首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水稻子实对不同形态重金属的累积差异及其影响因素分析   总被引:3,自引:0,他引:3  
在分析成都平原核心区土壤重金属(Cd、Cr、Pb、Cu、Zn)全量、各形态含量及相应点位种植的水稻子实重金属含量的基础上,通过统计分析、空间插值及线性回归方程的模拟,研究了土壤Cd、Cr、Pb、Cu、Zn全量的空间分布状况、各形态重金属含量统计特征,以及水稻子实对重金属各形态的累积差异及其影响因素。结果表明,成都平原水稻土重金属污染较轻,除Cd外,均低于国家土壤环境质量二级标准。土壤中重金属的可交换态含量均较低,Cd主要以铁锰氧化态存在,Cr、Cu、Zn、Pb主要以残渣态存在。水稻子实对5种重金属的累积效应顺序为:Cd>Zn>Cu>Pb>Cr。与水稻重金属累积关系密切的重金属活性形态(可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态)主要有:Cd的碳酸盐结合态、Cr的可交换态、Pb的有机物结合态和Cu的碳酸盐结合态含量;Zn各活性形态对水稻子实含量的影响不明显。土壤理化性质对不同活性形态重金属元素的影响效应各不相同。活性态Cd主要受有机质、pH和容重的影响;活性态Cr与pH、有机质、CEC和容重密切相关;活性态Pb与有机质、容重、中细粉粒、砂粒等均有密切的关系;Cu的活性主要受粘粒、有机质含量的影响;Zn的有效性主要受pH、有机质、砂粒、容重的影响。总的看来,对土壤Cd、Cr、Pb、Cu、Zn各活性形态含量影响效应较强的是有机质、pH、容重,而与土壤吸附性能密切相关的颗粒组成、CEC的影响不甚明显。  相似文献   

2.
泉州走马埭典型土壤重金属的赋存形态分析   总被引:5,自引:3,他引:2  
何园  王宪  陈丽丹  郑盛华  蔡真珍 《土壤》2007,39(2):257-262
采用改进的Tessier连续萃取方法研究了泉州走马埭国家农田示范保护区典型土壤中重金属(Cr、Ni、Cu、Zn、Cd、Pb)的化学形态分布,通过土壤重金属的赋存形态分析比较了6种重金属的生物可利用性。研究结果表明,土壤中不同重金属元素化学形态分布具有不同的特点:Cr和Ni主要以残渣态存在,其余形态所占的比例很小;Cu以残渣态含量最高,碳酸盐结合态含量最低;Zn以残渣态为主,可交换态含量最低;Cd以可交换态和碳酸盐结合态为主,水溶态含量最低;Pb以残渣态和铁锰氧化物结合态为主,水溶态含量最低。土壤中除Cd外,Zn、Cu、Cr、Pb、Ni在正常自然条件下相对比较稳定。  相似文献   

3.
施污土壤与污泥中Cu、Pb、Cd、Zn的形态分布   总被引:2,自引:0,他引:2  
污泥中的重金属元素是限制其大规模农田利用的重要因素。施污土壤和污泥中重金属的形态研究可以用来评价土壤中重金属的生物有效性以及它们在土壤中的移动性。用修正BCR三步连续提取法进行分步提取研究了污水污泥和施污后的西红柿地土壤中Cu、Pb、Cd、Zn的形态分布状况。施用污泥堆肥10t hm-2后的土壤中Cu、Pb、Cd、Zn的全量与各种形态含量无明显增加,Cu、Pb、Zn含量远低于国家土壤环境质量标准。土壤中Cu的各种形态分布关系是:残渣态>可还原态=可氧化态>可交换态和弱酸溶解态,Cu在土壤中的存在是以最稳定的残渣态为主。堆肥污泥与干化污泥相比,残渣态Cu的比例明显增加。土壤中Pb的各种形态分布关系是以残渣态和可还原态为主,但可氧化态的分布比例最小。土壤中Cd的可交换态、可还原态和残渣态各占据相等的含量,但可氧化态Cd的含量几乎为零。Zn在土壤中的各种形态分布关系是:可交换态和弱酸溶解态>可氧化态>可还原态>残渣态,Zn在土壤中的存在是以最易迁移的可交换态和弱酸溶解态为主。这些金属元素在土壤中的相对稳定性顺序为:Cu>Pb>Cd>Zn。Zn在土壤中的移动性要远高于Cu。  相似文献   

