首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of three Coniothyrium minitans isolates (Conio, IVT1 and Contans®), applied to soil as conidial suspensions or as maizemeal-perlite (MP) inocula (Conio), on apothecial production and infection of Sclerotinia sclerotiorum sclerotia were assessed in two soil pot bioassays and two novel box bioassays in the glasshouse at different times of the year. C. minitans isolate Conio applied as either MP or ground MP at full rate (106-107 cfu cm−3 soil) consistently decreased the carpogenic germination, recovery and viability of sclerotia and increased C. minitans infection of the sclerotia of S. sclerotiorum by in comparison with either MP or conidial suspension treatments applied at lower rates (103-104 cfu cm−3 soil). Additionally, when applied at the same rate, MP inoculum of C. minitans was consistently more effective at reducing carpogenic germination than a conidial suspension. The effect of MP and ground MP at full rate on carpogenic germination was expressed relatively early as those sclerotia recovered before apothecia appeared on the soil surface already had reduced numbers of apothecial initials. In general, there were few differences between the isolates of C. minitans applied as conidial suspensions. Box bioassays carried out at different times of the year indicated that temperature and soil moisture influenced both apothecial production and mycoparasitism. Inoculum concentration of C. minitans and time of application appear to be important factors in reducting apothecial production by S. sclerotiorum.  相似文献   

2.
Chlorinated macrolides, haterumalide NA, B and NE, and a new haterumalide X, were produced by the soil bacterium Serratia plymuthica. Haterumalides NA, B and NE caused complete suppression of apothecial formation in sclerotia of Sclerotinia sclerotiorum at a concentration of 0.5 μg ml−1. Ascospore germination of this fungus was inhibited in the concentration range 0.8-3.0 μg ml−1. Haterumalides NA, B and NE prevented spore germination of several other filamentous fungi as well as Oomycetes at concentrations ranging from 0.4 to 40 μg ml−1, but did not show any effect against the yeast Candida albicans. Inhibition data could not be collected for haterumalide X due to its rapid conversion to haterumalide NA. The bacterium also produced two other antifungal metabolites: pyrrolnitrin and 1-acetyl-7-chloro-1-H-indole, which in contrast to the haterumalides, did not inhibit the apothecial formation on sclerotia. Pyrrolnitrin, and haterumalide NA, B and NE effectively inhibited spore germination of tested filamentous fungi at concentrations ranging from 0.06 to 50 μg ml−1, whereas 1-acetyl-7-chloro-1-H-indole inhibited spore germination only at concentrations above 50 μg ml−1. The minimal inhibitory concentrations of the respective compounds needed for total inhibition of spore germination varied for the fungal species tested.  相似文献   

3.
Sclerotia of the soil-borne plant pathogen Sclerotinia sclerotiorum were collected from 1 m2 area of the top 1.27 cm layer of soil in an alfalfa field in southeastern Washington state of the US. Out of 272 sclerotia collected, 40 were randomly selected and analyzed for genetic diversity in terms of microsatellite loci, mycelial compatibility groups (MCGs) and phenotypic diversity using five phenotypic traits (fungicide sensitivity, oxalic acid production, growth rate, colony color and virulence). Sixteen microsatellite haplotypes and 15 MCGs were found among the 40 isolates. The isolates showed three colony colors (beige, dark and white) on Difco PDA and exhibited significant differences in growth rate, oxalic acid production, and sensitivity to three fungicides, benomyl, fluazinam and iprodione. However, these isolates did not show differences in their ability to colonize detached pea leaves. No apparent relationship among the neutral genetic markers and the phenotypic traits was detected. Two of the haplotypes accounted 40% of the isolates, suggesting isolates of these haplotypes might be better adapted to the environmental conditions in this alfalfa field. Several lines of evidence indicated high levels of genetic diversity and potential outcrossing within the population of S. sclerotiorum: 1) high likelihood of five genetic populations based on Bayesian probability and the presence of admixed isolates; 2) random association of alleles in every pair-wise linkage disequilibrium test among eight independent microsatellite loci; 3) discordances between microsatellite haplotypes and MCGs and 4) lack of correspondence among the genetic markers and phenotypic traits. Multilocus Index of Association test suggested that outcrossing occurs only within interbreeding subpopulations of S. sclerotiorum.  相似文献   

