the harmful effects of deficit irrigation. Both the area of vascular bundle in primary roots and internode below the ear were increased by uniconazole, while root viability and their ability to absorb and transport water were increased. In the flag leaf, stomatal conductance was reduced to maintain the transpiration rate and water use efficiency (WUE) measured for a single wheat plant was higher. Uniconazole increased WUE by 25.0 % under adequate and 22 % under deficit irrigations. Under adequate irrigations, the 14C‐assimilates export rate from flag leaf in 12 h (E12h) was increased by 65 % and 36 % in early and late filling stages, while under deficit irrigations, the E12h of uniconazole‐treated plants exceeded that of control plants by 5 % and 34 % respectively. Physiological damages caused by water deficiency during the grain filling stage of wheat was alleviated by foliar spraying with uniconazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号