首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The viability and infectivity of Cryptosporidium parvum (C. parvum) oocysts, detected in water samples collected from river water in Hokkaido, were investigated using Severe Combined Immunodeficient (SCID) mice. The water samples collected from September 27 through October 10, 2001 by filtration using Cuno cartridge filters were purified and concentrated by the discontinuous centrifugal flotation method. From 1.2 x 10 (5) liters of the raw river water, approximately 2 x 10(4) oocysts were obtained and designated as Hokkaido river water 1 isolate (HRW-1). Oocyst identification was carried out using microscopic and immunological methods. Six 8-week-old female SCID mice were each inoculated orally with 1 x 10 (3) oocysts. Infection was successfully induced, resulting in fecal oocyst shedding. Oocysts were then maintained by sub-inoculation into SCID mice every 3 months. Infectivity was evaluated by making comparisons with two known C. parvum stocks, HNJ-1 and TK-1, which were bovine genotypes detected in fecal samples from a cryptosporidiosis patient and young cattle raised in Tokachi, Hokkaido respectively. The oocyst genotypes were determined from a small subunit ribosomal RNA (SSU-rRNA) gene by polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) analysis. No significant differences were observed in the average number of oocysts per gram of feces (OPG) in any of the isolates. Our data indicates that the C. parvum oocysts detected in the sampled river water were of C. parvum genotype 2. Moreover, our data on the continued isolation, detection and identification of the C. parvum isolates is consistent with the available epidemiological data for the Tokachi area.  相似文献   

2.
Infectivity of a novel type of Cryptosporidium andersoni to laboratory mice   总被引:3,自引:0,他引:3  
Previously, we reported 'a novel type' of Cryptosporidium andersoni detected from cattle in Japan, and showed that the isolate was infective to mice. In the present study, we examined the patterns of oocyst shedding in both immunocompromised and immunocompetent mice, as well as pathological lesions in the infected mice. After oral inoculation with 1 x 10(6) oocysts, all five severe combined immunodeficiency (SCID) mice began to shed endogenously produced oocysts on day 6 post-inoculation (p.i.). The number of oocysts per day (OPD) reached 1 x 10(6) on day 17 p.i., and an OPD level of 1 x 10(6) to 10(7) was maintained until 91 days p.i. when the mice were sacrificed. In the five immunocompetent mice inoculated with 1 x 10(6) oocysts, the pre-patent and patent periods were 6 and 19 days, respectively, and the maximal OPD level was 1.5 x 10(5) on average. On histological examinations of infected SCID mice, a large number of parasites were present on the surface of the gastric glands of the stomach, but not in other organs examined. In conclusion, the novel type of C. andersoni, which genetically coincides with C. andersoni reported in other countries, is infective to mice, but susceptibility was lower than that of Cryptosporidium muris infecting rodents from the perspective of infectivity to immunocompetent mice.  相似文献   

3.
An experimental study was carried out in neonatal goat kids to examine the infectivity of Cryptosporidium oocysts, pattern of oocyst shedding and morphological changes in the intestine during the infection. Cryptosporidium oocysts isolated from adult asymptomatic goats, and identified as C. parvum by polymerase chain reaction (PCR) were used in this study. Of three 4-day-old goat kids, two were orally infected with C. parvum oocysts (10(5) oocysts in 10 ml PBS/kid). One goat kid given 10 ml PBS only by the oral route served as a control. Cryptosporidium oocysts were detected in the faeces of one infected kid on day 3 post-inoculation (pi) whereas in the other 6 days pi. The faecal oocyst counts gradually increased and the peak counts in the two kids were 2 x 10(6)g(-1) (on day 12 pi) and 3.2 x 10(6)g(-1) (on day 14 pi). The increase in faecal oocyst output coincided with diarrhoea in an infected kid from days 10-17 pi. Although the oocyst excretion declined gradually after the peak, both infected kids excreted oocysts until euthanized on days 20 and 22 pi. Light and scanning electron microscopic investigations of the ileum revealed the endogenous stages on the brush border of the enterocytes, infiltration of neutrophils and mononuclear cells into the lamina propria, atrophy, stunting and fusion of villi. For purposes of comparison, goat Cryptosporidium oocysts were inoculated orally (10(3) oocysts/mouse) to eight, 1-week-old mice. All experimental mice excreted oocysts from day 3 pi, and four infected mice continued to excrete oocysts up to day 42 pi. The experimental infection described in goat kids resembled the natural disease in terms of oocyst excretion, clinical signs and intestinal pathology. The ability of oocysts excreted by asymptomatic goats, to infect goat kids and mice is likely to have a major impact on the epidemiology of cryptosporidiosis in livestock and man.  相似文献   

