首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
螺虫乙酯及其代谢物在梨和土壤中的残留及消解动态   总被引:1,自引:0,他引:1  
为建立梨和土壤中螺虫乙酯及其代谢物螺虫乙酯-烯醇-糖苷 (S-glu)、螺虫乙酯-酮-羟基 (S-keto)、螺虫乙酯-烯醇 (S-enol) 和螺虫乙酯-单羟基 (S-mono) 的残留分析方法,以及明确螺虫乙酯在梨中的残留规律,采用体积分数为1%的乙酸乙腈为提取剂,以N-丙基乙二胺 (PSA) 和无水硫酸镁为分散净化剂的QuEChERS方法,利用超高效液相色谱-串联质谱 (UPLC-MS/MS) 在选择反应监测模式 (SRM) 下检测,外标法定量。结果显示:螺虫乙酯在0.0005~0.1 mg/L范围内,S-glu在0.005~0.5 mg/L范围内,S-keto、S-enol和S-mono在0.0005~0.5 mg/L范围内各化合物的质量浓度与质谱峰面积间均具有良好的线性关系 (R2 ≥ 0.999);在0.005~0.7 mg/kg添加水平下,螺虫乙酯及其代谢物在梨果中的平均回收率为84%~109%,相对标准偏差 (RSD) 为1.2%~3.3%;在土壤中平均回收率为86%~102%,RSD为1.1%~3.6%。最低检测浓度 (LOQ)为5 μg/kg。该方法检测速度快、灵敏度高、重现性好,适用于梨和土壤中螺虫乙酯及其代谢物残留的快速检测和确证。按推荐剂量进行田间施药,当梨果成熟采收时,螺虫乙酯及其代谢物在梨中的残留量之和在0.023~0.056 mg/kg之间,低于中国规定的最大残留限量标准 (0.7 mg/kg);在土壤中的残留量在0~0.015 mg/kg之间。螺虫乙酯及其代谢物在梨果和土壤中的消解动态均符合一级反应动力学方程,半衰期分别为为12.4 d和7.1 d。田间残留试验结果表明,螺虫乙酯用于梨树害虫防治是安全的。  相似文献   

2.
为研究噻虫嗪及其代谢物在茶树菇及其菌棒上的消解动态及最终残留量规律,以30%噻虫嗪悬浮剂为供药试剂开展田间试验,建立液相色谱-串联质谱残留检测分析方法,对茶树菇及其菌棒上噻虫嗪及其代谢物噻虫胺的消解动态规律和最终残留进行检测分析。结果表明:在0.01~0.5 mg/L和0.004~0.2 mg/L线性范围内,噻虫嗪及其代谢物噻虫胺的质量浓度与其峰面积间线性关系良好,R2均>0.999,在茶树菇和菌棒中的平均回收率为96%~103%,相对标准偏差为0.7%~4.2%。噻虫嗪在茶树菇上消解过程符合一级动力学模型,半衰期分别为1.77 d。用药后3~10 d,噻虫嗪在菌棒中的残留量主要集中在上段,噻虫胺在茶树菇和菌棒上的残留量均<定量限。30%噻虫嗪悬浮剂以有效成分0.009、 0.013 5 g a.i./m2的剂量施药2~3次,用药10 d后噻虫嗪在茶树菇中的残留量近似于欧盟规定噻虫嗪在真菌上的最大允许残留限量0.01 mg/kg。  相似文献   

3.
氯虫苯甲酰胺在水稻及稻田环境中的残留动态   总被引:2,自引:0,他引:2  
采用田间试验方法,研究了氯虫苯甲酰胺在稻田水、土壤和水稻植株中的消解动态,测定了氯虫苯甲酰胺在水稻和土壤中的最终残留量。稻田水和土壤样品采用丙酮提取,水稻样品用乙腈溶液浸泡提取,经玻璃层析柱净化,HPLC紫外分析测定。结果表明,稻田水、土壤、水稻植株、谷壳、糙米中氯虫苯甲酰胺添加浓度为0.005~1.0mg/kg时,平均回收率为85.06%~95.83%,变异系数在2.08%~5.77%之间。方法的最低检测浓度为:稻田水0.005mg/kg,土壤0.01mg/kg,水稻植株0.02mg/kg,谷壳0.02mg/kg,糙米0.01mg/kg。氯虫苯甲酰胺在稻田水、土壤和水稻植株中的消解动态均符合一级动力学方程,半衰期分别为3.1~5.0d、6.6~9.0d、8.0~9.9d。以33.86g/hm2和50.80g/hm2间隔14d施用氯虫苯甲酰胺2次和3次,末次施药21d后氯虫苯甲酰胺的最高残留量为:土壤0.217mg/kg,水稻植株0.879mg/kg,谷壳0.389mg/kg,糙米0.018mg/kg。氯虫苯甲酰胺在糙米中的残留量低于我国和食品法典委员会(CAC)及欧盟的最大残留限量(MRL)标准。  相似文献   

