首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Abstract

The effect of sesquioxides on the mechanisms of chemical reactions that govern the transformation between exchangeable potassium (Kex) and non‐exchangeable K (Knex) was studied on acid tropical soils from Colombia: Caribia with predominantly 2∶1 clay minerals and High Terrace with predominantly 1∶1 clay minerals and sesquioxides. Illite and vermiculite are the main clay minerals in Caribia followed by kaolinite, gibbsite, and plagioclase, and kaolinite is the major clay mineral in High Terrace followed by hydroxyl‐Al interlayered vermiculite, quartz, and pyrophyllite. The soils have 1.8 and 0.5% of K2O, respectively. They were used either untreated or prepared by adding AlCl3 and NaOH, which produced aluminum hydroxide. The soils were percolated continuously with 10 mM NH4OAc at pH 7.0 and 10 mM CaCl2 at pH 5.8 for 120 h at 6 mL h?1 to examine the release of Kex and Knex. In the untreated soils, NH4 + and Ca2+ released the same amounts of Kex from Caribia, whereas NH4 + released about twice as much Kex as Ca2+ from High Terrace. This study proposes that the small ionic size of NH4 + (0.54 nm) enables it to enter more easily into the K sites at the broken edges of the kaolinite where Ca2+ (0.96 nm) cannot have access. As expected for a soil dominated by 2∶1 clay minerals, Ca2+ caused Knex to be released from Caribia with no release by NH4 +. No Knex was released by either ion from High Terrace. After treatment with aluminum hydroxide, K release from the exchangeable fraction was reduced in Caribia due to the blocking of the exchange sites but release of Knex was not affected. The treatment increased the amount of Kex released from the High Terrace soil and the release of Knex remained negligible although with Ca2+ the distinction between Kex and Knex was unclear. The increase in Kex was attributed to the initially acidic conditions produced by adding AlCl3 which may have dissolved interlayered aluminum hydroxide from the vermiculite present, thus exposing trapped K as exchangeable K. The subsequent precipitation of aluminum hydroxide when NaOH was added did not interfere with the release of this K, and so was probably formed mostly on the surface of the dominant kaolinite. Measurement of availability of K by standard methods using NH4 salts could result in overestimates in High Terrace and this may be a more general shortcoming of the methods in kaolinitic soils.  相似文献   

2.
Abstract

Hydrangea ‘R.F. Felton’ plants were grown to flowering in a soilless potting medium that had been amended with aluminum nitrate [Al(NO3)3.9H2O], Kaolite (a calcined clay mineral, of which about 70% is amorphous cristobalite, tridymite, and mullite), or an aluminum (Al)‐rich water clarification sludge, or left unamended. Inclusion of 10% Kaolite (v/v) in the medium led to a marked increase in the Al content of the flowers and a corresponding increase in their blueness. Flower phosphorus (P) content was negatively correlated with blue color. High calcium (Ca) and potassium (K) contents of the flowers also contributed to blueness. High concentrations of manganese (Mn) had a small negative effect on blueness. Media that produced blue flowers had pH values of less than 4.9. DTPA extracts (2 mM; 1:1.5 v/v) of these low‐pH media contained at least 12 mg Al L‐1 at potting, rising to about 21 mg Al L‐1 at harvest.  相似文献   

3.
The growth of Helianthus annuus L. calli and plants was reduced in the presence of Na2SO4 (10, 25, 50, and 100 mM). SO42— and Na concentrations increased in stressed calli and plants while NO3, Cl, P, K, and Mg decreased in stressed plants and Ca in shoots. Stressed calli showed decreases of NO3, Ca, K, and Mg concentrations. Calli adapted to 50 mM Na2SO4 accumulated more K and Ca and less ammonium than stressed non‐adapted calli. Proline exhibited increases in stressed calli and plants that were accompanied by decreases of proline oxidase activities while pyrroline‐5‐carboxylate reductase (P5CR) and ornithine aminotransferase (OAT) activities increased. Adapted calli accumulated more proline and had higher P5CR and OAT activities than stressed non‐adapted calli. Glutamate concentration decreased with stress, together with a stimulation of cytosolic glutamine synthetase (GS1) and a decrease of plastidal GS (GS2) activity. These data strongly suggest that the increase of P5CR and GS1 activities are responsible for the decrease of glutamate concentration leading, together with the stimulation of OAT and the inhibition of the proline oxidation metabolism, to an increase of proline levels in Na2SO4‐stressed sunflower cells. These data also show that salt stress increases the release of endogenous ammonium and suggests that the increase of GS1 activity plays an important role in its elimination.  相似文献   