4.
There is conflicting evidence, and therefore continuing concern, as to whether metals in sewage sludge are deleterious to soil microbial processes and long-term agricultural productivity. Nine field experiments with sewage sludge cakes, three with metal-amended liquid sludges and three with inorganic metal salts were set up across Britain in 1994 to give individual metal dose–response treatments to try to answer this question. This study reports on the effects of Zn, Cu and Cd on the population size of Rhizobium leguminosarum biovar trifolii, a nitrogen fixing symbiont of white clover (Trifolium repens), in soils from these experiments over 11 years. Significant (P < 0.05) reductions in indigenous rhizobial numbers occurred on the Zn metal dose–response treatments at eight of the sludge cake sites in 2005, but few consistent effects were evident on the Cu or Cd metal dose–response treatments during the 11-year monitoring period. The soil total Zn concentrations where effects occurred were near to the UK statutory limit of 300 mg kg?1 for soils receiving sewage sludge. No significant reductions occurred in any treatments on the metal-amended liquid sludge or inorganic metal salt experiments in which the metals would be expected to be in a more bioavailable form, even after 11 years. The effects in the sludge cake experiments were related consistently with soil total Zn, with no recovery to date. The reductions in clover rhizobial numbers in the sludge cake experiments were due to Zn effects on free-living rhizobia in the soil, with gradual die-off over a long time with increasing soil total Zn concentrations. Currently, no consistent adverse effects on rhizobia have been seen at the UK limits for Cu and Cd of 135 and 3 mg kg?1, respectively.  相似文献   

5.
Radish was grown in 46 garden plots in England and Wales. Some of the gardens had been contaminated by heavy metals from lead mining. The soils were analysed for pH, organic content and cation exchange capacity; also for Cd, Cu, Pb, and Zn (total, organic bound, exchangeable and specifically sorbed). Acetic acid-soluble P and exchangeable K, Mg and Zn were also determined. Radish bulbs and leaves were analysed for heavy metals. The results were interpreted using linear and multiple linear correlation and regression analysis. Acetic acid satisfactorily predicted Cd uptake and Pb uptake was best predicted by total soil Pb. These regressions were not improved by including other soil properties. Zinc uptake was best modeled using exchangeable Zn and the predictive power of the regression was improved by including pH. However, the pH term was positive suggesting that raising soil pH would increase uptake. A poor relationship between total and exchangeable Zn was changed to a highly significant relationship by including cation exchange capacity and pH. The latter term was strongly negative. Uptake of Cu was not satisfactorily predicted.  相似文献   

6.
7.

Purpose

Many amendments have been applied to immobilize heavy metals in soil. However, little information is available on the changes of immobilization efficiencies of heavy metals in contaminated soils over time. This work investigated the immobilization efficiencies of copper (Cu) and cadmium (Cd) in contaminated soils in situ remediated with one-time application of three amendments for 1 year and 4 years.

Materials and methods

Apatite, lime, and charcoal were mixed with the topsoil of each plot with the amounts of 22.3, 4.45, and 66.8 t/ha, respectively. Soil chemical properties and fractions of Cu and Cd were examined after in situ remediation for 1 year and 4 years. Soil sorption and retention capacities and desorption proportions for Cu and Cd were investigated by batch experiments.

