首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Chemical speciation and bioaccumulation factor of iron (Fe), manganese (Mn), and zinc (Zn) were investigated in the fractionated rhizosphere soils and tissues of sunflower plants grown in a humic Andosol. The experiment was conducted for a period of 35 days in the greenhouse, and at harvest the soil system was differentiated into bulk, rhizosphere, and rhizoplane soils based on the collection of root-attaching soil aggregates. The chemical speciations of heavy metals in the soil samples were determined after extraction sequentially into fractions classified as exchangeable, carbonate bound, metal–organic complex bound, easily reducible metal oxide bound, hydrogen peroxide (H2O2)–extractable organically bound, amorphous mineral colloid bound, and crystalline Fe oxide bound. Iron and Zn were predominantly crystalline Fe oxide bound in the initial bulk soils whereas Mn was mainly organically bound. Heavy metals in the exchangeable form accumulated in the rhizosphere and rhizoplane soils, comprising <4% of the total content, suggesting their relatively low availability in humic Andosol. Concentrations of organically bound Fe and Mn in soils decreased with the proximity to roots, suggesting that organic fraction is the main source for plant uptake. Concentrations of Mn and Zn in the metal–organic complex also decreased, indicating a greater ability of sunflower to access Mn from more soil pools. Sunflower showed bioaccumulation factors for Zn, Fe, and Mn as large as 0.39, 0.05, and 0.04 respectively, defining the plant as a metal excluder species. This result suggests that access to multiple metal pools in soil is not necessarily a major factor that governs metal accumulation in the plant.  相似文献   

2.
长期施肥对黑土磷和锌形态转化的影响   总被引:5,自引:2,他引:3  
【目的】东北黑土地为我国重要粮食生产基地高肥力的黑土仍需施用磷肥以保障粮食高产。探讨长期施肥对土壤磷和锌形态转化机制,为确保黑土区粮食和环境安全提供理论依据。【方法】本研究以设在典型黑土区13年的长期施肥定位试验为研究对象,设不施肥(CK)、施氮磷钾肥(NPK)、施氮磷钾加不同量有机肥(NPK+OM_1、NPK+OM_2、NPK+OM_3)共5个处理分析土壤不同形态磷和锌含量。【结果】长期施化肥对土壤有机磷含量影响不显著但土壤无机磷含量显著增加;长期不施肥黑土有效磷含量为32.6 mg/kg,长期施化肥加有机肥可显著增加土壤有效磷含量;连续13年施用磷肥,土壤中的磷每年平均累积16 kg/hm~2,其主要以铝磷(A1-P)和铁磷(Fe-P)的形态在土壤中储存,其中约20%仍为有效磷;而磷肥加有机肥的3个处理,连续施用13年后有机磷含量增加了47.2~67.9 mg/kg无机磷含量增加253.4~410.6 mg/kg,土壤全磷平均分别以每年49.4(NPK+OM_1)、64.2(NPK+OM_2)、70.4(NPK+OM_3)kg/hm~2的量累积在土壤中,其中15%~21%仍为有效磷主要以有效性较高的二钙磷(Ca_2-P)、八钙磷(Ca_8-P)、Al-P、Fe-P存在于土壤中,只有10%~21%的磷以有机磷的形态累积在土壤中,并且这个比例随有机肥施用量的增加而降低。黑土长期不施肥土壤有效锌(DTPA-Zn)含量可达1.96mg/kg,长期施化肥、化肥加有机肥均可显著增加土壤DTPA-Zn含量;长期施化肥使黑土酸化,改变了土壤锌形态增加了土壤交换态锌和无定型铁氧化物结合态锌的含量,化肥加有机肥显著增加了除矿物态锌以外的其他各形态锌的含量其中55%~88%以无定型铁氧化物结合态锌储存在土壤中。通径分析结果显示,Ca_2-P对DTPA--Zn影响最大,Ca_8-P、Al-P、Fe-P通过Ca2-P间接影响DTPA-Zn含量。【结论】长期施入黑土的磷主要以有效性较高的无机态磷储存在土壤中,锌主要以无定型铁氧化物结合态储存在土壤中。黑土中磷与锌未表现出拮抗作用且有效性高的Ca_2-P对DTPA-Zn含量的影响最大且二者呈正相关关系。  相似文献   