4.
The effect of heat treatment was examined against oocysts of Cryptosporidium parvum, Cryptosporidium muris and chicken Cryptosporidium sp. isolated in Japan. The oocysts of these species were exposed at 50, 55, 60 and 70 degrees C for 5, 15, 30 and 60 sec in water bath, respectively. To determine the infectivity of heated oocysts, the nice and chickens were inoculated with the treated oocysts and the oocyst output in the feces after inoculation was examined. In C. parvum and chicken Cryptosporidium sp., the oocysts were not detected from mice or chickens which were received oocysts heated at 55 degrees C for 30 sec, 60 degrees C for 15 sec and 70 degrees C for 5 sec. In C. muris, the oocysts were not detected from mice which were received oocysts heated at 55 degrees C for 15 sec, 60 degrees C for 15 sec and 70 degrees C for 5 sec. Consequently, it was clarified that the infectivity of Cryptosporidium oocysts to mice and chickens was lost by heating at 55 degrees C for 30 sec, 60 degrees C for 15 sec and 70 degrees C for 5 sec.  相似文献   

5.
Cryptosporidium parvum is commonly identified as infecting domestic livestock and humans. Prevalence of C. parvum in pigs has been reported, however, the duration and infection pattern of naturally acquired Cryptosporidium infections in pigs has not been reported. This study was undertaken to investigate the age of oocyst shedding and duration of natural Cryptosporidium parvum infections in pigs from weaning to market weight. Fecal samples were collected from weaned Yorkshire-Landrace piglets (n=33) twice per week until Cryptosporidium oocysts were detected. Upon oocyst detection, fecal samples were collected three times per week and pigs were monitored throughout the study for diarrhea and examined after concentration and immunofluroescent staining. Cryptosporidium isolates were genotyped by polymerase chain reaction to amplify the HSP70 gene which was subsequently sequence analyzed. All 33 pigs shed oocysts some time during the study. The mean age of initial oocyst detection was 45.2 days post-weaning with the mean duration of infection 28.7 days. Mean number of Cryptosporidium oocysts was low and declined to zero prior to study completion. Episodes of diarrhea were not associated with oocyst excretion. Genetic sequences were obtained for 10 of the pigs. All of the 10 isolates aligned as the Cryptosporidium parvum 'pig' genotype. This study demonstrates that the age and duration of oocyst shedding in pigs infected with C. parvum porcine genotype is different from other livestock species.  相似文献   

6.
The present study was undertaken to compare the viability and infectivity of Cryptosporidium parvum oocysts that had been stored for 1, 4, 7, 10, 13, 16, 20, 25 and 30 months at 4 degrees C in 2.5% potassium dichromate (Cr) or chlorinated tap water, respectively. An excystation protocol was performed in vitro to evaluate viability. One hundred and eighty female BABL/c mice were used to evaluate the infectivity of oocysts by investigating the prepatent period of C. parvum infection, the quantity of oocysts excreted, and the number of parasites that colonized the villi of the ileum. The results showed that C. parvum oocysts preserved in Cr for 1-16 months or in water for 1-13 months were capable of excystation in vitro and infection of mice. The excystation rates of oocysts and the prepatent periods in mice infected by oocysts stored in Cr and water were not significantly different (p>0.05), and there was a strong correlation between prepatent period and duration of oocyst storage (Cr: R2=0.92; water: R2=0.98). There were no significant differences in oocyst shedding from feces or parasitism of the terminal ilea of mice by Cryptosporidia between the two storage media (p>0.05). In conclusion, C. parvum oocysts may be stored at 4 degrees C in water instead of Cr for the purposes of laboratory research. However, the presence of viable C. parvum oocysts in water is a severe challenge to the drinking water treatment industry.  相似文献   

