首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为了评价桃生长后期使用农药的安全性,以桃早熟品种‘金陵黄露’为材料,分别在桃果收获前7和14 d,按最高推荐剂量及2倍最高推荐剂量混合施用9种农药,包括4种杀虫剂 (阿维菌素、氯虫苯甲酰胺、氯氟氰菊酯和吡虫啉) 和5种杀菌剂 (苯醚甲环唑、腈苯唑、嘧菌酯、甲基硫菌灵和多菌灵),研究了桃果中的农药残留量变化及不同农药在桃枝、桃叶、果皮和果肉中的分布规律,以及套袋在桃生长后期阻控农药吸收中发挥的作用。结果表明:在桃收获前7 d,按2倍最高推荐剂量施用其中3种杀菌剂 (苯醚甲环唑、腈苯唑、嘧菌酯) 和4种杀虫剂 (阿维菌素、氯虫苯甲酰胺、氯氟氰菊酯、吡虫啉),7种农药在桃全果中的残留量均低于中国国家农药残留限量标准(MRL);而过量施用多菌灵和甲基硫菌灵,桃全果中多菌灵残留量显著高于MRL标准,且随着施药后时间的延长,增加了多菌灵由果皮或枝叶向果肉迁移的风险。套袋处理后,桃全果中多菌灵的残留量远低于中国MRL标准,同时显著减少了桃全果中其他8种农药的残留量。9种供试农药在桃树不同组织中的分布规律一致,由高到低依次为果皮>全果>桃叶≥果肉≥桃枝。本研究表明,不同农药品种在桃生长后期消解规律存在差异,其中多菌灵和甲基硫菌灵超量使用会增加多菌灵在桃果中残留超标的风险,而套袋处理可减少桃果中的农药残留。该结果对去除桃果中农药残留、降低膳食摄入风险有一定指导意义。  相似文献   

2.
通过两年田间试验并结合气相色谱-电子捕获检测(GC-ECD)技术,研究比较了苹果套袋 和不套袋2种不同栽培方式下苯醚甲环唑在苹果中的残留及消解动态。结果表明:2011和2012年, 苯醚甲环唑在未套袋苹果中的原始沉积量分别为0.44和0.17 mg/kg,消解半衰期分别为12.8和15.5 d;2012年其在套袋苹果中的原始沉积量为0.056 mg/kg,半衰期为31.9 d。两年的试验表明,于苹果收获前35~42 d,按照10%苯醚甲环唑水分散粒剂的推荐剂量和1.5倍推荐剂量(有效成分分别为66.7和100 mg/L)施药2次和3次, 距末次施药后7 d采收,套袋和不套袋果实中苯醚甲环唑的残留量均低于我国最大残留限量(MRL)值0.5 mg/kg,其中套袋处理均低于0.03 mg/kg,表明苯醚甲环唑按照推荐剂量及次数施用是安全的;在套袋方式下,苯醚甲环唑残留量明显降低。  相似文献   

3.
茚虫威在菜用大豆上残留动态及安全使用技术   总被引:1,自引:1,他引:0  
采用气相色谱法(GC/ECD)研究了菜用大豆中茚虫威残留量的检测方法,以及茚虫威在菜用大豆上的残留消解动态,并对其安全使用技术进行了示范试验。结果表明,建立的菜用大豆中茚虫威残留量定量检测方法的平均回收率为86.8% ~90.1%,相对标准偏差为3.85% ~5.24%,最小检出量0.01 ng,最低检测浓度为0.005 mg/kg,该方法简便、准确、能满足实际样品分析。茚虫威在菜用大豆上的原始沉积量因不同施药处理有所差异,施用有效成分96.43 g/hm2的原始沉积量>施用有效成分48.21 g/hm2的原始沉积量,间隔期7 d连续施药两次的原始沉积量>施药1次;残留消解动态符合一级动力学方程,早季的消解系数(︱k︱)=0.174 75±0.000 15,半衰期(T1/2)为4.0 d,消解99%所需要的时间(T0.99)为26.3 ~26.4 d;晚季︱k︱=0.108 35±0.004 95,T1/2为6.1 ~6.7 d,T0.99为40.6 ~45.5 d。在安全使用技术示范试验区,茚虫威按常规施药量(有效成分67.50 g/hm2)及施药方法,2006年晚季施药1次与间隔期7 d连续施药两次,在末次施药后25 d、30 d,最终残留量分别为0.065 ~0.102 mg/kg和0.032 ~0.081 mg/kg;2007年早季间隔期7 d 连续施药两次,在第2次施药后15 d,最终残留量为0.097 ~0.132 mg/kg,产品质量安全水平均符合日本规定的MRL(0.2 mg/kg)要求。  相似文献   