3.
Abstract

Ryegrass was grown under greenhouse conditions in pots containing two types of calcareous soil. After 8 harvests, the soil was left in the pots for a simulated fallow period, then reseeded with ryegrass, from which 4 further harvests were obtained. The manganese (Mn) content in the soil samples, taken before seeding and after intensive cropping, was fractionated chemically and physically. Although different trends were apparent in the different fractions, ryegrass cropping enhanced the overall mobilization of soil Mn, which easily surpassed the cumulative Mn uptake. The organically bound Mn and clay‐associated Mn fractions released significant amounts of the element, whereas the behavior of exchangeable Mn, Fe‐oxide associated Mn and sand‐associated Mn fractions varied in the two different soils studied. The silt‐associated Mn fractions increased significantly in both soils.  相似文献   

4.
研究了1989-2009年间长期不同施肥方式对华北地区典型壤质潮土微量元素全量及有效性的影响。田间试验施肥处理包括:有机肥(OM)、1/2OM 1/2化肥氮磷钾(NPK)、NPK、NP、PK、NK和不施肥(CK),每个处理4个重复。结果显示,经过长期不同施肥,铁(Fe)、锰(Mn)、铜(Cu)、锌(Zn)等微量元素在表层土壤(0~20cm)中均有一定积累,与其在不同土层中的迁移有关。形态分级提取结果表明,土壤中有效态铁(DTPA-Fe)、铜(DTPA-Cu)、锌(DTPA-Zn)含量高于其在碱性土壤中的最低标准,而有效态锰(DTPA-Mn)的含量则相对较低;残渣态(Residual-faction)是微量元素在土壤中的主要形态,分别占其全量的>90%(Fe)、>54%(Mn)、>70%(Cu)、>70%(Zn)。有机质在土壤中的积累通过多种机制提高了有效态、弱酸溶解态(Acid-soluble-fraction)及可氧化态(Oxidizable-faction)微量元素的含量,有效缓解了土壤有效态锰含量的不足,抑制了磷与锌的沉淀反应,是影响微量元素形态转化的主要原因。钾肥的施用同样提高了有效态及弱酸溶解态微量元素的含量,但降低了铁、锰在表层土壤中的全量;而磷肥施用则通过沉淀反应降低了有效态及弱酸溶解态微量元素的含量,提高了铜、锌在表层土壤中的全量。  相似文献   

5.
稻草与生石灰对设施土壤微量元素含量和番茄产量的影响   总被引:3,自引:0,他引:3  
为了探究设施内添加稻草与生石灰对土壤微量元素含量和番茄产量的影响,以长期施肥定位试验为依托,比较了施用鸡粪(M)的基础上,添加稻草(MR)、生石灰(MCa)、稻草与生石灰同时添加(MRCa)各处理全土及各粒级团聚体中有效态Fe、Mn、Cu、Zn含量和番茄产量的变化。结果表明:(1)添加稻草可增加土壤中有效态Fe、Mn、Zn含量,MR处理较M处理分别增加3.2%,80.9%,15.1%,对有效态Cu含量无显著影响;添加生石灰也可增加土壤中微量元素含量,其中Mn含量增加显著。土壤中有效态Fe、Mn、Cn、Zn含量与pH呈极显著负相关(P<0.01),与有机质含量呈极显著正相关(P<0.01)。(2)随着土壤团聚体粒级的减小,有效态微量元素含量呈下降趋势。添加稻草和生石灰可增加1~0.25mm粒级中有效态Mn含量,MRCa处理较其他处理增加6.6%~46.6%;添加稻草可增加<0.25mm粒级中有效态Zn含量。土壤中有效态Fe含量与<1mm粒级中含量呈显著正相关(P<0.01);土壤中有效态Mn、Zn含量分别与各粒级中含量呈显著正相关(P<0.01);土壤中有效态Cu含量与1~0.25mm粒级中含量呈显著正相关(P<0.01)。(3)施入稻草或生石灰可增加番茄产量,且稻草和生石灰同时施入产量最高,MRCa处理较MCa、MR处理分别增加12.6%,33.8%。土壤有效态Fe、Cu含量与产量正相关,其中有效态Fe含量对产量具有直接作用,决策系数最高,土壤有效态Cu含量对产量具有间接作用。因此,可以通过长期添加稻草和适量生石灰缓解设施土壤微量元素短缺的现状,且可获得最高作物产量,为设施内土壤可持续利用和设施农业可持续发展提供保障。  相似文献   