7.
OBJECTIVE: To determine the total number of Cryptosporidium parvum oocysts and Giardia spp cysts shed by dairy calves during the period when they are most at risk after natural infection. ANIMALS: 478 calves naturally infected with C. parvum and 1,016 calves naturally infected with Giardia spp. PROCEDURE: Oocysts or cysts were enumerated from fecal specimens. Distribution of number of oocysts or cysts versus age was used to determine the best fitting mathematic function. Number of oocysts or cysts per gram of feces for a given duration of shedding was computed by determining the area under the curve. Total number of oocysts or cysts was calculated by taking the product of the resultant and the expected mass of feces. Results: Intensity of Cparvum oocyst shedding was best described by a second-order polynomial function. Shedding increased from 4 days of age, peaked at day 12, and then decreased. An infected 6-day-old calf would produce 3.89 x 10(10) oocysts until 12 days old. Pattern of shedding of Giardia spp cysts was best described by exponential functions. Intensity of shedding increased from 4 days of age, peaked at day 14, and then decreased. An infected calf would produce 3.8 x 10(7) cysts from day 50 until day 56. CONCLUSIONS AND CLINICAL RELEVANCE: The large number of oocysts and cysts shed indicates that shedding by dairy cattle poses a risk for susceptible calves and people. Estimates reported here may be useful to aid in designing cost-effective strategies to manage this risk.  相似文献   

8.
Life cycle of Eimeria krijgsmanni-like coccidium isolated from the feces of naturally infected mice purchased from commercial sources was examined. The parasite was purified by single oocyst isolation and maintained by passage in the mice before experiments. The sporulated oocysts were ovoid or ellipsoid, measuring 19.3 x 14.8 microm on average. One or two small polar granules were present. Micropyle and oocyst residuum were absent. Sporocysts were ellipsoid, measuring 11.6 x 7.2 microm on average with a small Stieda body and sporocyst residuum. Six groups of respective 5 mice (4-week-old) were inoculated with doses varying from 2.0 x 10(1) to 10(6) oocysts. All the mice examined began to shed oocysts from 7 day postinoculation (PI) and their maximum number of oocysts per gram of feces were 10(6) on day 8 PI. Patency was 6 or 7 days. This parasite had severe virulence to the mice that is, the mice given 10(6) oocysts showed anorexia, diarrhoea and rough hair from 1 day and all of them died on day 3 PI. The mice given 10(3) or more oocysts showed the clinical signs described above from day 5 and 4 of them received 10(5) died on day 9 or 10 PI. The parasites occurred within the epithelial cells of cecum, colon and rectum of infected mice. Sporozoites, 13.9 x 3.0 microm, with two large refractil bodies on side of the nucleus located subcentrally were observed on day 1 and 2 PI. Merozoites were first observed at 24 hr PI, and sexual stages were found from 4 day PI. No parasites were detected in the small intestine and mecenteric lymph nodes.  相似文献   

9.
A study was conducted to determine the incidence of cryptosporidiosis in wild mice (Mus musculus) and the infectivity of oocysts from their feces for susceptible calves. The presence of oocysts and the duration of shedding of oocysts in the feces were evaluated in 115 wild mice. Approximately 30% of the mice shed Cryptosporidium sp oocysts, without evidence of clinical infection; recurrence of oocyst shedding was found in about 50% of the mice. Oocysts from the feces of naturally infected mice were infective for calves and mice. Calves began shedding oocysts at 7 days and shed oocysts for about 10 days. Nonfatal, clinical cryptosporidiosis developed in 7 infected calves. The mice began shedding oocysts at 6 days and shed oocysts for 12 days. Fatalities or clinical infection did not develop in 5 infected mice. The results indicated that Cryptosporidium-infected wild mice may be a source of cryptosporidiosis in susceptible calves.  相似文献   