4.
啶虫脒在桃上的残留消解规律与膳食风险评估   总被引:1,自引:0,他引:1  
啶虫脒在桃上的检出率高且未登记,缺少安全间隔期、用药间隔期等信息可能会导致盲目用药,增加残留风险。为明确桃果上啶虫脒的残留风险,本文通过消解试验以及模拟农户施药对其残留消解规律进行了分析,并于2015—2018年对中国9大主产区桃中的啶虫脒残留进行了调查与膳食摄入风险分析。结果表明:啶虫脒在桃果皮与果肉上的消解符合一级反应动力学方程,半衰期分别为3.92与3.14 d。模拟农户施药2次或3次后,距末次施药7、14和21 d,桃中啶虫脒的残留量均较低,且远低于其在核果上的最大残留限量 (MRL) 值;去皮食用能够明显降低其膳食摄入风险。9大桃主产区509份样品中啶虫脒的检出率在8%~38%之间,残留量在0.001~1.348 mg/kg之间,均未超过其在核果上的MRL标准。连续 4 年啶虫脒在桃上的急性膳食摄入风险占急性参考剂量 (ARfD) 的比值在1.520%~13.755%之间,慢性膳食摄入风险占每日允许摄入量 (ADI) 的比值在0.021%~0.086%之间,总体膳食风险的贡献较小。  相似文献   

5.
为评价38%唑醚·啶酰菌悬浮剂 (有效成分质量分数:12.8%吡唑醚菌酯,25.2%啶酰菌胺) 在农产品和环境中的安全性,于2015年和2016年在中国北京及山东分别进行了该药剂在草莓及土壤中的残留及消解动态试验,建立了同时测定草莓及土壤中吡唑醚菌酯和啶酰菌胺残留量的高效液相色谱-串联质谱 (HPLC-MS/MS) 检测方法。样品用乙腈提取,经N-丙基乙二胺 (PSA) 净化,电喷雾多反应监测模式HPLC-MS/MS检测,基质匹配标准曲线外标法定量。结果表明:在草莓和土壤中添加0.015~3.0 mg/kg吡唑醚菌酯,平均回收率分别为97%~107%和94%~106%,相对标准偏差 (RSD) 分别为1.8%~3.9%和2.2%~4.1%,定量限 (LOQ) 为0.015 mg/kg;添加0.03~6.0 mg/kg啶酰菌胺,平均回收率分别为90%~101%和92%~97%,RSD为4.6%~13%和2.9%~14%,LOQ为0.03 mg/kg。田间试验结果表明,吡唑醚菌酯和啶酰菌胺在草莓和土壤中的消解动态均符合一级动力学方程,在草莓中的半衰期分别为4.8~6.0 d和5.1~11 d,在土壤中为3.4~10.0和3.4~6.0 d。采用38% 唑醚·啶酰菌悬浮剂,分别按有效成分228和342 g/hm2于草莓幼果期施药,最多施药 4 次,采样时间距离最后一次施药的间隔时间为3、5、7 d。吡唑醚菌酯在草莓中的最大残留量为 0.13 mg/kg,低于欧盟规定的最大残留限量 (MRL)(0.5 mg/kg);啶酰菌胺在草莓中的最大残留量为 0.78 mg/kg,低于中国的 MRL值 (3.0 mg/kg)。建议38%唑醚·啶酰菌悬浮剂在草莓上的安全间隔期为3 d,试验结果为农药在草莓中的安全使用和农产品的食用安全提供了数据支持。  相似文献   