6.
The effects of application of composted olive mill wastewater sludge (A) and depotassified sugarbeet vinasse (V) on total diethylenetriaminepentaacetic acid (DTPA) and sequential extracted micronutrients were investigated. The mineralogy of the fine fraction of soils was also studied. The soils used were a Typic Rhodoxeralf (soil R), a Typic Xeropsamment (soil S), and a Typic Xerorthent (soil C). Fertilization with A and V during 3 years, in general did not significantly affect the total concentration of Fe, Cu, Mn, and Zn versus the control. However, the elements extracted with DTPA generally increased with the organic amendments, more with A than with V. The BCR (European Community Bureau of Reference) sequential extraction indicated that the addition of organic matter generally increased Zn and Mn in the two more available fractions. A great amount of Fe was found in the second and third fractions from the unamended and amended soils. Nevertheless, the sum of the three fractions was enhanced for the organic amendment, except for calcareous soil. The distribution of these elements in the different fractions was significantly affected by the type of soil. The addition of both fertilizers caused modifications in particle size and consequence redistribution of the calcite content between the different fractions.  相似文献   

7.
Adamo  Paola  Dudka  S.  Wilson  M. J.  McHardy  W. J. 《Water, air, and soil pollution》2002,137(1-4):95-116
The sequential extraction procedure proposed by the European Commission Measurement and Testing Programme, combined with Scanning Electron Microscopy and Energy Dispersive X-ray Analysis(SEM/EDS), was applied to identify and quantify the chemical andmineralogical forms of Cu, Ni, Fe, Mn, Zn, Pb, Cr and Cd presentin the topsoil from a mining and smelting area near Sudbury (Ontario, Canada). The possible mobility of the chemical forms was also assessed. The metal fractions: (1) soluble and exchangeable, (2) occluded in manganese oxides and in easily reducible iron oxides, (3) organically bound and in form of sulphides, (4) residual mainly present in the mineral lattice structures were separated. Cu and Ni were the major metallic contaminants, occurring in soils in broad ranges of concentrations: Cu 11–1890 and Ni 23–2150 mg kg-1. Cu was uniformly distributed among allthe extracted fractions. Ni was found associated mainly withthe residual forms, accounting for 17–92%, with an averageof 64%, of the total Ni present in the soils. Fe, Mn, Zn,Pb, Cr and Cd, while occurring in most analysed samples innormal soil concentrations, were primarily held in theresidual mineral fraction (on average >50%). The solubleand exchangeable forms made a small contribution (≤8.1%)to the total content of metals extracted. At least 14% ofthe total Cd, Mn and Pb was mobilised from the reducibleforms. The oxidizable fraction assumed mean values higher than10% only for Pb and Zn. Statistical treatment of the experimental data showed significant correlations between totalmetal content of the soils, some soil properties such as pH value, clay and organic matter content, and metal concentrationsin the various fractions. SEM/EDS analysis showed Fe in form ofoxides and sulphides in soils and Cu, Ni, Mn, Zn and Cr in association with iron oxides. Numerous black carbonaceous particles and precipitates of aluminium fluoride salts, observedin the solid residue left after `total’ digestion, were found tocontain Fe, Ni and Cr.  相似文献   