Results and discussion

The addition of amendments significantly increased soil pH, but decreased exchange acid and aluminum (Al). The amendments significantly decreased the CaCl2 extractable Cu and Cd and transformed them from active to inactive fractions. After the application of amendments for 1 year, the maximum sorption capacities ranged from 35.6 to 38.8 mmol/kg for Cu and from 14.4 to 17.0 mmol/kg for Cd, which were markedly higher than those of the application of amendments for 4 years (Cu, 29.6–34.7 mmol/kg; Cd, 10.9–16.4 mmol/kg). Desorption proportions (D) of Cu and Cd using three extractants followed the order of \( {D}_{{\mathrm{NaNO}}_3}<{D}_{{\mathrm{CaCI}}_2}<{D}_{{\mathrm{MgCI}}_2} \) . Moreover, the retention capacities (R) of Cu and Cd both increased and followed the order of R apatite?>?R lime?>?R charcoal, resulting in higher Cu and Cd in the amended soils than the untreated soil.

Conclusions

Apatite, lime, and charcoal increased the soil sorption and retention capacities of Cu and Cd and resulted in higher immobilization efficiencies in the amended soils than the untreated soil. However, the immobilization efficiencies of Cu and Cd decreased with the decrease of sorption capacities after 4 years. It was concluded that apatite had the best effect on the long-term stability of immobilized Cu and Cd and can be applied to immobilize heavy metals in contaminated soils.  相似文献   

8.
To understand the role of ectomycorrhizas in improving the tolerance of its host to excessive heavy metals in soil, this study was conducted to exam the patterns of four fractions (the exchangeable, the carbonate-bound, the Fe-Mn oxide- bound and the organically bound) of both Cu and Cd in the rhizosphere of Chinese pine (Pinus tabulaeformis) seedlings grown in excessive Cu and Cd environment. The results showed that the speciation of Cu and Cd in the rhizosphere was significantly influenced by inoculation of ectomycorrhizal fungus Boletus edulis. Compared to the rhizosphere, the content of exchangeable Cu slightly decreased in the mycorrhizosphere of the seedlings grown in 166 and 400 mg kg^-1 Cu contaminated soil, whereas the exchangeable Cd in the mycorrhizosphere decreased remarkably to only 33% and to 60% that of the rhizosphere at 0.75 and 1.50 mg kg^-1 Cd levels, respectively. These indicate the potential capacity of mycorrhizas to alleviate the damage of heavy metals to the host plants by reducing the bioavailability of heavy metals in soil. Distribution of the 4 tested fractions of Cu and Cd at different contamination levels showed that there was a strong tendency of changing from loosely associated fractions to strongly associated fractions in the mycorrhizosphere. The most stable Cd fraction, organically bound Cd, was significantly larger in the mycorrhizosphere than in the rhizosphere at different Cd contamination levels. This phenomenon was also observed for Cu but the difference was not statistically significant.  相似文献   

9.
Slow immobilization of trace metals in soil, termed ‘fixation’, affects their natural attenuation but it is still unclear which reactions occur. Twenty‐eight soils were selected to assess the role of Fe oxides and carbonates on fixation of Cu, Cd, Zn and Ni. Soils included samples from 2 toposequences (Vietnam, Spain) and 13 European topsoils with different soil characteristics (pH 3.4–7.7). Samples were amended with 250 mg Zn kg−1, 100 mg Cu kg−1, 80 mg Ni kg−1 and 2.5 mg Cd kg−1 as metal salts and incubated for 850 days. Fixation was measured as the increase of the fraction of added metals that were not isotopically exchangeable. Fixation increased with time and was, averaged over all the soils, 43% (Cu), 41% (Zn), 41% (Ni) and 28% (Cd) after 850 days. Metal fixation within samples from each toposequence was generally positively related to total Fe oxide concentration (Fed) for Zn, Ni and Cd. However, the fixation of Cd, Zn and Ni was mainly explained by pH and not by Fed when considering all soils. Fixation of Zn and Cd in soils with pH >7.0 increased with increasing concentrations of carbonates at initial ageing times. Fixed fractions of Zn, Ni and Cd were significantly released when experimentally removing 50% of carbonates by acidification. Fixation of Cu was most poorly related to soil properties. Our data suggest that fixation of Cd, Zn and Ni is related to a pH‐dependent diffusion into oxides and that of Cd and Zn also to diffusion and/or coprecipitation in carbonates. Fixation of Ni at neutral pH may also be related to stabilization of precipitates that form readily in soil.  相似文献   