4.
Abstract

Greenhouse experiments were conducted for two years (1993–1994) with eggplants to study the impact of potassium (K) as K2SO4 (0.5 mM, 1 mM, 2 mM, and 3 mM) on molybdenum (Mo) distribution and on aspects of nitrate (NO3 ?) metabolism, and fruit quality. The nitrates and Mo in leaf blades, petioles, and fruits as well as foliar in vivo nitrate reductase (NR; E.C. 1.6.6.1) activity were analyzed. In view of these results, the K application at levels exceeding 0.5 mM K, altered the NO3 ? and Mo status and distribution in the aboveground organs of eggplant. The 3 mM K distributed the NO3 ? proportionally between leaf blades, petioles, and fruits. The 0.5 mM K and the 1 mM K increased the NO3 ? and Mo concentration in fruits, respectively. These results indicated the 3 mM K the most appropriate treatment for the greenhouse eggplant production under Mediterranean climate conditions, with reduced NO3 ? density in fruits for human consumption.  相似文献   

5.
Abstract

The ability of 7 day old wheat seedlings to take up nitrate or ammonium from hydroponic solution was measured. Seedlings were grown under fully aerated hydroponic conditions. The growth solution consisted of either 0.5 mM CaSO4 alone or in combination with high nitrate (5 mM NO3 ), high ammonium (2 mM NH4 +) or modified 1/10 Hoaglands solution with nitrate N only (14 mM) or ammonium N only (2 mM). After washing the roots for one hour in CaSO4, nitrate or ammonium uptake was measured with an ion selective electrode. Plants grown in high nitrate were unable to take up nitrate from a 0.1 mM external solution. Those grown in CaSO4 were able to take up nitrate at the same external concentration (flux = 10.2 +/‐ 3.0 μmol nitrate/g dry wtlbh). The same result was seen for plants grown in high ammonium vs those grown in CaSO4 (flux = 21.0 +/‐ 10.0 μmol/g dry wtlbh). Similar results were obtained when modified Hoagland's solution was substituted for the high N solutions. These data indicate that wheat roots possess both high and low affinity nitrate and ammonium uptake systems. The data further indicate that, for a given ion, the high and low affinity systems do not operate simultaneously under high N conditions. The high affinity system is switched off in the range of 1 mM for both ionic forms of N. Developmental studies show that the expression of the high affinity trait is reversible and may be induced (repressed) by conditioning for 24 h in low (high) N media. Plants grown in high N solutions showed efflux of the ion under assay conditions. Neither ion interfered with the induction/repression of the high affinity trait for the other under the conditions used in this study.  相似文献   

6.
The interactive effects of salinity and potassium (K+) availability on biomass production, water status, and ionic composition were investigated in Hordeum maritimum, an annual grass growing natively on saline soils. Plants were grown for 7 weeks on Hewitt nutrient solution supplied with NaCl (0, 100, 150, 200, and 300 mM) combined with low (0.232 mM) or high (5.8 mM) K+ levels. Independent of potassium availability, dry matter of both roots and shoots decreased consistently with increasing NaCl levels in the culture medium, in association with a significant reduction of the shoot water content. This salt‐induced growth reduction did not result from a restriction of K+ nutrition, since H. maritimum expressed similar growth under both low and high K+ supply. NaCl decreased shoot K+ concentrations. This effect was more pronounced in plants grown at high K+ supply than in plants grown at low K+ supply. This result suggests that the absorption systems were strongly selective for K+, and that this selectivity was enhanced by salt.  相似文献   