8.
Iron (Fe) availability is low in calcareous soils of southern Iran. The chelate Fe-ethylenediamine di (o-hydroxy-phenylacetic acid) (Fe-EDDHA), has been used as an effective source of Fe in correcting Fe deficiency in such soils. In some cases, however, its application might cause nutritional disorder due to the antagonistic effect of Fe with other cationic micronutrients, in particular with manganese (Mn). A greenhouse experiment was conducted to evaluate the influence of soil and foliar applications of Fe and soil application of manganese (Mn) on dry matter yield (DMY) and the uptake of cationic micronutrients in wheat (Triticum aestivum L. var. Ghods) in a calcareous soil. Results showed that neither soil application of Fe-EDDHA nor foliar application of Fe sulfate had a significant effect on wheat DMY. In general, Fe application increased Fe uptake but decreased that of Mn, zinc (Zn), and copper (Cu). Application of Mn increased only Mn uptake and had no significant effect on the uptake of the other cationic micronutrients. Iron treatments considerably increased the ratio of Fe to Mn, Zn, Cu, and (Mn + Zn + Cu). Failure to observe an increase in wheat DMY following Fe application is attributed to the antagonistic effect of Fe with Mn, Zn, and Cu and hence, imbalance in Fe to (Mn + Zn + Cu) ratio. Due to the nutritional disorder and imbalance, it appears that neither soil application of Fe-EDDHA nor foliar application of Fe-sulfate is appropriate in correcting Fe deficiency in wheat grown on calcareous soils. Hence, growing Fe-efficient wheat cultivars should be considered as an appropriate practice for Fe chlorosis-prone calcareous soils of southern Iran.  相似文献   

9.
The production of secondary metabolites by plants growing in natural populations is conditioned by environmental factors. In the present study, we have investigated the relationships among soil properties, micronutrients in soils and plants, and cardenolide production from wild Digitalis obscura (Scrophulariaceae) populations. Young and mature leaves and soil samples were collected in ten different populations, corresponding to three Mediterranean bioclimatic belts (Thermo‐, Meso‐, and Supramediterranean belts). Soil (total and EDTA‐extractable) and leaf micronutrients (Fe, Mn, Zn, and Cu), and leaf cardenolide accumulation have been determined. Significant negative correlations were observed between Fe, Mn or Zn concentration in leaves and soil pH, as well as between Fe or Mn in leaves and carbonate content of soils. Only EDTA‐extractable Mn was significantly correlated with Mn content in the plants. With regard to cardenolide content in leaves, this parameter was negatively correlated with Znleaf in young leaves and with Mnleaf in old leaves. Positively correlated, however, were Fe and cardenolide content in young leaves. The influence of environmental conditions and leaf micronutrient contents on cardenolide accumulation is discussed.  相似文献   

10.
万欣  董元华  王辉  李建刚  宋丽芬 《土壤》2013,45(4):695-699
对山东省海阳地区150个不同种植年限的番茄大棚土壤重金属元素的分布特征进行了调查研究.结果表明,该地区番茄大棚土壤Fe、Zn、Cu、Mn含量平均值为18 874、80.1、27.7、467.5 mg/kg,变异系数26.7% ~ 39.2%,具有一定的空间变异性.该地区番茄大棚土壤Cu和Zn元素含量在种植年限为1~ 10年间逐年增加,而在种植年限11 ~ 17年间呈降低的趋势,番茄大棚土壤Cu和Zn元素含量随种植年限变化的规律与大棚土壤施肥量以及土壤pH的变化有关;随着蔬菜温室使用年限的增加,土壤Mn含量有逐年降低的趋势,Fe元素含量变化趋势不明显.  相似文献   

11.
Abstract

The accumulation of heavy metals in tea leaves is of concern because of its impact on tea quality. This study characterized long‐term changes of soil properties and heavy‐metal fractions in tea gardens and their effect on the uptake of metals from soils by the plants. Soil and tea leaf samples were collected from five plantations with a history of 2–70 years in Jinghua, Zhejiang Province, southeast China. The six chemical fractions (water‐soluble, exchangeable, carbonate‐bound, organic‐matterbound, oxide‐bound, and residual forms) of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), manganese (Mn), lead (Pb), and zinc (Zn) in the soils were characterized. Dissolved organic‐matter accumulation in the soils and effects of low‐molecular‐weight organic acids on solubility of soil heavy metals were also tested. Long‐term tea plantation use resulted in accumulation of dissolved organic matter, decrease of soil pH, and elevation of water‐soluble and exchangeable metal fractions, thereby increasing metal contents in leaves. The influence was more significant when soil pH was less than 4.4. The results indicated that both acidification and accumulation of dissolved organic matter induced by tea plantations were also important causes of increased accumulation of the metals in the tea leaves. This was particularly true for the soils polluted with low concentration of heavy metals, because availability of the metals in these soils was mainly controlled by pH and dissolved organic matter.  相似文献   