6.
氯虫苯甲酰胺在甘蔗及土壤中的残留消解动态   总被引:1,自引:0,他引:1  
建立了氯虫苯甲酰胺在甘蔗和土壤中残留的高效液相色谱检测方法,应用该方法对氯虫苯甲酰胺在甘蔗和土壤中的残留消解规律进行了研究。样品用乙腈提取,经Florisil固相萃取柱及N-丙基乙二胺(PSA)净化,紫外检测器检测,外标法定量。结果表明:当添加水平为0.05~2 mg/kg时,氯虫苯甲酰胺在甘蔗植株地上部分(包括茎秆和叶片)、茎秆(去除叶片后的地上至肥厚带部位)和土壤中的平均回收率为77%~97%,相对标准偏差(RSD)为3.4%~11.6%。氯虫苯甲酰胺在3种基质中的最小检出量(LOD)均为0.2 ng,最低检测浓度(LOQ)均为0.05mg/kg。两年两地的田间残留试验结果表明:0.4%氯虫苯甲酰胺颗粒剂在甘蔗下种时一次沟施后覆土,以有效成分用量120和180 g/hm2施药时,在土壤中的原始沉积量在1.18~3.57 mg/kg之间,半衰期为12.4~18.2 d;成熟时采收,甘蔗茎秆中氯虫苯甲酰胺的残留量低于0.05 mg/kg。参照我国制定的甘蔗上氯虫苯甲酰胺的临时最大残留限量(TMRL)值0.05 mg/kg,按照推荐剂量及推荐剂量的1.5倍分别施药1次,成熟时采收甘蔗是安全的。  相似文献   

7.
建立了高效液相色谱-串联质谱(HPLC-MS/MS)测定人参中仲丁灵残留的分析方法,并研究其在人参中的最终残留量与消解规律。样品经乙腈提取,NH2固相萃取柱净化,液相色谱-串联质谱仪检测,外标法定量。结果表明:在0.002~0.5 mg/L内,仲丁灵的质量浓度与对应的峰面积间线性关系良好,鲜人参和干人参在0.01、0.05和0.5 mg/kg,人参植株和人参土壤在0.01、0.05、0.5和10 mg/kg添加水平下,仲丁灵的回收率为93%~108%,相对标准偏差为0.60%~6.2%。仲丁灵在人参植株和土壤中的半衰期为10.81~18.91 d,在鲜人参、干人参、人参植株和人参土壤中的最终残留量分别为相似文献   

8.
叶菜上农药原始沉积行为受作物形态、农药种类及其剂型、施用方式等多种因素的影响,是评估农药残留的重要指标。以吡虫啉和啶虫脒为目标农药,以菠菜和生菜作为靶标作物,通过农药施用后的原始沉积行为,以及兑水量、叶面积指数和农药剂型对农药沉积的影响,初步揭示了农药原始沉积规律。结果表明:施药后0.5~8 h内其沉积量无显著差异,综合考虑,选择施药后2 h时测定其原始沉积量;两种农药在菠菜和生菜中主要沉积在叶片表面,沉积量占比均在87%以上,在根和土壤中的沉积量较少;农药施药剂量相同而兑水量不同,则原始沉积量存在显著差异,随着兑水量的增加,沉积量逐渐减少;菠菜和生菜中农药沉积量与叶面积指数呈负相关;原始沉积量与剂型也有相关性,在施药剂量相同时,吡虫啉在菠菜、生菜中原始沉积量最高均为可湿性粉剂,沉积量分别为0.66和0.77 mg/kg;啶虫脒在菠菜中原始沉积量最高为乳油和可湿性粉剂,沉积量均为0.65 mg/kg,生菜中原始沉积量最高为可湿性粉剂,沉积量为0.37 mg/kg。研究结果认为,农药剂型、兑水量和叶面积指数均会影响叶菜表面农药原始沉积量,该结果可为叶菜中农药合理安全施用和农药残留管控提供...  相似文献   

9.
采用乙腈提取、固相萃取净化和高效液相色谱法,分析测定了啶虫脒在露地和大棚2种种植条件下黄瓜和土壤中的残留及消解动态。结果表明:9%啶虫脒可湿性粉剂同时在露地和大棚中按有效成分30.375 g/hm2剂量(推荐高剂量的1.5倍)施药1次,啶虫脒在露地和大棚黄瓜及其土壤中的原始沉积量分别为0.20、0.13 mg/kg和0.29、0.14 mg/kg,露地黄瓜和土壤中的原始沉积量均分别低于大棚;相应地,啶虫脒在黄瓜和土壤中的半衰期分别为9.7、9.4 d(露地)和10.1、11.9 d(大棚)。9%啶虫脒可湿性粉剂同时在露地和大棚中按有效成分20.25 g/hm2和30.375 g/hm2的剂量施药1次和2次,在相同施药剂量、施药次数和采收间隔期情况下,除个别情况外,露地黄瓜中啶虫脒的最终残留量均低于大棚,分别为0.01~0.05 mg/kg(露地)和0.01~0.09 mg/kg(大棚)。  相似文献   