4.
建立了QuEChERS-液相色谱-质谱联用 (LC-MS/MS) 同时测定铁皮石斛茎和叶中氯虫苯甲酰胺和吡唑醚菌酯残留量的分析方法,并采用该方法研究了这2种农药在铁皮石斛中的消解动态及最终残留量。样品经乙腈提取,用N-丙基乙二胺 (PSA)、C18和石墨化碳 (PC) 净化。正离子电离,多反应监测模式,LC-MS/MS测定,外标法定量。结果表明:在0.10~60 mg/kg添加水平下,氯虫苯甲酰胺在铁皮石斛茎和叶中的平均回收率为74%~90%,相对标准偏差 (RSD) 为3.2%~4.1%;吡唑醚菌酯在铁皮石斛茎和叶中的平均回收率为75%~104%, RSD为1.7%~4.4%。样品中氯虫苯甲酰胺和吡唑醚菌酯的定量限 (LOQ) 均为 0.1 mg/kg。氯虫苯甲酰胺和吡唑醚菌酯在铁皮石斛中消解较慢,120 d时,氯虫苯甲酰胺在铁皮石斛茎和叶中的降解率分别为40%和72%,吡唑醚菌酯在铁皮石斛茎和叶中的降解率分别为80%和94%。吡唑醚菌酯在铁皮石斛叶中的消解半衰期为38.1 d。5%氯虫苯甲酰胺悬浮剂按有效成分37.5 g/hm2施药1~2次,施药间隔为7 d,当采收间隔期为30 d时,氯虫苯甲酰胺在茎和叶中的残留量均小于3 mg/kg。25%吡唑醚菌酯水分散粒剂按有效成分187.5 g/hm2施药2~3次,施药间隔为7 d,当采收间隔期为90 d时,吡唑醚菌酯在茎和叶中的残留量均小于8 mg/kg。  相似文献   

5.
为了筛选防治芹菜上重要害虫的替代药剂,在上海市及银川市开展5%吡虫啉颗粒剂、0.5%阿维菌素颗粒剂及5%氯虫苯甲酰胺悬浮剂在芹菜上的田间试验,通过液相色谱-串联质谱法检测3种农药在芹菜上的残留量,并分别对3种农药进行膳食暴露风险评估。结果表明,5%吡虫啉颗粒剂、0.5%阿维菌素颗粒剂及5%氯虫苯甲酰胺悬浮剂分别以推荐剂量施用于芹菜后,收获期吡虫啉及阿维菌素在芹菜上最大残留量分别为0.97 mg/kg及0.01 mg/kg,氯虫苯甲酰胺安全间隔期内(1 d)在芹菜上的最大残留量为5.24 mg/kg,均低于其在芹菜上的最大残留限量值。中国居民摄入吡虫啉、阿维菌素、氯虫苯甲酰胺的慢性暴露风险(%ADI)最大值为5.17%,急性暴露风险(%ARfD)最大值为11.20%,均远低于100%,膳食暴露风险低。结果表明吡虫啉、阿维菌素、氯虫苯甲酰胺可替代高毒农药用于芹菜上关键虫害的防治。  相似文献   