4.
Soil fungistasis can adversely affect the germination and growth of most fungal species in the field. Among the inhibitors, volatiles of microbial origins are potentially very important. In this study, we investigated the frequency and identity of bacteria producing fungistatic volatiles. Among the 1018 bacterial isolates tested, 328 were found to produce antifungal volatiles that could inhibit spore germination and mycelial growth of two nematicidal fungi Paecilomyces lilacinus and Pochonia chlamydosporia. A phylogenetic analysis based on restriction fragment length polymorphism (RFLP) and 16S rDNA sequence placed the 328 bacteria in five groups: Alcaligenaceae, Bacillales, Micrococcaceae, Rhizobiaceae and Xanthomonadaceae. Volatile compounds of 39 bacterial isolates were identified by gas chromatography/mass spectrum (GC/MS). Tests with commercially available antifungal compounds suggested that seven volatile compounds of bacterial origins (acetamide, benzaldehyde, benzothiazole, 1-butanamine, methanamine, phenylacetaldehyde and 1-decene) likely play important roles in soil fungistasis.  相似文献   

5.
Ten isolates of Trichoderma spp were examined for their ability to antagonize growth and to parasitize mycelium of Sclerotium rolfsii (Sr-1) on agar media, to inhibit germination of sclerotia of S. rolfsii on natural soil plates and to sporulate on the sclerotia, and to protect bean seedlings against the pathogen in the greenhouse. A high negative correlation (r = ?0.844) was observed between plant stand in the greenhouse and sclerotial germination on soil plates but not with antagonism on agar plates. Three isolates of T. harzianum (Th-7, Th-20, WT-6) and one of T. hamatum (TRI-4) were especially effective in reducing sclerotial germination and controlling disease in the greenhouse. Three isolates of Trichoderma spp (WT-6, TMP, and TRI-4), effective in reducing sclerotial germination of isolate Sr-1, also prevented sclerotial germination in four out of five additional S. rolfsii isolates studied.  相似文献   

6.
The effect of different concentrations (0.5, 2 and 8 μM) of apigenin and its glycosidated form 5,7,4′-hydroxy flavone glycoside on arbuscular mycorrhizal (AM) fungal spore germination, hyphal growth, hyphal branching, the formation of entry points and root colonization of Gigaspora. rosea, Gi. margarita, Glomus mosseae and G. intraradices was tested. The lowest apigenin concentration (0.5 μM) nearly doubled hyphal branching, the formation of entry points and root colonization of all four tested fungi, whereas higher concentrations (2 and 8 μM) nearly doubled the hyphal growth of Gi. margarita, G. mosseae and G. intraradices. In none of the treatments with the apigenin-glycoside any effect on AM fungi could be observed. Our data show that apigenin exhibits an AM fungal genus and even species activity and we provide strong evidence that glycosidation results in a loss of its activity towards AM fungi.  相似文献   

7.
Sclerotia are the primary over wintering inoculum of Sclerotinia sclerotiorum (Lib.) de Bary. The effects of tillage on the primary inoculum are not well understood. The purpose of this research was to study sclerotial viability over time and between burial depths in soil, to identify bacteria colonizing and degrading the sclerotia, and determine whether these bacteria may be utilized as biological control agents. Correlation analysis indicated that a significant negative relationship existed between sclerotial viability and elapsed temporal factors (R2=−0.68, P<0.0001), and depth of burial (R2=−0.58, P<0.0001). After twelve months, sclerotia on the soil surface had the highest viability (57.5%), followed by those at the 5 cm depth (12.5%), and only 2.5% of those placed at the 10 cm depth remained viable. A significant negative relationship between sclerotial viability and bacterial populations also existed (R2=−0.60, P<0.0001). Two hundred and sixty-eight bacteria were isolated from sclerotia, 29 of which showed strong in vitro antagonism to the mycelial growth of S. sclerotiorum. Biodiversity of the inhibitory bacterial isolates was minimal on sclerotia from the soil surface and within all depths sampled at three months (i.e. in January). All burial depths within the April and July sampling dates produced bacterial diversities that were distinct from each other.  相似文献   

