首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epinephrine-induced arrhythmias were studied in 4 cats (group A), using a 4 X 4 Latin square design. Each cat was anesthetized 4 times, 1 week apart, with halothane (1.5% end expired), isoflurane (2.0% end expired), and halothane or isoflurane preceded by ketamine administered IM (8.8 mg/kg). Lead II of the ECG and femoral artery pressure were recorded. Epinephrine was infused in progressively doubled rates (initial rate = 0.125 micrograms/kg/min) for a maximum of 2.5 minutes or until at least 4 ventricular premature depolarizations occurred within 15 s of each other. The arrhythmogenic dose of epinephrine (ADE; micrograms/kg) was calculated as the product of infusion rate and time to arrhythmia. The ADE (means +/- SD) during anesthesia with halothane alone and with ketamine-halothane anesthesia were 1.33 +/- 0.65 and 1.37 +/- 0.59 micrograms/kg, respectively; during anesthesia with isoflurane alone and ketamine-isoflurane anesthesia, the ADE were 9.34 +/- 1.29 and 16.16 +/- 3.63 micrograms/kg, respectively. The ADE was significantly greater (P less than 0.05) during isoflurane anesthesia and ketamine-isoflurane anesthesia than during halothane anesthesia. The percentages of change in systolic blood pressure (means +/- SD) at the ADE during halothane, ketamine-halothane, isoflurane, and ketamine-isoflurane were 31 +/- 34, 41 +/- 17, 127 +/- 27, and 148 +/- 57, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Alteration in the arrhythmogenic dose of epinephrine (ADE) was determined in 6 healthy dogs under halothane anesthesia following the administration of xylazine at 1.1 mg/kg i.v. and acepromazine at 0.025 mg/kg i.v. The order of treatment was randomly assigned with each dog receiving both treatments and testing was carried out on 2 separate occasions with at least a 1 wk interval. The ADE determinations were made prior to drug administration during halothane anesthesia (CNTL) and then 20 min and 4 h following drug treatment. Epinephrine was infused for 3 min at increasing dose rates (2.5, 5.0, 10.0 micrograms/kg/min) until the arrhythmia criterion (4 or more intermittent or continuous premature ventricular contractions) was reached within the 3 min of infusion or the 1 min following cessation. The interinfusion interval was 20 min. There was a significant difference (P = 0.0001) in the ADE determined following acepromazine administration at 20 min (20.95 micrograms/kg +/- 2.28 SEM) compared to CNTL (6.64 micrograms/kg +/- 1.09), xylazine at 20 min (5.82 micrograms/kg +/- 0.95) and 4 h (6.13 micrograms/kg +/- 1.05), and acepromazine at 4 h (7.32 micrograms/kg +/- 0.34). No other significant differences existed (P < 0.05). In this study we were unable to show any sensitization to epinephrine following xylazine administration during halothane anesthesia, while a protective effect was shown with a low dose of acepromazine.  相似文献   

3.
The ventricular arrhythmogenic dose of epinephrine (ADE) was determined in 6 dogs anesthetized with halothane alone or with halothane after injection of tiletamine/zolazepam (TZ). Respiratory rate and tidal volume were controlled and sodium bicarbonate was administered to maintain arterial pH and blood gas values within reference range. Heart rate and arterial blood pressure were recorded during determination of the ADE. The ADE (mean +/- SD) was no different during anesthesia with use of halothane alone (8.9 +/- 4.3) than it was when injections of TZ preceded administration of halothane (6.7 +/- 2.8). Tiletamine/zolazepam was also administered IV immediately after determination of the ADE during halothane-induced anesthesia. The TZ administered in this manner did not alter the ADE. Blood pressure and heart rate were significantly greater during infusion of epinephrine than immediately prior to infusion. The administration of TZ did not alter blood pressure response. The ADE was also determined in 6 cats anesthetized with halothane preceded by administration of TZ. The ADE (mean +/- SD) was 0.7 +/- 0.23 micrograms/kg, a value similar to that reported for cats during anesthesia with halothane alone.  相似文献   

4.
The effect of xylazine on the arrhythmogenic dose of epinephrine (ADE) was studied in 9 horses. Anesthesia was induced by administration of guaifenesin (50 mg/kg of body weight, IV) followed by thiamylal (4 to 6 mg/kg, IV) and was maintained at 1 minimal alveolar concentration (MAC) of halothane (0.89%). Base apex ECG and facial artery pressure were recorded. Epinephrine was infused in a sequence of arithmetically spaced increasing rates (initial rate 0.25 micrograms/kg/min) for a maximum of 10 minutes. The ADE was defined as the lowest epinephrine infusion rate to the nearest 0.25 micrograms/kg/min at which at least 4 premature ventricular depolarizations occurred in a 15-second period. Xylazine (1.1 mg/kg, IV) was administered after the control ADE was determined. Xylazine did not significantly alter the ADE (control, 1.12 +/- 0.38 micrograms/kg/min; xylazine, 1.21 +/- 0.46 micrograms/kg/min). Blood pressure increased transiently for 8 minutes after xylazine administration. Baseline systolic and diastolic arterial pressures and heart rate were not significantly different from control baseline pressures and heart rate 15 minutes after xylazine administration. Blood pressure and heart rate increased significantly during control and xylazine ADE determinations. Significant differences in pH, PaO2, PaCO2, or base excess were not observed between baseline and ADE in the control or xylazine groups. One horse developed atrial fibrillation, and 2 horses developed ventricular fibrillation during ADE determinations.  相似文献   