10.
百菌清和福美双在蘑菇上的残留研究   总被引:8,自引:1,他引:8  
建立了杀菌剂30%菇丰(12%百菌清和18%福美双)可湿性粉剂在蘑菇中的残留分析方法,并用该方法研究了其在蘑菇中的消解动态和最终残留。样品分别经GC-ECD和HPLC-UV检测。方法的添加回收率分别为90.19%~99.11%和73.94%~86.47%;变异系数分别为0.9%~3.2%和2.6%~15.8%;最小检出量分别为1×10-12g和6×10-9g;最低检测浓度分别为0.01和0.3mg/kg。田间残留动态试验结果表明,百菌清和福美双在蘑菇中的半衰期分别为2.5d和4.2h。在最高推荐剂量(1 800g/hm2)和推荐剂量2倍的条件下,施药12次,施药后第5d,蘑菇中百菌清残留量高于我国规定的MRL值(1mg/kg);而施药后2d福美双残留量已低于MRL值(3mg/kg)。试验结果表明,百菌清不适于在蘑菇中使用,而福美双则可以使用。  相似文献   

11.
为了评估甲基硫菌灵在猕猴桃上使用的安全性,采用QuEChERS-超高效液相色谱-串联质谱分析方法,对甲基硫菌灵及其代谢物多菌灵在猕猴桃上的残留量进行了分析,明确了其消解规律及半衰期,通过进行膳食摄入风险评估,以推荐甲基硫菌灵在猕猴桃上的最大残留限量 (MRL),并对其代谢物多菌灵的残留量进行了安全性评价。结果表明:在0.01、0.1和1.0 mg/kg 3个添加水平下,甲基硫菌灵的回收率为85%~102%,相对标准偏差 (RSD) 为1.0%~7.1%;多菌灵的回收率为86%~101%,RSD为2.1%~5.2%;两者的定量限均为0.01 mg/kg。甲基硫菌灵在猕猴桃上的消解符合一级反应动力学方程,半衰期为10.1~10.5 d,属易消解农药。70%甲基硫菌灵可湿性粉剂在猕猴桃上按照推荐剂量及1.5倍推荐剂量 (875和1 166.7 mg/kg) 分别施药3次和4次,推荐采收间隔期为21 d,膳食风险商为78.7%,推荐MRL值为5 mg/kg,该结果通常不会对一般人群健康产生不可接受的风险。依据GB 2763多菌灵在猕猴桃上的MRL值0.5 mg/kg,代谢物多菌灵存在较大的超标风险。建议有关部门制定甲基硫菌灵在猕猴桃上的MRL值,并重新评估多菌灵在猕猴桃上的MRL值。  相似文献   

12.
为评估桃中吡唑醚菌酯和戊唑醇残留的膳食风险,开展了8个典型地域的规范残留试验,研究了收获期2种农药残留物在桃中的最终残留。利用高效液相色谱-三重四极杆串联质谱仪 (HPLC-MS/MS),通过改进,建立了吡唑醚菌酯和戊唑醇在桃中残留的分析方法。结果表明:在0.01~4.0 mg/L质量浓度范围内,吡唑醚菌酯和戊唑醇的进样浓度与峰面积之间具有良好线性关系(R2≥0.9906)。添加水平为0.01~4.0 mg/kg时,桃中吡唑醚菌酯的回收率范围为88%~92%,相对标准偏差 (RSD) 为5.6%~18.7%,戊唑醇的回收率范围为96%~106%,RSD为0.8%~13.2%。吡唑醚菌酯和戊唑醇在桃全果中的半衰期分别为7.9~13.9 d和5.4~8.9 d;在桃全果中的残留中值 (STMR) 分别为0.037和0.053 mg/kg,最高残留值 (HR) 分别为0.16和0.24 mg/kg。距末次施药后28 d,桃中吡唑醚菌酯和戊唑醇残留量对风险商 (RQ) 的贡献率 (RQc) 分别为0.02%和0.03%,说明通过桃摄入的吡唑醚菌酯和戊唑醇对我国一般人群产生的长期膳食暴露风险较低。对于短期膳食暴露风险,吡唑醚菌酯和戊唑醇的国家估算短期摄入量 (NESTI) 分别占急性参考剂量 (ARfD) 的0.4%和2%,对于1~6岁儿童分别占2%和4%,短期膳食暴露风险亦处于可接受水平。基于本次规范残留试验结果,总体上可认为,严格按照良好农业操作规范和标签推荐的方式施用,吡唑醚菌酯和戊唑醇在桃树上使用的长期和短期膳食暴露风险均是可接受的。  相似文献   