6.
采用QuEChERS及固相萃取样品前处理方法,结合液相色谱-三重四极杆串联质谱技术(LC-MS/MS),以负离子扫描和多反应监测模式(MRM),建立了菠菜、土壤及水体中螺虫乙酯及4种代谢物(B-enol、B-keto、B-mono和B-glu)残留的检测方法。通过对质谱检测条件的优化表明,以乙腈-0.5%甲酸水溶液作为流动相,采用梯度洗脱时,色谱分离度及灵敏度最好。通过对样品前处理条件的考察,发现选用0.1%甲酸-乙腈溶液作为提取溶剂,经50 mg的m(PSA):m(GCB)=1:1净化处理后,在0.05、0.5和1 mg/kg添加水平下,螺虫乙酯及4种代谢物在菠菜中的回收率为81%~103%,相对标准偏差(RSD)为1.7%~7.9%;在土壤样品中的回收率为82%~98%,RSD为1.9%~7.6%。采用NH2柱作为固相萃取柱,用10 mL二氯甲烷洗脱,在0.005、0.05和0.5 mg/L添加水平下,螺虫乙酯及4种代谢物在水体中的回收率为82%~95%,RSD为1.5%~6.2%。在0.002~1 mg/L范围内,螺虫乙酯及4种代谢物的质量浓度与对应的峰面积间呈现良好的线性关系,r在0.996 7~0.999 7之间。检出限(S/N=3)分别为螺虫乙酯(0.000 2~0.000 3 mg/kg),B-enol(0.000 1~0.000 3 mg/kg),B-keto(0.000 4~0.000 6 mg/kg),B-mono(0.000 4~0.000 7 mg/kg),B-glu(0.000 2~0.000 6 mg/kg);定量限(S/N=10)分别为螺虫乙酯(0.000 6~0.001 mg/kg),B-enol(0.000 3~0.001 mg/kg),B-keto(0.001 2~0.001 6 mg/kg),B-mono(0.001 2~0.001 9 mg/kg),B-glu(0.000 6~0.001 3 mg/kg)。方法分析结果符合农药残留检测要求,适用于菠菜、土壤及水体中螺虫乙酯及4种代谢物残留的同时检测。  相似文献   

7.
氯虫苯甲酰胺在甘蔗及土壤中的残留消解动态   总被引:1,自引:0,他引:1  
建立了氯虫苯甲酰胺在甘蔗和土壤中残留的高效液相色谱检测方法,应用该方法对氯虫苯甲酰胺在甘蔗和土壤中的残留消解规律进行了研究。样品用乙腈提取,经Florisil固相萃取柱及N-丙基乙二胺(PSA)净化,紫外检测器检测,外标法定量。结果表明:当添加水平为0.05~2 mg/kg时,氯虫苯甲酰胺在甘蔗植株地上部分(包括茎秆和叶片)、茎秆(去除叶片后的地上至肥厚带部位)和土壤中的平均回收率为77%~97%,相对标准偏差(RSD)为3.4%~11.6%。氯虫苯甲酰胺在3种基质中的最小检出量(LOD)均为0.2 ng,最低检测浓度(LOQ)均为0.05mg/kg。两年两地的田间残留试验结果表明:0.4%氯虫苯甲酰胺颗粒剂在甘蔗下种时一次沟施后覆土,以有效成分用量120和180 g/hm2施药时,在土壤中的原始沉积量在1.18~3.57 mg/kg之间,半衰期为12.4~18.2 d;成熟时采收,甘蔗茎秆中氯虫苯甲酰胺的残留量低于0.05 mg/kg。参照我国制定的甘蔗上氯虫苯甲酰胺的临时最大残留限量(TMRL)值0.05 mg/kg,按照推荐剂量及推荐剂量的1.5倍分别施药1次,成熟时采收甘蔗是安全的。  相似文献   