10.
To determine the infectivity of Cryptosporidium to hosts in slight infections, we examined the infectivity and oocyst output patterns of Cryptosporidium muris in mice inoculated with small numbers of oocysts. One of the 25 ICR mice inoculated with 2.4 x 10(1) oocysts and 19 of the 25 mice inoculated with 2.4 x 10(2) oocysts shed oocysts in the feces after inoculation. Four of the 50 mice inoculated with 2.4 x 10(1) oocysts for 10 consecutive days also shed oocysts and their OPG values were similar to that of the mice which received 2.4 x 10(2) oocysts. Consequently, it is clear that less than 10% of the mice which received 2.4 x 10(1) C. muris oocysts for 10 consecutive days.  相似文献   

11.
微小隐孢子虫卵囊(CPO)保存在4℃自来水中1~30个月,通过体外脱囊技术检测CPO的脱囊率评价其活性,通过检测CPO感染免疫抑制BALB/c小鼠的潜伏期、排卵囊数量和末端回肠绒毛中的隐孢子虫数量来评价其感染性。结果表明,保存在自来水中1~13个月的CPO出现脱囊;小鼠在感染保存1~13个月的CPO后3~8 d开始排出大量的CPO,在末端回肠绒毛中寄生有大量的隐孢子虫;CPO的保存时间与潜伏期之间存在强烈的相关性(r2=0.98)。因此,CPO在自来水中能保持活性和感染性至少13个月,水是保存CPO的良好介质,水中活性CPO的长期存在对饮用水工业是一个严重的挑战。  相似文献   

12.
In November 1997, Cryptosporidium andersoni, for the first time, was isolated from a Danish heifer. The isolate was characterised morphologically, molecularly, and furthermore inoculated into mice and one calf. Data on the distribution of cryptosporidia in the herd of origin were obtained at two separate visits in December 1997 and April 1998. C. andersoni was detected in 27 (19.0%) of 142 cattle examined at the first visit, whereas C. parvum was found in six (4.2%). At the following visit 42 (28.0%) of 150 cattle excreted C. andersoni, while 25 (16.7%) were positive for C. parvum. Oocysts of the Danish C. andersoni isolate were ovoid, 7.3(6.5-8.0) x 5.7(5.0-7.0) microm(2) (n=25), with smooth, colourless, single layer oocyst wall and distinct oocyst residuum. The length to width ratio was 1.27 (1.14-1.40, n=25). The identification was verified by sequencing of a 246bp fragment of the rDNA, which was identical to Cryptosporidium muris, the calf genotype (AF093496). The Danish C. andersoni isolate was not transmissible to mice, whereas oocysts were detected in the faeces of one experimentally infected calf from 25 days post-infection (DPI) and shed intermittently at low numbers until 165 DPI, the day of euthanasia. No macroscopic or microscopic changes that could be attributed to infection with C. andersoni were seen in the gastro-intestinal tract of the experimentally infected calf following necropsy and histological examination. This is to our knowledge the first report of C. andersoni in Scandinavia.  相似文献   

13.
OBJECTIVE: To determine duration of infection and association of infection with diarrhea for dairy calves with naturally acquired cryptosporidiosis and giardiosis. DESIGN: Cohort study. ANIMALS: 20 Holstein calves on a single dairy farm. PROCEDURE: Fecal samples were collected 3 times/wk for the first 45 days after birth, then weekly until calves were 120 days old and examined for Giardia duodenalis cysts and Cryptosporidium parvum oocysts. Calves were monitored for diarrhea during the first 45 days after birth; during each episode of diarrhea, fecal samples were examined for parasitic, bacterial, and viral pathogens. RESULTS: All 20 calves shed Giardia cysts and Cryptosporidium oocysts at some time during the study. Mean ages at which Giardia cysts and Cryptosporidium oocysts were first detected were 31.5 and 16.3 days, respectively. Mean number of Giardia cysts in feces remained high throughout the study, whereas Cryptosporidium occysts decreased to low or undetectable numbers 2 weeks after infection. Eighteen calves had a total of 38 episodes of diarrhea during the first 45 days after birth. Giardia duodenalis was the only pathogen identified during 6 (16%) episodes, C parvum was the only pathogen identified during 9 (24%) episodes, and G duodenalis and C parvum were identified together during 10 (26%) episodes. CONCLUSIONS: Prevalences of giardiosis and cryptosporidiosis were high in these calves, and both parasites were associated with development of diarrhea. Cryptosporidium parvum was an important pathogen when calves were < 1 month old, but G duodenalis was more important when calves were older. Calves cleared C parvum infections within 2 weeks; however, G duodenalis infections became chronic in these calves.  相似文献   