12.
Abstract

A greenhouse experiment was conducted to compare MnSO4 and MnEDTA as Mn sources. Four soil‐applied rates of each source were applied to two Coastal Plain soils, a Leefield s (pH 6.3) and an Alapaha is (pH 7.0). Plants were grown for 40 days and dry tissue weights were recorded along with leaf contents of Mn, Zn, Fe and Cu. The same ions were extracted from the soil with DTPA. The chelate source caused no differences in either extractable soil Mn or plant Mn between soils or among rates even when added at its highest rate of 2 μgMn/g. The sulfate source increased extractable soil Mn and plant Mn over the various rates but more so for the Alapaha soil than for the Leefield. Plant weights were not different between sources except on the averages for the Leefield soil. However, for the Leefield soil and the sulfate source, plant weights were lower for the check than for intermediate Mn rates due to Mn deficiency and lower for the high Ma rate (50 μg/g) presumably due to toxicity. A correlation coefficient of 0.866** was obtained for soil‐extracted Mn versus plant Mn concentration indicating that the DTPA was a good extractant for these two soils. High correlations between plant and soil Mn versus plant and soil Zn, Fe, and Cu for the chelate source showed that the MnEDTA affected metal ion availabilities other than just Mn. It was concluded that the MnSO4 was the better source at the rates used and that for these soils the best rate was S μgMn/g applied to the soil.  相似文献   

13.
Abstract

Speciation study of microelements in soils is useful to assess their retention and release by the soil to the plant. Laboratory and greenhouse investigations were conducted for five soils of different agro‐ecological zones (viz., Bhuna, Delhi, Cooch‐Behar, Gurgaon, and Pabra) with diverse physicochemical properties to study the distribution of zinc (Zn) among the soil fractions with respect to the availability of Zn species for uptake by rice plant. A sequential extraction procedure was used that fractionated total soil Zn into water‐soluble (WS), exchangeable (EX), specifically adsorbed (SA), acid‐soluble (AS), manganese (Mn)‐oxide‐occluded (Mn‐OX), organic‐matter‐occluded (OM), amorphous iron (Fe)‐oxide‐bound (AFe‐OX), crystalline Fe‐oxide‐bound (CFe‐OX), and residual (RES) forms. There was a wide variation in the magnitude of these fractions among the soils. The studies revealed that more than 90% of the total Zn content occurred in the relatively inactive clay lattice and other mineral‐bound form (RES) and that only a small fraction occurred in the forms of WS, EX, OM, AFe‐OX, and CFe‐OX. Rice (Oryza sativa L.) cultivars differ widely in their sensitivity to Zn deficiency. Results suggested that Zn in water‐soluble, organic complexes, exchange positions, and amorphous sesquioxides were the fractions (pools) that played a key role in the uptake of Zn by the rice varieties (viz., Pusa‐933‐87‐1‐11‐88‐1‐2‐1, Pusa‐44, Pusa‐834, Jaya, and Pusa‐677). Isotopic ally exchangeable Zn (labile Zn) was recorded higher in Typic Ustrochrept of Pabra soil, and uptake of Zn by rice cultivars was also higher in this soil. The kinetic parameters such as maximum influx at high concentrations (Imax) and nutrient concentration in solution where influx is one half of Imax (Km) behaved differentially with respect to varieties. The highest Imax value recorded was 9.2×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate for Pusa‐933‐87‐1‐11‐88‐1‐2‐1, and the same was lowest for Pusa‐44, being 4.6×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate. The Km value was highest for Pusa‐44 (2.1×10?4µmol cm?2 s?1) and lowest for Pusa‐933‐87‐1‐11‐88‐1‐2‐1 (1.20×10?4µmol cm?2 s?1). The availability of Zn to rice cultivars in Typic Ustrochrepts of Bhuna and Delhi soils, which are characterized by higher activation energy and entropy factor, was accompanied by breakage of bonds or by significant structural changes.  相似文献   