8.
Germination and growth of chlamydospores of the vesicular-arbuscular (VA) mycorrhizal fungus Glomus mosseae on water-agar medium under axenic conditions were compared after treatment with washed cells, cell-free supernatants and complete bacterial cultures. Spore germination was not affected by bacterial treatments, but the additions of complete bacterial cultures and cell-free supernatants significantly (P ⩽ 0.05) stimulated hyphal growth and the number of new vegetative vesicles formed per germinated resting spore.  相似文献   

9.
The capability of native bacterial strains isolated from Lolium perenne rhizosphere to behave as plant growth promoting bacteria and /or biocontrol agents was investigated. One strain (BNM 0357) over 13 isolates from the root tips of L. perenne resulted proved to be nitrogenase positive (ARA test) and an IAA producer. Conventional tests and the API 20E diagnostic kit indicated that BNM 0357 behaves to the Enterobacteriaceae family and to the Enterobacter genus. Molecular identification by 16S rRNA sequence analysis indicated that BNM 0357 had the highest similarity to Enterobacter ludwigii (EN-119). Isolate BNM 0357 had the capability to solubilize calcium triphosphate and to antagonize Fusarium solani mycelial growth and spore germination. Strain BNM 0357 also showed the ability to improve the development of the root system of L. perenne. This study disclosed features of E. ludwigii BNM 0357 that deserve further studies aimed at confirming its putative importance as a PGPR.  相似文献   

10.
Bacteria, isolated from canola and soybean plants, produced antifungal organic volatile compounds. These compounds inhibited sclerotia and ascospore germination, and mycelial growth of Sclerotinia sclerotiorum, in vitro and in soil tests. Ascospore germination in cavity slides was inhibited 54-90% by the volatile producers. When mycelial plugs or the sclerotia, exposed to these volatiles, were transferred to fresh agar plates, the pathogen could not grow, indicating the fungicidal nature of the volatiles. Head space volatiles, produced by bacteria, were trapped with activated charcoal, by passing nitrogen continuously over shake cultures for 48 h. The compounds were eluted from the charcoal with methylene chloride and identified using Gas Chromatography-Mass Spectrometry (GC-MS). The volatile compounds included aldehydes, alcohols, ketones and sulfides. Of the 23 compounds assayed for antifungal activity in divided Petri plates, with filter-disks soaked with these compounds (100 and 150 μl), only six compounds completely inhibited mycelial growth or sclerotia formation, suggesting their potential role in biological control. The compounds are benzothiazole, cyclohexanol, n-decanal, dimethyl trisulfide, 2-ethyl 1-hexanol, and nonanal. Volatiles may play an important role in the inhibition of sclerotial activity, limiting ascospore production, and reducing disease levels. Studies are under way to understand this phenomenon under field conditions. This is the first report on the identification and use of bacterial antifungal organic volatiles in biocontrol.  相似文献   

11.
The effects of biocide use on nontarget organisms, such as arbuscular mycorrhizal (AM) fungi, are of interest to agriculture, since inhibition of beneficial organisms may counteract benefits derived from pest and disease control. Benomyl, pentachloronitrobenzene (PCNB) and captan were tested for their effects on the germination and early hyphal growth of the AM fungiGlomus etunicatum (Becker & Gerd.),Glomus mosseae (Nicol. & Gerd.). Gerd. and Trappe andGigaspora rosea (Nicol & Schenck) in a silty-clay loam soil placed in petri plates. Application of fungicides at 20 mg active ingredient (a.i) kg?1 soil inhibited spore germination by all three AM-fungal isolates incubated on unsterilized soil for 2 weeks. However, fungicides applied at 10 mg a.i. kg?1 soil had variable effects on AM-fungal isolates. Fungicide effects on germination and hyphal growth of G.etunicatum were modified by soil pasteurization and CO2 concentration in petri plates and also by placing spores below the soil surface followed by fungicide drenches. Effects of fungicides on mycorrhiza formation and sporulation of AM fungi, and the resulting host-plant response, were evaluated in the same soil in associated pea (Pisum sativum L.) plants. Fungicides applied at 20 mg a.i. kg?1 soil did not affect the root length colonized byG. etunicatum, but both benomyl and PCNB reduced sporulation by this fungus. Benomyl and PCNB reduced the root length colonized byG. rosea at 48 and 82 days after transplanting. PCNB also reducedG. mosseae-colonized root length at 48 and 82 days, but benomyl only affected root length colonized byG. mosseae at the earlier time point. Only PCNB reduced sporulation byG. mosseae, consistent with its effect on root length colonized by this fungus. captan reduced the root length colonized by G. rosea at 48 days, but not at 82 days, and reduced colonization byG. mosseae at 82 days, but not at 48 days. Captan did not affect sporulation by any of the fungi.G. rosea spore production was highly variable, but benomyl appeared to reduce sporulation by this fungus. Overall,G. etunicatum was the most tolerant to fungicides in association with pea plants in this soil, andG. rosea the most sensitive. Benomyl and PCNB were overall more toxic to these fungi than captan. Interactions of AM fungi and fungicides were highly variable and biological responses depended on fungus-fungicide combinations and on environmental conditions.  相似文献   