8.
采用高效液相色谱-串联质谱 (HPLC-MS/MS) 检测技术,建立了吡唑醚菌酯及其代谢物 BF-500-3 在龙眼中残留分析方法,并依据“农作物中农药残留试验准则”,开展了30%吡唑醚菌酯悬浮剂 (SC) 在广东省广州市和云南省玉溪市两地龙眼上的田间残留试验,研究了吡唑醚菌酯及其代谢物 BF-500-3 在龙眼中的降解和转化规律。样品采用乙腈提取,经PSA和C18吸附剂净化,HPLC-MS/MS检测分析。结果表明:在0.001、0.1及2 mg/kg添加水平下,吡唑醚菌酯和 BF-500-3 在龙眼中的平均回收率为84%~96%,相对标准偏差 (RSD) 为3.8%~6.7%,检出限 (LOD) 为0.25 × 10?3 mg/kg,定量限 (LOQ) 为0.001 mg/kg。田间试验结果显示:采用30%吡唑醚菌酯SC于龙眼初果期开始施药,施药剂量为有效成分375 mg/kg,施药3~4次,施药间隔7~10 d条件下,距末次施药后5、7、10 d分别取样测定,龙眼中吡唑醚菌酯及其代谢物 BF-500-3 的残留量分别为0.11~0.72和0.011~0.071 mg/kg。研究结果可为指导吡唑醚菌酯在田间的科学合理使用及制定其在龙眼上的最大残留限量 (MRL) 提供参考。  相似文献   

9.
氯虫·噻虫嗪在芥蓝中的残留消解动态研究   总被引:4,自引:0,他引:4  
对氯虫·噻虫嗪SC(300 g/L)在芥蓝中的残留消解动态进行了研究。结果表明,按照推荐剂量的2倍剂量(60mL/667m2)施药,氯虫苯甲酰胺和噻虫嗪在芥蓝中的原始沉积量分别为3.648 0 mg/kg和8.347 7 mg/kg,残留消解方程分别为Ct=4.198e-0.273 t和Ct=7.589e-0.424 6 t,半衰期分别为2.5 d和1.6 d。施药后21 d氯虫·噻虫嗪残留量降解至0.01 mg/kg以下。  相似文献   

10.
螺虫乙酯在染毒雄性大鼠体内的分布与代谢   总被引:2,自引:2,他引:0  
建立了采用超高效液相色谱-串联质谱仪(UPLC-MS/MS)检测不同动物样品中螺虫乙酯及其主要代谢物残留量的方法,并研究了螺虫乙酯在大鼠体内的吸收与代谢。样品中螺虫乙酯及其主要代谢物经甲醇提取及C18固相萃取(SPE)柱净化后,用UPLC-MS/MS检测。结果显示,所建立方法快速、灵敏,每个样品上机检测仅需3 min,方法的最低检出浓度(LOQ)为0.005 mg/kg。对按照每千克体重每日250 mg剂量染毒28 d后的大鼠体内螺虫乙酯残留量的检测结果表明:螺 虫乙酯在睾丸、肝脏、肺、肾、心脏、血浆等器官和组织中的残留量较低,平均在0.012~0.025 mg/kg 之间,且分布差异不显著,而脂肪和肌肉中螺虫乙酯的残留量显著低于睾丸和肝脏中的残留量(P P 肾>血浆>肺>心脏>睾丸>脂肪>肌肉。  相似文献   

11.
采用高效液相色谱-串联质谱(HPLC-MS/MS)技术,结合改良的QuEChERS法,建立了同时测定荔枝中氯虫苯甲酰胺、溴氰虫酰胺及代谢物J9Z38残留的分析方法.样品用乙腈提取,以N-丙基乙二胺(PSA)和十八烷基键合硅胶(C18)组合吸附剂净化,采用C18反相色谱柱分离,以V(甲酸水溶液):V(乙腈)=15:85为...  相似文献   

12.
采用高效液相色谱-串联质谱仪(HPLC-MS/MS)建立了猕猴桃、黄瓜、苹果和葡萄4种果蔬中噻苯隆残留的分析方法。样品经乙腈提取,N-丙基乙二胺(PSA)净化,HPLC-MS/MS测定。结果表明:在0.01~1 mg/L范围内,不同基质中噻苯隆的峰面积与其质量浓度间呈良好线性关系,决定系数均大于0.99;在0.01、0.05和0.5 mg/kg添加水平下,4种果蔬基质中噻苯隆的平均回收率为87%~102%,相对标准偏差(RSD)为0.8%~2.0%;方法定量限(LOQ)为0.01 mg/kg。该方法操作简单、高效、经济,准确度和精密度均满足残留分析的要求,适用于噻苯隆的残留检测。  相似文献   