13.
为探究10%乙霉威·腐霉利微粉剂(有效成分质量分数:5%乙霉威,5%腐霉利)在设施黄瓜上施用后的沉积分布特性及残留消解动态,采用PC-3A(S)型激光粉尘仪及粉尘取样片,分别研究了不同设施类型、不同温湿度及不同施药角度下,10%乙霉威·腐霉利微粉剂在设施黄瓜上的沉积分布情况;并于2017年和2018年,分别在北京市进行了该药剂在设施黄瓜叶片和果实中的残留及消解动态试验。结果表明:不同设施类型、不同温度条件下,10%乙霉威·腐霉利微粉剂的沉积分布特性无明显差异,且其有效成分分解率不受温度影响;不同湿度条件下,该微粉剂在黄瓜叶片上的沉积量不同,湿度越大沉积量越多。乙霉威和腐霉利在黄瓜叶片和果实中的消解动态均符合准一级动力学或一级动力学方程,2种药剂在叶片中的半衰期分别为3.2 d和3.0~3.2 d,在果实中的半衰期分别为4.0~4.3 d和3.1~3.8 d。采用10%乙霉威·腐霉利微粉剂,分别按100 g/hm2和150 g/hm2(1.5倍)剂量于黄瓜幼果期施药,最多施药3次,施药间隔期为7 d,距最后一次施药间隔7、10和14 d分别采样,乙霉威在黄瓜果实中的最大残留量为0.88 mg/kg,低于中国国家标准规定的其最大残留限量(MRL)值(5 mg/kg),腐霉利在黄瓜果实中的最大残留量为0.49 mg/kg,也低于其MRL值(2 mg/kg)。该研究结果可为10%乙霉威·腐霉利微粉剂在设施黄瓜上的安全使用提供数据支持。  相似文献   

14.
螺虫乙酯及其代谢物和氯虫苯甲酰胺在龙眼上的残留动态   总被引:1,自引:0,他引:1  
建立了龙眼中螺虫乙酯及其代谢物和氯虫苯甲酰胺残留量的高效液相色谱-串联质谱 (HPLC-MS/MS) 检测方法。于2018年进行了1年6地螺虫乙酯及其代谢物和氯虫苯甲酰胺在龙眼上的规范残留田间试验,研究了螺虫乙酯及其代谢物和氯虫苯甲酰胺在龙眼上的残留行为。样品用乙腈提取,以N-丙基乙二胺 (PSA) 净化,HPLC-MS/MS检测,外标法定量。结果表明:在0.01~1 mg/kg 3个添加水平下,螺虫乙酯及其代谢物、氯虫苯甲酰胺在龙眼全果和果肉中的平均回收率分别为83%~103%和87%~92%;相对标准偏差分别为2.3%~8.7%和3.3%~6.3%;定量限均为0.01 mg/kg。田间试验结果显示:22.4%螺虫乙酯悬浮剂以有效成分60 mg/kg、5%氯虫苯甲酰胺悬浮剂以有效成分50 mg/kg施用2次,间隔7~10 d,于末次施药后14 d取样测定,螺虫乙酯和氯虫苯甲酰胺在龙眼全果中的残留量分别为0.30~1.14和0.06~0.29 mg/kg,在果肉中的残留量分别为 <0.05和 <0.01 mg/kg。研究结果可为指导这两种农药的田间安全合理使用及制定其在龙眼上的最大残留限量提供参考。  相似文献   