12.
If mycorrhizal formation could be enhanced by co-inoculation with mycorrhiza helper bacteria (MHB) which promote rapid root colonization by specific ectomycorrhizal fungi, this would be of advantage to the poplar forest industry. A number of poplar rhizobacterial strains were isolated from 11 regions of the eastern China. Four of the isolates, SY15, DZ18, HLJ4, and PY10, were characterized as MHB potential strains based on their positive effect on growth of ectomycorrhizal fungi Pisolithus tinctorius (Pers.) and Lactarius insulsus (Fr.). Under greenhouse conditions, one of the bacterial isolate, DZ18, significantly promoted the poplar trees growth and ectomycorrhizal colonization of P. tinctorius and L. insulsus on Populus deltoides Marsh. In contrast, the other three isolates SY15, HLJ4, and PY10 promoted fungal growth in vitro experiments but did not enhance ectomycorrhizal (ECM) formation in the greenhouse experiment. Therefore, it was concluded that DZ18 can be considered as an MHB strain. DZ18 was identified as Bacillus sp. based on morphological, physiological, and biochemical analyses in combination with analysis of 16S rDNA gene sequences.  相似文献   

13.
The meals (co-products remaining after oil extraction) from many oilseed crops contain biocidal chemicals that are known to inhibit the growth and activity of some soil microorganisms including several plant pathogens. The fungus Phymatotrichopsis omnivora (Duggar) Hennebert is the causal agent of cotton root rot that has greatly hindered the production of cotton and alfalfa in Texas and the southwestern USA. We investigated the effect of oilseed meals from both brassicaceous plants including mustard and camelina as well as non-brassicaceous plants including jatropha, flax, and Chinese tallow on P. omnivora sclerotial germination and hyphal growth in Branyon clay soil, as well as the effects of 4 types of individual isothiocyanates (ITCs) including allyl, butyl, phenyl, and benzyl ITC on P. omnivora growth on potato dextrose agar (PDA). The oilseed meals were added to the soil at rates of 0%, 1%, and 5% (w/w). The results showed that all tested brassicaceous and jatropha seed meals were able to inhibit P. omnivora sclerotial germination and hyphal growth at 5% and 1% application rates respectively, with mustard seed meal being the most effective. Neither flax nor Chinese tallow showed any inhibitory effects on sclerotial germination. All tested ITCs inhibited P. omnivora OKAlf8 hyphal growth, although the level of inhibition varied with concentration. The IC50 values were 0.62 ± 0.19, 4.47 ± 0.08, 5.67 ± 0.10, and 20.48 ± 0.30 μg cm−3 for allyl, butyl, phenyl, and benzyl ITC respectively. These results indicate that press meals of several brassicaceous species as well as jatropha may have potential for reducing cotton root rot.  相似文献   

14.
Plant growth-promoting rhizobacteria (PGPR) are considered to have a beneficial effect on host plants and may facilitate plant growth by different mechanisms. In this work, the influence of different soil types on the bacterial diversity and the stimulatory effects of selected PGPR on two cultivars of maize were investigated. A set of 292 strains was isolated from the roots and rhizosphere soil of maize cultivated in five different areas of the Rio Grande do Sul State in Brazil. 16S rDNA-PCR-RFLP and 16S rDNA partial sequencing were used for identification, and the Shannon–Weaver index was used to evaluate bacterial diversity. We evaluated the ability of each isolate to produce indole acetic acid (IAA), siderophores and solubilize phosphates. On the basis of multiple PGP traits, six isolates were selected to test their potential as plant growth-promoting rhizobacteria on maize plants. In both the roots and the rhizospheric soil of maize, the dominant bacterial genera identified were Klebsiella and Burkholderia. IAA producers were distributed widely among isolates, regardless of the sampling site. Approximately 42% of the isolates exhibited at least two attributes, and 24% showed all three PGP traits. Three strains, identified as Achromobacter, Burkholderia, and Arthrobacter, were effective as PGPR in both of the cultivars evaluated.  相似文献   