13.
为了评估甲基硫菌灵在猕猴桃上使用的安全性,采用QuEChERS-超高效液相色谱-串联质谱分析方法,对甲基硫菌灵及其代谢物多菌灵在猕猴桃上的残留量进行了分析,明确了其消解规律及半衰期,通过进行膳食摄入风险评估,以推荐甲基硫菌灵在猕猴桃上的最大残留限量 (MRL),并对其代谢物多菌灵的残留量进行了安全性评价。结果表明:在0.01、0.1和1.0 mg/kg 3个添加水平下,甲基硫菌灵的回收率为85%~102%,相对标准偏差 (RSD) 为1.0%~7.1%;多菌灵的回收率为86%~101%,RSD为2.1%~5.2%;两者的定量限均为0.01 mg/kg。甲基硫菌灵在猕猴桃上的消解符合一级反应动力学方程,半衰期为10.1~10.5 d,属易消解农药。70%甲基硫菌灵可湿性粉剂在猕猴桃上按照推荐剂量及1.5倍推荐剂量 (875和1 166.7 mg/kg) 分别施药3次和4次,推荐采收间隔期为21 d,膳食风险商为78.7%,推荐MRL值为5 mg/kg,该结果通常不会对一般人群健康产生不可接受的风险。依据GB 2763多菌灵在猕猴桃上的MRL值0.5 mg/kg,代谢物多菌灵存在较大的超标风险。建议有关部门制定甲基硫菌灵在猕猴桃上的MRL值,并重新评估多菌灵在猕猴桃上的MRL值。  相似文献   

14.
建立了高效液相色谱-串联质谱(HPLC-MS/MS)测定人参中仲丁灵残留的分析方法,并研究其在人参中的最终残留量与消解规律。样品经乙腈提取,NH2固相萃取柱净化,液相色谱-串联质谱仪检测,外标法定量。结果表明:在0.002~0.5 mg/L内,仲丁灵的质量浓度与对应的峰面积间线性关系良好,鲜人参和干人参在0.01、0.05和0.5 mg/kg,人参植株和人参土壤在0.01、0.05、0.5和10 mg/kg添加水平下,仲丁灵的回收率为93%~108%,相对标准偏差为0.60%~6.2%。仲丁灵在人参植株和土壤中的半衰期为10.81~18.91 d,在鲜人参、干人参、人参植株和人参土壤中的最终残留量分别为相似文献   

15.
为评估桃中吡唑醚菌酯和戊唑醇残留的膳食风险,开展了8个典型地域的规范残留试验,研究了收获期2种农药残留物在桃中的最终残留。利用高效液相色谱-三重四极杆串联质谱仪 (HPLC-MS/MS),通过改进,建立了吡唑醚菌酯和戊唑醇在桃中残留的分析方法。结果表明:在0.01~4.0 mg/L质量浓度范围内,吡唑醚菌酯和戊唑醇的进样浓度与峰面积之间具有良好线性关系(R2≥0.9906)。添加水平为0.01~4.0 mg/kg时,桃中吡唑醚菌酯的回收率范围为88%~92%,相对标准偏差 (RSD) 为5.6%~18.7%,戊唑醇的回收率范围为96%~106%,RSD为0.8%~13.2%。吡唑醚菌酯和戊唑醇在桃全果中的半衰期分别为7.9~13.9 d和5.4~8.9 d;在桃全果中的残留中值 (STMR) 分别为0.037和0.053 mg/kg,最高残留值 (HR) 分别为0.16和0.24 mg/kg。距末次施药后28 d,桃中吡唑醚菌酯和戊唑醇残留量对风险商 (RQ) 的贡献率 (RQc) 分别为0.02%和0.03%,说明通过桃摄入的吡唑醚菌酯和戊唑醇对我国一般人群产生的长期膳食暴露风险较低。对于短期膳食暴露风险,吡唑醚菌酯和戊唑醇的国家估算短期摄入量 (NESTI) 分别占急性参考剂量 (ARfD) 的0.4%和2%,对于1~6岁儿童分别占2%和4%,短期膳食暴露风险亦处于可接受水平。基于本次规范残留试验结果,总体上可认为,严格按照良好农业操作规范和标签推荐的方式施用,吡唑醚菌酯和戊唑醇在桃树上使用的长期和短期膳食暴露风险均是可接受的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号