15.
建立了高效液相色谱法检测鲜烟叶和干烟叶中噻虫嗪残留量的方法。样品经乙腈提取,Cleanert NH2-SPE固相萃取柱净化,高效液相色谱-紫外检测器(HPLC-UV)检测,外标法定量。结果表明:在0.01~5 mg/kg添加水平下,鲜烟叶中噻虫嗪的平均回收率为92%~95%,相对标准偏差(RSD)为4.5%~9.2%,定量限(LOQ)为0.01 mg/kg;在0.05~5 mg/kg添加水平下,干烟叶中噻虫嗪的平均回收率为91%~94%,RSD为5.9%~6.8%,LOQ为0.05 mg/kg。采用所建立的方法,测定了山东、湖南2年2地烟叶样品中噻虫嗪的消解动态及最终残留量。结果表明:噻虫嗪在烟叶中的半衰期为1.3~8.1 d;按照噻虫嗪有效成分用量18.9和28.4 g/hm2,于烟草现蕾初期-成熟期对水喷雾施药2~3次,距末次施药7 d后,山东、湖南2年2地烟叶样品中噻虫嗪残留量为0.05~0.80 mg/kg,均低于国际烟草合作研究中心(CORESTA)指导性残留限量标准规定的MRL值(5.0 mg/kg)。  相似文献   

16.
为明确二嗪磷、毒死蜱和辛硫磷3种有机磷农药在双孢蘑菇栽培过程中的残留动态规律,采用在工厂化双孢蘑菇栽培基质 (覆土和培养料) 中拌料施药的方式,开展了田间试验,运用QuEChERS净化前处理技术结合UPLC-MS/MS分析,检测了3种农药在双孢蘑菇子实体和栽培基质中的残留动态。结果表明:建立的双孢蘑菇子实体、覆土和培养料3种基质中3种有机磷农药的液相色谱-串联质谱检测方法,经验证,在二嗪磷分别以0.000 3、0.003、0.1 mg/kg为添加水平,毒死蜱和辛硫磷分别以0.000 6、0.006、0.1 mg/kg为添加水平下,3种有机磷农药在双孢蘑菇、覆土和培养料3种基质中的平均回收率为76%~108%,相对标准偏差为2.2%~13%。检出限分别为:二嗪磷0.000 1 mg/kg、毒死蜱和辛硫磷均为0.000 2 mg/kg,定量限分别为:二嗪磷0.000 3 mg/kg、毒死蜱0.0006 mg/kg和辛硫磷0.000 6 mg/kg。在2 和10 mg/kg两个施药水平下,二嗪磷、毒死蜱和辛硫磷在双孢蘑菇栽培基质中的消解规律均符合一级反应动力学方程,在培养料中的消解半衰期分别为5.2、10.6、13.6 d和5.6、11.4、12.3 d;在覆土中的消解半衰期分别为25.9、41.7、27.2 d和41.7、48.1、36.8 d,且在培养料中的消解快于在覆土中的。在施药剂量不超过10 mg/kg的条件下,在双孢蘑菇子实体中毒死蜱残留量最高,为0.014 mg/kg,超过了欧盟规定的最大残留限量(MRL)标准,其余均低于现行日本、欧盟和美国规定的MRL值。  相似文献   

17.
为明确氟唑菌酰胺和吡唑醚菌酯在芒果上的残留行为,于2012和2013年在中国广东省和广西自治区进行了氟唑菌酰胺和吡唑醚菌酯在芒果上的田间残留及消解动态试验,建立了芒果中氟唑菌酰胺及吡唑醚菌酯残留量的高效液相色谱检测方法。样品用丙酮提取,乙酸乙酯液-液分配萃取,弗罗里硅土柱层析净化,高效液相色谱-二级管阵列紫外检测器检测,外标法定量。结果表明:氟唑菌酰胺和吡唑醚菌酯在芒果上的消解半衰期分别为7.2~9.1和8.0~11.0 d;采用42.4%吡唑醚菌酯·氟唑菌酯胺悬浮剂(SC),分别按有效成分200和300 mg/L的剂量于幼果期开始施药,施药3~4次,施药间隔期为10~15 d,距最后一次施药后7和14 d采样测定,芒果中氟唑菌酰胺和吡唑醚菌酯的残留量分别为0.004~0.053和0.004~0.072 mg/kg。其中,吡唑醚菌酯残留量符合中国制定的最大残留限量(MRL)标准(0.05 mg/kg),根据试验结果,建议中国可将氟唑菌酰胺在芒果上的MRL值暂定为0.2 mg/kg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号