10.
皖南茶园土壤重金属化学形态及其生物有效性   总被引:4,自引:0,他引:4  
以皖南茶园为研究对象,通过Tessier连续提取分级法对茶园土壤重金属(Zn,Cu,Pb,Ni)全量及其化学形态进行了分析,利用活性态重金属占全量之比来评价其生物有效性。结果表明,皖南茶园土壤中Zn,Cu,Pb,Ni含量均未超过国家标准;除Zn外,其他元素均高出背景值,存在较明显的富集现象;土壤中4种重金属在5种形态上表现出不同的分布规律,Zn,Cu,Ni以残渣态为主,分别占总量的72.55%,90.00%和81.79%,而Pb以铁锰氧化物结合态为主,占总量的70.09%;Zn,Cu,Pb,Ni的活性态部分占全量比例分别为5.04%,1.51%,0.97%和0.23%,土壤重金属活性态部分与茶叶中重金属含量之间呈现正相关关系,且皖南茶区的茶叶重金属含量在限量值的安全范围内。  相似文献   

11.
[目的]了解北京市五环内绿地表层(0—20cm)土壤重金属(Cu,Cd,Pb和Zn)的形态特征及其生物有效性,为北京市绿地土壤重金属污染防治提供比较可靠的参考依据。[方法]在建成时间为2~400a的绿化区内共采集表层土壤样品151个,运用改进BCR提取法分析样品中重金属的赋存形态,而后通过风险评价编码法(RAC)和次生相与原生相分布比值法(RSP)对重金属生物有效性进行评估。[结果]样品中重金属Cu,Cd,Pb和Zn的含量分别为31.42,0.29,29.89,76.78 mg/kg,Cu,Zn在中部和东北部含量较高,Pb在中部地区含量较高,Cd在西北部、东北部和南部存在少量高值区。Cu,Cd,Pb和Zn形态分布的总体规律均为:残渣态可氧化态弱酸溶态可还原态,稳定态含量均远高于有效态,有效态含量比例表明重金属生物有效性大小顺序为:CdZnCuPb风险评价编码法(RAC)表明,Cd和Zn环境风险程度为低风险,Cu和Pb无环境风险。次生相与原生相分布比值法(RSP)显示,Cu,Cd,Pb和Zn元素RSP值分别为0.06,0.49,0.18,0.13,土壤整体上未受到重金属污染,但是有少部分地区存在被污染现象。[结论]北京市五环内绿地土壤总体上不存在重金属Cu,Cd,Pb和Zn污染,环境风险较低,但应对重金属赋存形态保持关注。  相似文献   

12.
赤泥对重金属污染红壤修复效果及其评价   总被引:8,自引:0,他引:8  
以赤泥作为原位固定剂,采用盆栽试验从土壤重金属Cd、Pb、Cu、Zn有效态含量,菜心(Brassicaparachinensis)生长及吸收积累Cd、Pb、Cu、Zn含量3个方面探讨不同赤泥用量对重金属污染红壤的固定修复效果,并用毒性淋出试验TCLP法对其生态风险进行评价。结果表明:菜心在未加赤泥的重金属污染土壤中生长受到严重抑制,在加入赤泥的土壤下生长良好,生物产量显著提高,茎叶干重与赤泥量呈二次相关,5.0mg/kg赤泥处理下菜心产量最大。土壤pH值随赤泥用量的增加而升高,二者呈显著正相关。土壤Cd、Pb、Cu、Zn有效态含量均与赤泥用量呈显著负相关关系;与未加赤泥相比,土壤Cd、Pb、Cu、Zn有效态含量降低范围分别为0.9%~34.2%,29.8%~96.8%,59.9%~96.4%,41.1%~92.7%。加入赤泥显著降低菜心茎叶重金属含量,其重金属含量随赤泥用量的增加而降低;与未加赤泥处理相比,茎叶Cd、Pb、Cu、Zn含量降低分别为68.6%~88.6%,87.3%~96.1%,76.6%~80.3%,79.1%~93.3%。2.5mg/kg赤泥处理下土壤生态风险最小。  相似文献   