7.
The effect of increasing aluminum (Al) concentrations on root nutrient contents along with the concurrent translocation to the shoot of C4 plants prompted this study. Two‐week‐old maize (Zea mays cv XL‐72.3) plants were therefore submitted for 20 days to Al concentrations ranging from 0 to 3.00 mM in a medium with low ionic strength were used as a test system. Aluminum concentrations in root tissues showed a 3‐fold increase between 0 and 3.00 mM Al treatment, and was not detected in the shoot. Root plasma membrane‐H+ ATPase activity decreased after the 0.33 mg L‐1 Al treatment, while membrane permeability increased up to 1.00 mM Al treatment. Root and shoot biomass decreased after the 0.33 mM Al treatment. All elements in the roots, except potassium (K), manganese (Mn), and zinc (Zn) were highest for plants treated with 0.33 mM Al. Potassium increased continuously between 0 and 3.00 mM Al treatments, and iron (Fe) decreased above 0.33 mM. Only a slight decrease in nitrogen (N) was observed. All the measured nutrients in shoots, except N, Mn, and Fe decreased above 0.33 mM, but calcium (Ca) and magnesium (Mg) had little variation as Al varied. Data indicated that maximum net uptake for mineral nutrients, except Mn, occurred up to 0.33 mM Al. Translocation of phosphorus (P), K, Mn, and Zn decreased above 0.33 mM Al, N, and Ca decreased when any Al was added, and no clear trend was observed for Mg and Fe. Between the 0 and the 3.00 mM Al treatments, electrolytic conductance did not increased significantly indicating that the observed inhibitions of translocation from roots to shoots were not directly related to increasing membrane degradation.  相似文献   

8.
ABSTRACT

The present study was performed to characterize the interaction between nitrogen (N) form and availability with respect to growth, water relations, and mineral nutrition of wild swiss chard (Beta macrocarpa Guss). Plants were cultured hydroponically with two levels of N concentrations, high-N (2.5 mM) or low-N (0.5 mM), added as nitrate (NO? 3) or ammonium (NH+ 4). At high N, growth was affected significantly by N form. If the NO? 3 medium was considered as control, the use of NH+ 4 decreased dry matter production and leaf area by ca. 35%. Use of NH+ 4 led to water economy and did not affect the nutrient content of the plant tissues. Compared to growth with high N, plants growth fell in either low- NO? 3 or low- NH+ 4 medium. In this case, the difference between the two N sources was not significant. Our results showed that the replacement of NO? 3 by NH+ 4 as the N source decreased the NO? 3 concentration in consumable leaves and increased the water use efficiency.  相似文献   

9.
A study was conducted to quantify effects of soluble aluminum (Al) and gypsum (CaSO4) on initial root growth of three varieties of tall fescue (Festuca arundinacea). Experiments were performed in a growth chamber using hydroponic solutions containing Al from 0 to74 µM in combination with CaSO4 at 0 to10 mM. Seedlings were grown for 7 d, harvested, air dried, scanned, and weighed for treatment comparisons. Significant differences in root length existed between varieties in Al‐only solutions at low Al concentrations. All varieties showed reduced root growth at concentrations greater than 37 µM Al. Increased calcium (Ca2+) and sulfate (SO4 2?) at given concentrations of Al resulted in greater root growth. Relative root growth increased approximately 30% to >80% at 37 µM Al as CaSO4 increased from 2.5 to 10 mM. A simple logistic model adequately described the effects of Al and CaSO4 on root growth (r2 = 0.86, 0.95, and 0.96 for the three varieties).  相似文献   

10.
We examined the response of the tea plant (Camellia sinensis L.) to aluminum (Al) exposure under sterile conditions, focusing specifically on the secretion of low molecular mass organic compounds from roots. After germination in agar medium, tea seedlings together with medium were placed on agar containing 0.4?mM Al with 0.2% hematoxyline (hematoxylin-Al medium). The purple color of the hematoxylin-Al medium was observed to fade gradually, until none of the color remained 6 days later. The tea seedlings were then treated with simple calcium solution (0.2?mM, at pH 4.2) containing AlCl3, which ranged in concentration from 0 to 0.8?mM, for 24?hrs. The amount of oxalate secreted into the medium increased as the external Al concentration increased, while the concentrations of malate and citrate in the medium remained unchanged. Oxalate secretion started within 30?min after Al exposure and increased linearly thereafter. The findings demonstrated that oxalate was a key compound in the Al-tolerance mechanism employed by the tea plant, which detoxifies Al3+ externally in the rhizosphere. In addition to oxalate, caffeine was also secreted by tea roots in response to Al exposure. It is possible that caffeine excretion from the roots of tea plants may stimulate root growth through the inhibition of callose deposition in root tips.  相似文献   