14.
In order to test various viability assays for Cryptosporidium parvum oocysts were used to infect HCT-8 cells in vitro or baby mice. Infected cells were either stained with fluorescent anti-Cryptosporidium-antibody or lysed and subjected to C. parvum-specific PCR after 48 h. Titrations with infective oocysts were performed and compared to oocysts disinfected with Neopredisan for 2 h at varying concentrations. Caecal smears and histological sections from infected animals were examined in parallel. The number of foci of parasite development in vitro after immunofluorescent staining correlated well with the infection dose. PCR was less quantifiable and the results were not always reproducible, especially when low infection doses were used. Disinfection resulted in a dose-dependent reduction of oocyst infectivity when compared to the controls in all three assays. The infection of cells cultured in vitro with oocysts of C. parvum provides a suitable tool for the estimation of viability after treatment with chemical disinfectants. Immunofluorescence is easy to perform and gives quantitative results, while PCR-based detection of parasite DNA, although possible, requires the use of more sophisticated tools for quantification.  相似文献   

15.
Fecal samples were collected from 325 adult cattle and 108 pigs in a slaughterhouse in Hokkaido, the northern island of Japan. Five adult cattle were found to be positive for oocysts of Cryptopsoridium (1.5%). The oocysts were morphologically similar to those of Cryptosporidium andersoni. The partial sequence of the 18S rRNA gene of the isolate was 100% identical with that of the C. andersoni Kawatabi strain. SCID mice were infected after oral administration. Based on the morphology of the oocysts, the sequence of the 18S rRNA gene and the infectivity to SCID mice, the isolate was concluded to be of the same type as the C. andersoni Kawatabi strain that has been isolated in Honshu, the main island of Japan.  相似文献   

16.
Cryptosporidium parvum infection and the pattern of oocyst shedding were observed in calves. A total of 480 fecal samples were collected from 30 calves (age, < or =30 days) over a period of 10 months from June 1998 to March 1999. A sucrose centrifugal flotation technique revealed 28/30 (93%) calves were passing Cryptosporidium oocysts. Oocyst shedding was first detected on the sixth day after birth, with 8% of the calves testing positive. This rate increased day by day and reached approximately 80% by day 15. Oocyst shedding varied from 1 to 13 days, with a mean of 7 days. Calves infected with C. parvum had a significantly higher rate of diarrhea (33%) than non-infected calves (8%) (P<0.05), suggesting C. parvum infection as the likely cause. The mean number of oocysts excreted by calves < or =30 days old was approximately 6x10(7) per gram of feces. These results indicated that one calf would excrete some 6x10(11) oocysts in the first month after birth, taking both the quantity of feces in a day and the period of excretion into consideration. Accordingly, it is clear that calves are important in the spread of cryptosporidiosis to calves and humans.  相似文献   

17.
Cryptosporidium parvum oocysts collected from a naturally infected calf were exposed to different salinity and temperature for 2, 21 and 40 days, and then inoculated intragastrically into coccidium-free neonatal mice. The intensity of infection as determined seven days later by examination of intestinal homogenates were statistically analysed. Salinity, time and salinity-time interaction were the only factors with significant effect on the infection intensity.  相似文献   