13.
Abstract: The fraction distributions of heavy metals have attracted more attention because of the relationship between the toxicity and their speciation. Heavy‐metal fraction distributions in soil contaminated with mine tailings (soil A) and in soil irrigated with mine wastewater (soil B), before and after treatment with disodium ethylenediaminetetraacetic acid (EDTA), were analyzed with Tessier's sequential extraction procedures. The total contents of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) exceeded the maximum permissible levels by 5.1, 33.3, 3.1, and 8.0 times in soil A and by 2.6, 12.0, 0.2, and 1.9 times in soil B, respectively. The results showed that both soils had high levels of heavy‐metal pollution. Although the fractions were found in different distribution before extraction, the residual fraction was found to be the predominant fraction of the four heavy metals. There was a small amount of exchangeable fraction of heavy metals in both contaminated soils. Furthermore, in this study, the extraction efficiencies of Pb, Cd, and Cu were higher than those of Zn. After extraction, the concentrations of exchangeable Pb, Cd, Cu, and Zn increased 84.7 mg·kg?1, 0.3 mg·kg?1, 4.1 mg·kg?1, and 39.9 mg·kg?1 in soil A and 48.7 mg·kg?1, 0.6 mg·kg?1, 2.7 mg·kg?1, and 44.1 mg·kg?1 in soil B, respectively. The concentrations of carbonate, iron and manganese oxides, organic matter, and residue of heavy metals decreased. This implies that EDTA increased metal mobility and bioavailability and may lead to groundwater contamination.  相似文献   

14.
根瘤菌存在下土壤胶体和矿物对镉的吸附   总被引:8,自引:2,他引:6  
Experiments were conducted to study the adsorption of Cd on two soil collids(red soil and yellowbrown soil) and three variable-charge minerals (goethite,noncrystalline Fe oxide and kaolin) in the absence and presence of rhizobia.The tested strain Rhizobium fredii C6,tolerant to 0.8 mmol L^-1 Cd,was selected from 30 rhizobial strains.Results showed that the isotherms for the adsorption of Cd by examined soil colloids and minerals in the presence of rhizobia could be described by Langmuir equation.Within the range of the numbers of rhizobial cells studied,the amount of Cd adsorbed by each system increased with increasing rhizobial cells,Greater increases for the adsorption of Cd were found in red soil and kaolin systems.Rhizobia influence on the adsorption of Cd by examined soil colloids and minerals was different from that on the adsorption of Cu.The presence of rhizobia increased the adsorption affinity of soil colloids and minerals for Cd,particularly for the goethite and kaolin systems.The discrepancies in the influence of rhizobia on the adsorbability and affinity of selected soil colloids and minerals for Cd suggesed the different interactions of rhizobia with various soil components.It is assumed that bacterial biomass plays an important role in controlling the mobility and bioavailability of Cd in soils with kaolinite and goethite as the major colloidal compnents,such as in variable-charge soil.  相似文献   

15.
重金属对典型富铁土吸持磷的影响的动力学研究   总被引:1,自引:0,他引:1  
  相似文献   

16.
[目的]稻田土壤重金属污染是当前农产品安全生产关注的重要问题.本文比较分析工业和农业污染源稻田土壤重金属的赋存形态及水稻吸收运移,以期为稻田土壤重金属污染控制提供参考.[方法]在长江中下游地区调查选取工业源和农业源重金属污染稻田各27块,在水稻成熟期使用抖根法采集根际土壤及水稻根系和籽粒样品,采用Tessier七步提取...  相似文献   