11.
Abstract

Combined nitrogen [nitrate (NO3‐), ammonium (NH4+), and urea] will inhibit all components of symbiotic nitrogen (N2) fixation if present in sufficient concentrations. It is generally accepted that nitrate is particularly inhibitory to nodule growth and nitrogenase activity, and somewhat less inhibitory to the infection process. This project examined whether providing low (0.1 ‐ 0.5 mM) static concentrations of NO3‐ to pea (Pisum sativum L. cv. Express), seedlings could avoid the period of N hunger experienced prior to the establishment of N2 fixation, without delaying or reducing the symbiotic N2 fixation. All concentrations of NO3 ? tested significantly inhibited all measured components of N2 fixation. The nodulation process as measured by nodule number was inhibited to a similar degree as the other parameters. A concentration dependent response was evident, with 0.1 mM NO3 ? causing less inhibition than the 0.2 or 0.5 mM concentrations. Our results indicate the within the concentrations of 0.1 mM and 0.5 mM NO3 ?, it is not possible to stimulate the growth of pea plants without inhibiting nodulation and N2 fixation.  相似文献   

12.
ABSTRACT

High bicarbonate (HCO3 ?) of irrigation water can be detrimental to plant growth in sustainable horticultural production systems. The ability of arbuscular mycorrhizal fungi (AMF), ZAC-19, (composed of Glomus albidum, Glomus claroideum, and Glomus diaphanum) to enhance tolerance to HCO3 ? was tested on Rosa multiflora cv. Burr. Arbuscular mycorrhizal colonized and non-inoculated (non-AMF) plants were treated with 0, 2.5, 5, and 10 mM HCO3 ?. Increasing HCO3 ? concentration and associated high pH and electrical conductivity (EC)—reduced plant growth, nutrient uptake, and acid phosphatase activity, while increasing alkaline phosphatase activity (ALP). Inoculation with AMF enhanced plant tolerance to HCO3 ?, as indicated by greater growth (leaf, stem, and total plant dry weight, leaf area and leaf area ratio), leaf elemental concentration [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe), zinc (Zn), aluminum (Al), boron (B)], leaf chlorophyll concentration, higher mycorrhizal inoculation effect, lower root Fe reductase activity, and generally lower soluble ALP activity. While AMF colonization was reduced by increasing HCO3 ? concentration, colonization still occurred at high HCO3 ? concentration. At 2.5 mM HCO3 ?, AMF plant growth was comparable to plants at 0 mM HCO3 ?, further indicating the beneficial effect of AMF for alleviation of HCO3 ? plant stress.  相似文献   

13.
Rhizobial symbionts were isolated from the surface (0-0.5 M) and phreatic (3.9-5.0 M) root environments of a mature mesquite woodland in the Sonoran Desert of Southern California, and from variable depths (0-12 m) of non-phreatic mesquite ecosystems in the Chihuahuan Desert of New Mexico. They were tested for their ability to tolerate high salinity, and respire NO3 as mechanisms of free-living survival. Sixteen of 25 isolates were grown in yeast-extract mannitol (YEM) broth at NaCl concentrations of 2 (basal concentration), 100, 300, 500 and 600 mM, and their specific growth rates, cell dry weight and lag times were determined. Twenty of the 25 isolates were also grown in YEM broth under anaerobic conditions with or without 10 mM KNO3. Three categories of NaCl salinity responses were observed: (1) eight isolates showed decreased specific growth rates at NaCl concentrations of 100, 300 and 500 mM, but they nevertheless remained viable at 500 mM NaCl concentration; (2) the specific growth rate of six isolates increased significantly at 100 and 300 mM NaCl; and (3) specific growth rates of two isolates were significantly greater than the base-rate at all concentrations of NaCl. Five of 11 of the Bradyrhizobium isolates tested respired NO3, but showed no growth. Seven Rhizobium isolates, three from the deep (3.9-5 m) phreatic rhizobial community, and four from the surface community denitrified NO3 but only the isolates from the phreatic community displayed anaerobic growth. Long-term interactions between rhizobial and bradyrhizobial communities and the surface and phreatic root environments of the mature Sonoran Desert mesquite woodland appear to have selected for strains of NO3 respiring rhizobia, general salt tolerance of both rhizobial and bradyrhizobial symbionts, and strains of weak facultative halophilic bradyrhizobia. These survival characteristics of mesquite rhizobia may be important regarding mesquite's establishment and long-term productivity in marginal desert soils, and may provide novel types of rhizobia for food crops growing in harsh environments.  相似文献   