15.
《Applied soil ecology》2011,47(3):464-469
Bacteria with the ability to solubilize phosphorus (P) and to improve plant health were selected and tested for growth and survival in P-rich animal bone charcoal (ABC). ABC is suggested to be suitable as a carrier for biocontrol agents, offering them a protected niche as well as delivering phosphate to plants, meanwhile re-using P from waste of the food chain. Ninety-seven bacterial isolates from different soils were tested for their potential to dissolve P from ABC. Of these isolates, 60% showed positive scores; they belonged to the genera Arthrobacter, Bacillus, Burkholderia, Collimonas, Paenibacillus, Pseudomonas, Serratia, and Streptomyces. Twelve isolates from different taxonomic groups were selected for further research on growth ability and survival in ABC, and on their potential to control plant pathogens. The highest concentrations of P were dissolved by Pseudomonas chlororaphis and Bacillus pumilus, followed by Paenibacillus polymyxa, Burkholderia pyrrocinia and three Streptomyces isolates. P. chlororaphis and P. polymyxa showed strongest growth inhibition of plant pathogenic Pythium and Fusarium sp., followed by the Streptomyces spp. isolates.  相似文献   

16.
Six bacteria and one fungus isolated from sclerotia of Sclerotium cepivorum, the causal agent of white rot of onions, produced diffusible antibiotics antagonistic to growth of S. cepivorum on potato dextrose agar. Three of the bacterial isolates applied as seed treatments to onions grown in non-sterile muck soil in a controlled environment chamber reduced the proportion of infections by S. cepivorum. Antagonists were further evaluated as seed treatments for field control of white rot on two onion cultivars grown on muck soil containing high levels of natural inoculum. Four of the bacterial isolates provided significant season-long protection on the partially-resistant cultivar Festival, and the best of these also provided significant protection on the susceptible cultivar Autumn Spice. The fungal antagonist has been identified as Penicillium nigricans, and all bacterial isolates appear to be Bacillus subtilis. The levels of protection provided by some of these latter isolates were comparable to those provided by chemical treatments and represent practical potential for field control of white rot.  相似文献   

17.
Liming is a known forest management procedure used to amend nutrient-poor soils such as soils of acidic forests to rectify cation deficiencies and to restore soil pH. However, although this procedure is well known for its beneficial effect on the forest trees, its relative impact on the functional and taxonomic diversity of the soil bacterial communities has been poorly investigated. In this study, we characterized the ability of the soil bacteria to weather soil minerals and to hydrolyze chitin. A collection of 80 bacterial strains was isolated from the Scleroderma citrinum ectomycorrhizosphere and the adjacent bulk soil in two stands of mature beeches (Fagus sylvatica) developed on very acidic soil and presenting two levels of calcium (Ca) availability: a control plot as well as a plot amended with Ca in 1973. All the bacterial isolates were identified by partial 16S rRNA gene sequence analysis as members of the genera Burkholderia, Bacillus, Dyella, Kitasatospora, Micrococcus, Paenibacillus, Pseudomonas, and Rhodanobacter. Using a microplate assay for quantifying the production of protons and the quantity of iron released from biotite, we demonstrated that the bacterial strains from the amended plot harbored a significant higher mineral weathering potential that the ones isolated from the control plot. Notably, the weathering efficacy of the ectomycorrhizosphere bacterial isolates was significantly greater than that of the bulk soil isolates in the control treatment but not in the amended plot. These data reveal that forest management, here mineral amendment, can strongly affect the structure of bacterial communities even over the long term.  相似文献   