17.
A sequential extraction procedure was used to fractionate Cu, Cd, Pb and Zn in 4 soil profiles into the designated forms of water soluble + exchangeable, organically bound, carbonate and Mn oxides bound. Soil profiles were obtained from the Rural Development District 063, State of Hidalgo, which have been irrigated with wastewater coming out of the basin of Mexico. The total heavy metal contents range as follows: Cu, 8.9 to 86.5 mg kg-1 Cd, 0.86 to 5.07 mg kg-1 Pb, 18.1 to 131.7 mg kg-1 and Zn, 101 to 235.5 mg kg-1. The highest concentrations of total heavy metals were found in the surface layers at all soil profiles. Sequential chemical fractionation indicated that the four metals were predominantly associated with the organic fraction at most soil samples. The contents in all fractions of the four metals showed a decrease with depth which has been explained by the variations in the organic matter and CaCO3 contents in the different layers of soils. These soil properties were also the most important variables in the biological availability of the metals in these soils.  相似文献   

18.
Abstract

The accumulation of heavy metals in plants is related to concentrations andchemical fractions of the metals in soils. Understanding chemical fractions and availabilities of the metals in soils is necessary for management of the soils. In this study, the concentrations of copper (Cu), cadmium (Cd), lead (Pb), and zinc (Zn) in tea leaves were compared with the total and extractable contents of these heavy metals in 32 surface soil samples collected from different tea plantations in Zhejiang province, China. The five chemical fractions (exchangeable, carbonate‐bound, organic matter‐bound, oxides‐bound, and residual forms) of the metals in the soils were characterized. Five different extraction methods were also used to extract soil labile metals. Total heavy metal contents of the soils ranged from 17.0 to 84.0 mgCukg?1, 0.03 to 1.09 mg Cd kg?1, 3.43 to 31.2 mg Pb kg?1, and 31.0 to 132.0 mg Zn kg?1. The concentrations of exchangeable and carbonate‐bound fractions of the metals depended mainly on the pH, and those of organic matter‐bound, oxides‐bound, and residual forms of the metals were clearly controlled by their total concentrations in the soils. Extractable fractions may be preferable to total metal content as a predictor of bioconcentrations of the metals in both old and mature tea leaves. The metals in the tea leaves appeared to be mostly from the exchangeable fractions. The amount of available metals extracted by 0.01 mol L?1 CaCl2, NH4OAc, and DTPA‐TEA is appropriate extractants for the prediction of metals uptake into tea plants. The results indicate that long‐term plantation of tea can cause sol acidification and elevated concentrations of bioavailable heavy metals in the soil and, hence, aggravate the risk of heavy metals to tea plants.  相似文献   

19.
海泡石改良土壤效果研究   总被引:1,自引:0,他引:1  
通过连续三季盆栽试验研究海泡石提高油菜生物量,降低油菜Cd、Pb、Cu、Zn浓度及土壤Cd、Pb、Cu、Zn有效态浓度的效果。结果表明:海泡石在不同程度上提高了三季油菜的生物量,适量的海泡石可降低油菜中Cd、Pb、Cu、Zn浓度及土壤Cd、Pb、Cu、Zn有效态浓度。海泡石降低油菜中重金属浓度效果,第一季,Zn>Pb>Cd>Cu,第二季,Pb>Zn>Cd>Cu,第三季,Zn>Cd>Pb>Cu;降低有效态浓度的效果,第一季,Cd>Cu>Pb>Zn,第二季,Cu>Cd>Zn>Pb,第三季,Pb>Cd>Cu>Zn。因此,海泡石可用于土壤改良,提高油菜生物量,降低油菜中Cd、Pb、Cu、Zn浓度及土壤中Cd、Pb、Cu、Zn有效态浓度。海泡石降低油菜中重金属浓度总效果为Zn>Pb>Cd>Cu;降低土壤重金属有效态浓度总效果为Cd>Cu>Pb>Zn。  相似文献   

20.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号