14.
Abstract

The Japanese woody plant Chengiopanax sciadophylloides is well known for its extraordinary accumulation of manganese (Mn), and is used as a model for studying Mn uptake and utilization by plants. To clarify the role of manganese dioxide (MnO2) solubilization for Mn acquisition and further Mn hyperaccumulation in this plant, we examined the lowering of pH in the rhizosphere and Mn accumulation of this plant using regenerated plants. Plants regenerated from C. sciadophylloides calli lowered the pH of the culture broth continuously and simultaneously solubilized MnO2 added to the medium. The Mn content of the plant increased up to 1,300 mg kg?1 within 4 weeks of culture. Release of protein or specific organic acid from the roots was not observed. The medium used for plant culture maintained MnO2 solubilization ability after removal of the plant; however, this ability was lost by adjustment to the same medium pH of pre-culture conditions. In addition, pH lowering and MnO2 solubilization were suppressed by adding 1 mmol L?1 of the plasma H+-ATPase inhibitor Na3VO4 to the medium, and completely inhibited when 5 mmol L?1 of Na3VO4 was added. These results suggested that H+ leaking from plasma H+-ATPase plays an important role in MnO2 solubilization in the rhizosphere of C. sciadophylloides and in Mn accumulation in this plant.  相似文献   

15.
ABSTRACT

Three vegetative rootstocks of plum (Prunus domestica), Marianna GF 8-1 (Prunus cerasifera × munsoniana), Myrobolan B (P. Cerasifera) and Pixy (P. Insititia) were grown in pots containing sand and irrigated with complete nutrient solution to investigate the effect of calcium sulfate supplied to the nutrient solution on plants grown under salt stress. Treatments were (1) control (C): nutrient solution alone; (2) S (salinity stress): 40 mM NaCl; (3) S+Ca1: 40 mM NaCl +2.5 mM calcium (Ca) and (4) S+Ca2: 40 mM NaCl + 5 mM Ca. Calcium was supplied as CaSO4. The plants grown under 40 mol L?1 NaCl produced less dry matter and had lower chlorophyll content than those without NaCl. Supplementary CaSO4 at both 2.5 and 5 mM concentrations ameliorated the negative effects of salinity on plant dry matter and chlorophyll content. Salt treatment impaired membrane permeability by increasing electrolyte leakage. The addition of calcium sulfate partially maintained membrane permeability. Sodium (Na) concentration in plant tissues increased in both leaves and roots of plants under the high NaCl treatment. Pixy had much lower Na. The CaSO4 treatments lowered significantly the concentrations of Na in both leaves and roots. Pixy was more tolerant to salinity than the other two rootstocks. The accumulation of Na in leaves and roots indicates a possible mechanism whereby Pixy copes with salinity in the rooting medium, and/or may indicate the existence of an inhibition mechanism of Na transport to leaves. Concentrations of Ca and K were lower in the plants grown at high NaCl than in those under the control treatment, and these two element concentrations were increased by calcium sulfate treatments in both leaves and roots, but remained lower than control values in most cases.  相似文献   