14.
The relationships between plant and soil systems were investigated using multivariate statistical methods and relative ionic impulsions. Soil samples were taken from three locations and wild plant species consisted of:Poa, Pteridium aquilinum, Diplotaxis, Plantago lanceolata andTrifolium repens. The content of Mg, Ca, Na, K, Mn, Fe, Pb, Co, Ni, Cu, Zn and Cr in soils and plants was determined. A five-step chemical fractionation procedure (speciation) was applied to soil samples. Total metal contents were determined and amounts extracted with HCl, EDTA and DTPA were measured. Pb, Co, Ni, Cu, Fe, Zn, Cd and Cr in soils (considered as microconstituents for plants) show a greater number of statistically significant relationships with plant contents than those shown by macroconstituents (Mg, Ca, Na, K and Mn). On the other hand, only Zn and Pb extracted with EDTA and DTPA seem to be related to metal contents in wild plants. When using relative ionic impulsions, any soil fraction (obtained from the fractionation procedure, including the soluble fraction, which is the sum of all the fractions except the residual) is suitable for the study of soil-plant system, suggesting a global balance among all the fractions. Our results suggested an active assimilation for K and a passive uptake for Na, Ca and Mn. Furthermore, Fe seemed to favour the active assimilation of the other microelements.  相似文献   

15.
Abstract

Three different chemical extractants were evaluated as to their extraction efficiency for copper (Cu), zinc (Zn), lead (Pb), aluminium (Al), iron (Fe), chromium (Cr), manganese (Mn), potassium (K), magnesium (Mg), and calcium (Ca) on forest soil profiles from the Romanian Carpathians. The extractants were hot 14 M nitric acid (HNO3), 0.05 M hydrochloric acid (HCl), and 0.1 M sodium pyrophosphate. By comparing amounts extracted by 0.05 M HCl and 0.1 M sodium pyrophosphate relative to that dissolved by hot 14 M HNO3, some conclusions were drawn concerning the chemical forms of the metals in the extractable pool. The amount released by 0.05 M HCl was generally less than 10% of the HNO3‐extractable fraction but showed considerable variation among the elements studied. The relative amount extracted by pyrophosphate increased with organic‐matter content of the soils for Cu, Zn, Pb, Al, Fe, and Cr; stayed more or less constant for Mn, K, and Mg; and decreased for Ca. These findings are discussed with respect to the different binding forms of the metals in the soil and the processes affecting their mobility. From the present results, the metals were ranked as follows with respect to their ability to form organic complexes in natural soils: Cu>Cr, Pb>Ca>Al>Fe, Zn, Mn, K>Mg. However, the use of cold dilute HCl as a fractionation step may be questionable in cases of soils with a high content of substances possessing large neutralization capacity for protons.  相似文献   

16.
Abstract

Municipal waste compost can improve the fertility status of tropical soils. The redistribution of iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in tropical soils after amendment with solid municipal waste compost was investigated. Four tropical agricultural soils from Mali characterized by poor trace‐element status were amended with compost and incubated for 32 weeks at 35°C. The soil were analyzed at the beginning and the end of the incubation experiment for readily available fractions, organic fractions, and residual fractions as operationally defined by sequential extraction. Readily available Fe increased significantly with compost application in most soils. Readily available Mn was mostly unaffected by compost application. After 32 weeks, readily available Zn had increased, and readily available Cu had decreased. Readily available levels of the elements remained greater than deficiency levels in the compost‐amended soils. Organic fractions of the elements increased after compost addition. The organic fractions and residual forms, depending on the element and the soil, remained constant or increased within the duration of the experiment.  相似文献   

17.
Abstract

A compost of high copper (Cu) and zinc (Zn) content was added to soil, and the growth of barley (Hordeum vulgare L.) was evaluated. Four treatments were established, based on the addition of increasing quantities of compost (0, 2, 5, and 10% w/w). Germination, plant growth, biomass production, and element [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), iron (Fe), Cu, manganese (Mn), and Zn] contents of soil and barley were determined following a 16‐week growing period. Following harvesting of the barley, analysis of the different mixtures of soil and compost was performed. Micronutrient contents in soils as affected by compost additions were determined with diethylene–triamine–pentaacetic acid (DTPA) (Cu, Mn, Fe, and Zn) or ammonium acetate [Ca, Na, Mg, K, cation exchange capacity (CEC)] extractions, and soils levels were compared to plant uptake where appropriate. Increasing rates of compost had no affect on Ca, Mg, or K concentration in barley. Levels of Cu, Zn, Mn, and Na, however, increased with compost application. High correlations were found for DTPA‐extractable Cu and Zn with barley head and shoot content and for Mn‐DTPA and shoot Mn content. Ammonium acetate–extractable Na was highly correlated with Na content in the shoot. High levels of electrical conductivity (EC), Cu, Zn, and Na may limit utilization of the compost.  相似文献   