18.
ABSTRACT

Monosporascus root rot and vine decline (MRVD) of muskmelon, caused by Monosporascus cannonballus, is an economically important disease worldwide. The objectives of this study were to isolate native rhizobacterial strains and to evaluate their ability to promote plant growth and to provide protection against M. cannonballus. Thirty eight native bacterial isolates from the rhizosphere soil of muskmelon and cucumber were screened for their antagonism against M. cannonballus in a dual culture assay. Among them, five isolates viz., Bacillus amyloliquefaciens (B4), Pseudomonas mendocina (B7), Bacillus endophyticus (B10), Pseudomonas resinovorans B11 and P. aeruginosa AT3, identified based on the 16S rRNA gene sequence analysis, showed a significant level of antagonism and the inhibition zone ranged from 5.6 mm to 25.9 mm. Scanning electron microscopic observation of the hyphae of M. cannonballus at the inhibition zone revealed morphological abnormalities including shrinkage, loss of turgidity, pit formation and deformation. These bacterial isolates showed compatibility with one another and with Trichoderma viride. Greenhouse experiments revealed that P. resinovorans B11 was the most effective among the bacterial antagonists in controlling MRVD in melon. When applied as seed treatment and soil application, P. resinovorans B11 reduced the incidence of MRVD by 93.1%, relative to the infected control.  相似文献   

19.
Elevated aluminum (Al) availability limits plant growth on acidic soils. Although this element is found naturally in soils, acidic conditions create an environment where Al solubility increases and toxic forms of Al impact plant function. Plant resistance to Al is often attributed to organic acid exudation from plant roots and the chelation of cationic Al in the rhizosphere. The association of arbuscular mycorrhizal (AM) fungi with the roots of plants may alleviate Al toxicity by altering soil Al availability or plant exposure through the binding of Al to fungal structures or through the influence of fungi on exudation from roots. Diverse communities of AM fungi are found in soil ecosystems and research suggests that AM fungi exhibit functional diversity that may influence plant performance under varying edaphic environments. In the present study, we evaluated acidic isolates of six AM species in their responses to Al. Andropogon virginicus (broomsedge), a warm-season grass that commonly grows in a range of stressful environments including acidic soils, was used as a plant host for Acaulospora morrowiae, Glomus claroideum, Glomus clarum, Glomus etunicatum, Paraglomus brasilianum, and Scutellospora heterogama. Fungal spores were germinated and exposed to 0 or 100 μM Al on filter paper in sand culture or were grown and exposed to Al in sand culture in association with A. virginicus. Short- and long-term responses to Al were evaluated using direct measurements of fungal spore germination, hyphal elongation, and measurements of A. virginicus colonization and plant growth as a phytometer of AM function in symbio. Spore germination and hyphal elongation varied among AM species in response to Al, but patterns were not consistent with the influences of these AM species on A. virginicus under Al exposure. Exposure to Al did not influence colonization of roots, although large differences existed in colonization among fungal species. Plants colonized by G. clarum and S. heterogama exhibited the least reduction in growth when exposed to Al, produced the highest concentrations of Al-chelating organic acids, and had the lowest concentrations of free Al in their root zones. This pattern provides evidence that variation among AM fungi in Al resistance conferred to their plant hosts is associated with the exudation of Al-binding organic acids from roots and highlights the role that AM fungal diversity may play in plant performance in acidic soil environments.  相似文献   

20.
Aspects of the biology of C. minitans and its potential for control of S. sclerotiorum were investigated.Temperatures below 7°C resulted in comparatively slow rates of germination and infection of sclerotia by C. minitans. The optimum temperature for germination, growth, infection of sclerotia, and destructive parasitism by C. minitans was 20°C. The optimum relative humidity for germination, growth and infection by C. minitans was above 95%.Autumn inoculations with suspensions of conidia, pycnidia and mycelium of C. minitans in the field resulted in negligible numbers of sclerotia remaining viable after 1 month. With culture-grown sclerotia 2 months were required for a similar reduction of sclerotial viability. In the absence of C. minitans mulching had no significant effect on sclerotial viability. In the presence of C. minitans mulching did, however, influence the viability and infection by C. minitans of culture-grown sclerotia. Populations of field sclerotia also differed from culture-grown sclerotia in that they harboured an internal population of microorganisms, which included C. minitans, and had a lower level of viability at the commencement of the treatments.A winter application of C. minitans did not result in significant infection of sclerotia nor in a reduction in viability of sclerotia. This failure is believed to have resulted from low temperatures and dry conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号