16.
Alleviation by calcium (Ca) of inhibition of soybean [Glycine max (L.) Merr. cv. ‘Ransom'] root elongation by hydrogen (H) and aluminum (Al) was evaluated in a vertical split‐root system. Roots extending from a limed and fertilized soil compartment grew for 12 days into a subsurface compartment containing nutrient solution with treatments consisting of factorial combinations of either pH (4.0, 4.6, and 5.5) and Ca (0.2, 2.0, 10, and 20 mM), Al (7.5, 15, and 30 μM) and Ca (2.0,10, and 20 mM) at pH 4.6, or Ca (2, 7, and 12 mM) levels and counter ions (SO4 and Cl) at pH 4.6 and 15 μM Al. Length of tap roots and their laterals increased with solution Ca concentration and pH value, but decreased with increasing Al level. Length of both tap and lateral roots were greater when Ca was supplied as CaSO4 than as CaCl2, but increasing Ca concentration from 2 to 12 mM had a greater effect on alleviating Al toxicity than Ca source. In the absence of Al, relative root length (RRL) of tap and lateral roots among pH and Ca treatments was related to the Ca:H molar activity ratio of solutions (R2≥0.82). Tap and lateral RRL among solutions with variable concentrations of Al and Ca at pH 4.6 were related to both the sum of the predicted activities of monomeric Al (R2≥0.92) and a log‐transformed and valence‐weighted balance between activities of Ca and selected monomeric Al species (R2≥0.95). In solutions with 15 μM Al at pH 4.6, response of tap and lateral RRL to variable concentrations of CaSO4 and CaCl2 were related to predicted molar activity ratios of both Ca:Al3+ (R2≥0.89) and Ca:3 monomeric Al (R2≥0.90), provided that AISO4 and AI(SO4)2 species were excluded from the latter index. In all experiments H and Al inhibited length of lateral roots more than tap roots, and a greater Ca:H or Ca:Al concentration ratio was required in solutions to achieve similar RRL values as tap roots.  相似文献   

17.
Abstract

A commercially blended 7–2–11 fertilizer containing 27 g ? kg‐1 soluble ammoniacal nitrogen (NH4‐N) was evaluated for ammonia (NH3) volatilization and injury to leatherleaf fern (Rumohra adiantiformis) and an indicator plant, tomato (Lycopersicon esculentum). Closed system laboratory incubation studies on pH‐buffered sand medium indicated a very highly significant response (p≤0.001) of NH3 volatilization to sand pH. The greatest risk from NH3 emissions at pH 8.6 and 32°C appeared to be in the 5 to 70 hour period after fertilizer application. Gypsum (CaSO4) did not affect NH3 volatilization. Ammonium nitrate (NH4NO3) was identified as the main source of NH3 volatilization from this fertilizer formulation, while on an equal mass basis, ammonium sulphate [(NH4)2SO4] was more important. Both tomato and immature leatherleaf fern fronds were highly sensitive to volatilized NH3 from the fertilizer. A critical phytotoxic NH3(aq) concentration in sand solution of 0.14 mM was estimated for immature fern fronds. Mature fern fronds were significantly more tolerant of NH3 emissions, which may explain their observed resistance to NH3 injury in the field. Assessment of selected soil and irrigation water pH's from a leatherleaf fern growing area in Florida indicated a strong likelihood that volatilized NH3 injury to foliage can occur under field conditions.  相似文献   