18.
Cryptosporidium parvum is a zoonotic protozoan parasite that may cause severe neonatal diarrhoea or even mortality in newborn ruminants: its oocysts are extremely resistant to normal environmental conditions and to most common disinfectants. KENO?COX, a patent pending amine-based formula, was tested for its ability to inactivate C. parvum oocysts. The Daugschies assay (2002), a standardized assay for chemical disinfection initially described for Eimeria spp., was adapted for C. parvum oocysts. KENO?COX diluted in water at 2% and 3% concentration and incubated with oocyst suspensions for 2h, allowed a significant reduction in viability, lysing 89% and 91% of oocysts respectively. Infectivity of the remaining C. parvum oocysts was assessed by inoculation to C57 Bl/6 neonatal mice. Each mouse received 2.5 μl of a suspension initially containing 500,000 oocysts before contact with KENO?COX. Six days post inoculation, the intestinal parasite load was significantly reduced by 97.5% with KENO?COX 2% compared to that of the mice inoculated with untreated parasites. KENO?COX 3% completely eliminated infectivity of oocysts. The number of oocysts remaining infectious in the inoculum treated with KENO?COX 2% was calculated from an inoculated dose-response curve: it was estimated at about 48.6 oocysts among the 500,000 oocysts initially treated corresponding to 99.99% of inhibition. These results demonstrate the high efficacy of KENO?COX against C. parvum oocysts. Combined with an appropriate method of cleaning, the application of KENO?COX may be a useful tool to reduce cryptosporidial infectious load on farm level.  相似文献   

19.
A longitudinal study of 2-year duration was conducted to determine the risk, as measured by incidence rate, of Cryptosporidium parvum infection among dairy cattle in the Catskill/Delaware Watershed of New York City (NYC), and the factors that predispose animals to the likelihood of infection. A proportional sampling scheme with follow up at quarterly farm visits was employed for heifers and cows. Additionally, all calves born on the 39 study farms were sampled once during the first four weeks of life and at least once more before weaning. Samples were analyzed for the presence of C. parvum using a quantitative centrifugation concentration flotation technique and a C. parvum-specific enzyme-linked immunosorbent assay (ELISA). Of the 9914 fecal samples collected, 747 were found to contain C. parvum. The average number of oocysts detected was 1.3x10(5)/g (range: 1.0/g--8.2x10(6)/g). The average age at time of first detection of the organism was 15.0 days with a standard deviation of 6.59 days. The age range of animals infected with C. parvum in the study population was 3--60 days (inclusive). The unadjusted (crude) incidence rate of C. parvum among the entire study population was 2.05 per 1000 animal-days. The unadjusted incidence rate among pre-weaned calves was 15.55 per 1000 animal-days. After controlling for age and prior protozoal risk level, no seasonal impact on the incidence of C. parvum was detected among animals less than 61 days by negative binomial regression. A seasonal impact was identified among the oocyst counts of infected animals after controlling for age and prior protozoal risk level.  相似文献   

20.
Serum retinol, retinyl palmitate, and total vitamin A concentrations, and jejunoileal morphology were examined in neonatal calves infected with Cryptosporidium parvum. Group-1 calves served as noninfected controls and, after an adjustment period, were given 50 ml of saline solution i.v. every 12 hours for 6 days. Group-2 calves were inoculated with 10(7) C parvum oocysts and, after the onset of diarrhea, were given 50 ml of saline solution i.v. every 12 hours for 6 days. Group-3 calves were inoculated with 10(7) C parvum oocysts and, after the onset of diarrhea, were treated with difluoromethylornithine (DFMO, 200 mg/kg of body weight i.v., q 12 h) for 6 days. Group-4 calves were naturally infected with C parvum. Jejunoileal biopsy specimens were excised from calves of groups 1-3 at 3 and again at 15 to 16 days of age. During the course of diarrhea and 3 days after saline or DFMO administration, water-miscible retinyl palmitate was administered orally (2,750 micrograms/kg) to each calf in each group. Cryptosporidium parvum infection was associated with significant (P < or = 0.05) reduction in postadministration serum retinol, retinyl palmitate, and total vitamin A concentrations in calves of groups 2, 3, and 4. Cryptosporidium parvum infection caused significant (P < or = 0.05) reduction in villus height. Decreased villus height, villus blunting and fusion, and attenuation of the intestinal mucosa were associated with reduced absorption of vitamin A, as indicated by lower peak postadministration retinyl palmitate concentration in C parvum-infected calves. Intravenous administration of DFMO to group-3 calves did not improve retinol absorption.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号