18.
Assisted phytoremediation procedures have been widely employed as soil removal instrument of heavy metals from contaminated soils. Rhizosphere processes have a major impact on pb and Zn availability and its fractions in soils. The present study evaluates the effects of EDTA, citric acid (CA) and poultry manure extract (PME) on bioavailability and fractionation of pb, Zn in both the rhizosphere of sunflower (Helianthus annuus L.) and bulk soil. EDTA and CA were added to soils at the rates of 0, 0.5 and 1 mmol kg?1 soil and PME at 0, 0.5 and 1 g kg?1 soil as factorial in a completely randomized pattern with three replicates in greenhouse condition. Results showed that chelator application had a significant impact (p < 0.05) on pb, Zn extraction by different extractants and its fractions in soils. The order of concentrations of pb, Zn present in different fractions in soil treated by chelators was: oxides-bounded fraction > residual fraction > OM-bounded fraction > carbonate-bounded fraction > exchangeable fraction. Biochemical soil characteristics in the sunflower rhizosphere change resulting from its roots contributing to pb, Zn decline in mobile soil fractions, and change in soil pb, Zn fractions that are generally regarded as more stable.  相似文献   

19.
淮南煤矿复垦区土壤重金属含量分布及潜在生态风险评价   总被引:2,自引:1,他引:1  
以淮南矿区煤矸石充填复垦地为研究对象,对该复垦区不同土地利用方式(小麦地、桃林、蔬菜大棚、油菜地)下土壤Cd,Zn,As,Ni,Cu,Pb,Cr,Mn共8种重金属含量进行了分析和评价。结果表明,相对土壤背景值,该复垦区土壤中Zn,Cr,Mn,As污染较为严重相对未复垦区,复垦区土壤中的Zn,Cd,As分别是未复垦区的4.38,2.57和2.20倍,具有明显的累积现象。不同土地利用方式土壤重金属含量差异较大,小麦地和桃林地的Zn,Cd,As含量远大于油菜地和蔬菜大棚,Cr含量则表现为桃林地、蔬菜地远大于小麦地和油菜地,Ni,Cu,Mn,Pb在4种土地利用类型下的差异不显著。土地利用方式、施肥以及受采矿活动的影响程度不同是导致土壤重金属含量差异的主要原因。淮南煤矿复垦土壤中各重金属的生态风险顺序为:Cd>Zn>As>Ni>Cu>Pb>Cr>Mn。Cd的潜在生态风险值最大(89.71),属于强生态风险,其余元素均为轻微风险。不同土地利用方式的风险顺序为:小麦地>桃林地>蔬菜大棚>油菜地。  相似文献   

20.
Abstract

Reclamation of sandy and calcareous desert lands in. Egypt for intensive cropping has considerable effect on the fertilizer requirement for most crops. The yield records, together with frequent visual appearances of micronutrient deficiency symptoms on economically important crops were the main reasons for investigating the status of micronutrients in these areas by means of leaf and soil analyses. Sites were selected to represent sandy and calcareous soils in newly reclaimed areas as well as loamy alluvial ones in the Nile‐Valley and Delta. Over 10000 soil and leaf samples were collectes in the last 5 years to evaluate the soil/plant fertility status within the area. The major deficiencies were found to be of Fe Mn and Zn revealed in both soil and plant analyses. Regarding soil type effects, Fe‐deficiency dominated on calcareous soil, Zn‐deficit on the sandy soils and Mn‐deficiency mostly on alluvial soils. Leguminous crops were most sensitive to Fe‐deflciency whereas cereals; especially maize and rice were most sensitive to Zn‐deficiency. It is problem that using Zn, Mn, Fe fertilizer will become a common practice in Egypt for different crops in the near future.

In some west‐Delta calcareous areas, high B was found in both soils and plants. Also, Cu accumulation accurred due to the heavy use of Cu‐fungicides which may eventually become a major pollution problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号