18.
单宁酸对不同pH茶园土壤中活性铝形态分布的影响   总被引:4,自引:0,他引:4  
采集云南省普洱市和江西省南昌县两地典型的茶园土壤,通过添加HCl和Ca(OH)2调节土壤pH,研究不同pH(3.0、3.5、4.0、4.5)茶园土壤添加0.4 mmol·kg 1、2.0 mmol·kg 1、4.0 mmol·kg 1、8.0 mmol·kg 1、12.0 mmol·kg 1单宁酸后,活性铝形态交换态铝(Al3+)、单聚体羟基铝[Al(OH)2+、Al(OH)+2]、酸溶无机铝[Al(OH)03]和腐殖酸铝[Al-HA]的分布特征。结果表明:单宁酸添加量为0~0.4 mmol·kg 1和0~2.0 mmol·kg 1时,江西南昌和云南普洱茶园土壤中交换态铝随土壤pH的增加呈明显下降趋势,而羟基态铝、酸溶无机铝和腐殖酸铝呈逐渐上升趋势;当单宁酸浓度增至2.0 mmol·kg 1以上时,随土壤pH的增加,单宁酸对活性铝释放的抑制作用增强,各形态活性铝含量都较低,且不同pH处理土壤间的差异不显著。0~20 cm土层土壤与20~40 cm土层土壤变化规律大致相似,总体上看,下层土壤活性铝总量高于上层。云南普洱茶园土壤活性铝总量明显高于江西南昌的茶园土壤。相关分析表明,0~20 cm土层土壤中,pH与羟基态铝、腐殖酸铝、土壤酸碱缓冲容量(pHBC)呈正相关(r=0.796,P0.01;r=0.960,P0.01;r=0.852,P0.01);pHBC与交换态铝、羟基态铝呈负相关(r=0.904,P0.01;r=0.645,P0.05),而与腐殖酸铝呈正相关(r=0.795,P0.01)。同时,单宁酸加入浓度为0~0.4 mmol·kg 1时,土壤pH明显上升,之后随着单宁酸加入浓度的增加土壤pH持续下降,土壤pH(YpH)与单宁浓度(CDN)在此阶段基本符合方程:YpH=0.04CDN+3.82(R2=0.95,P0.01)的线性变化趋势,在单宁酸浓度达到8.0~12.0 mmol·kg 1时,土壤pH基本不再变化。  相似文献   

19.
Abstract

We characterized and quantified the chemical form of cadmium (Cd) in intercellular solutions of the apparent free space (AFS) of roots and leaves of bush bean plants. Plants were grown in sand and treated daily for five days with Hoagland nutrient solution containing, respectively, 0.5 and 1 mM Cd(NO3)2. The intercellular solution was collected by infiltration‐extraction procedure using successively distilled water, 5 mM CaCl2, and 5 mM EDTA in order to collect separately the water soluble, exchangeable, and complexed Cd. The ability of extradant solutions to remove Cd from the AFS of roots and leaves was: H2O < CaCl2 ? EDTA, confirming that most of Cd was bound at the cell wall. Voltarimetric technique showed that water‐soluble Cd in intercellular solutions of the root and leaf tissues was as the Cd2+ ion, suggesting that Cd might be taken up by the roots and transported to leaves as the free ion.  相似文献   

20.
《Journal of plant nutrition》2013,36(8):1441-1452
Abstract

Saltgrass [Distichlis spicata (L.) Greene var. stricta (Gray) Beetle], accession WA-12, collected from a salt playa in Wilcox, AZ, was studied in a greenhouse to evaluate its growth responses in terms of shoot and root lengths, shoot dry-matter yield, and nitrogen (N) (regular and 15N) absorption rates under control and salt (sodium chloride, NaCl) stress conditions. Plants were grown under a control (no salt) and three levels of salt stress (100, 200, and 400 mM NaCl, equivalent to 5850, 11700, and 23400 mg L? 1 sodium chloride, respectively), using Hoagland solution in a hydroponics system. Ammonium sulfate [(15NH4)2SO4], 53% 15N (atom percent 15N) was used to enrich the plants. Plant shoots were harvested weekly, oven-dried at 60°C, and the dry weights measured. At each harvest, both shoot and root lengths were also measured. During the last harvest, plant roots were also harvested and oven-dried, and dry weights were determined and recorded. All harvested plant materials were analyzed for total N and 15N. The results showed that shoot and root lengths decreased under increasing salinity levels. However, both shoot fresh and dry weights significantly increased at 200 mM NaCl salinity relative to the control or to the 400 mM NaCl level. Shoot succulence (fresh weight/dry weight) also increased from the control (no salt) to 200 mM NaCl, then declined. The root dry weights at both 200 mM and 400 mM NaCl salinity levels were significantly higher than under the control. Concentrations of both total-N and 15N in the shoots were higher in NaCl-treated plants relative to those under the control. Shoot total-N and 15N contents were highest in 200 mM NaCl-treated plants relative to those under the control and 400 mM salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号