5.
Effects of xylazine (1.1 mg/kg of body weight, IV bolus, plus 1.1 mg/kg/h infusion) and subsequent yohimbine (0.125 mg/kg, IV bolus) administration on the arrhythmogenic dose of epinephrine (ADE) in isoflurane (1.8% end-tidal)-anesthetized dogs were evaluated. The ADE was defined as the total dose of epinephrine that induced greater than or equal to 4 premature ventricular contractions within 15 seconds during a 3-minute infusion period or within 1 minute after the end of infusion. Total ADE values during isoflurane anesthesia, after xylazine administration, and after yohimbine injection were 36.6 +/- 8.45 micrograms/kg, 24.1 +/- 6.10 micrograms/kg, and 45.7 +/- 6.19 micrograms/kg, respectively. Intravenous xylazine administration significantly (P less than 0.05) increased blood pressure and decreased heart rate, whereas yohimbine administration induced a significant (P less than 0.05) decrease in blood pressure. induced a significant (P less than 0.05) decrease in blood pressure. After yohimbine administration, the ADE significantly (P less than 0.05) increased above that after isoflurane plus xylazine administration. After yohimbine administration, blood pressure measured immediately before epinephrine-induced arrhythmia was significantly (P less than 0.05) less than the value recorded during isoflurane plus xylazine anesthesia. Heart rate was unchanged among treatments immediately before epinephrine-induced arrhythmia. Seemingly, yohimbine possessed a protective action against catecholamine-induced arrhythmias in dogs anesthetized with isoflurane and xylazine.  相似文献   

6.
Opioids may exert a protective effect against ventricular arrhythmias via a vagally mediated mechanism. This study evaluated the effects of the opioid remifentanil on arrhythmogenicity of epinephrine during halothane anesthesia. Eight dogs were assigned to 2 treatments in a randomized crossover design, with 1-week intervals between treatments. Anesthesia was maintained with 1.3% end-tidal halothane in oxygen and mechanical ventilation to maintain eucapnia. A constant rate infusion of remifentanil (0.72 microg/kg/min) was administered throughout the study in the experimental treatment, while control animals received physiologic saline as placebo. The arrhythmogenic dose of epinephrine (ADE), defined as 4 premature ventricular complexes (PVCs) within 15 s, was determined by administering progressively increasing infusion rates of epinephrine (2.5, 5.0, and 10 microg/kg/min), allowing 20 min intervals between each infusion rate. In both treatments, epinephrine infusions induced bradyarrhythmias and atrioventricular conduction disturbances, which were followed by escape beats and PVCs. In the remifentanil treatment, mean +/- s ADE values (11.3 +/- 4.9 microg/kg) did not differ from values observed in control animals (9.9 +/- 6.1 microg/kg). On the basis of the ADE model for assessing the arrhythmogenity of drugs during halothane anesthesia, the present study did not demonstrate a protective effect of remifentanil (0.72 microg/kg/min) against ventricular arrhythmias in dogs.  相似文献   

7.
The arrhythmogenic dose of epinephrine (ADE) was determined in 6 pigs during steady-state anesthesia (1.5% halothane in O2) and steady-state anesthesia plus xylazine (1.1 mg X kg-1 X hr-1; IV infusion) and after either prazosin (alpha 1) or metoprolol (beta 1) adrenergic blockade during halothane-xylazine (H-X) anesthesia. A constant infusion (1, 2, 3, 5, and 10 micrograms X kg-1 X min-1) of freshly mixed epinephrine (100 micrograms X ml-1 in saline solution) was used to determine ADE. The ADE was defined as the total dose of epinephrine which produced 4 or more continuous or intermittent, premature, ventricular contractions within a 15-s period. The mean epinephrine total dose values during 1.5% halothane anesthesia, H-X anesthesia alone, or H-X anesthesia after either prazosin (0.1 mg X kg-1) or metoprolol (0.5 mg X kg-1) adrenergic blockade were 3.60 +/- 0.844, 2.68 +/- 0.402, 11.85 +/- 3.804, and 5.17 +/- 0.587 micrograms X kg-1, respectively. Xylazine administration did not significantly decrease ADE, although mean arterial pressure significantly increased. Prazosin administration significantly increased ADE and was associated with an increased heart rate and a decreased mean arterial pressure. We conclude that alpha 1-blockade with prazosin is more protective to epinephrine-induced arrhythmias in H-X-anesthetized pigs than is beta 1-blockade with metoprolol.  相似文献   

8.
The arrhythmogenic dose of epinephrine (ADE) was determined in heartworm-infected and noninfected (control) dogs during thiamylal-induced and halothane-maintained anesthesia to assess the myocardial sensitization. The ADE in heartworm-infected dogs (2.42 +/- 0.26 micrograms/kg of body weight) was significantly lower than that for the controls (3.36 +/- 0.29 micrograms/kg). After 2 weeks, ADE was determined again in these dogs after atropine treatment. Atropine treatment lowered the ADE to 1.76 +/- 0.33 micrograms/kg and 1.77 +/- 0.19 micrograms/kg in heartworm-positive and -negative dogs, respectively. After 2 weeks more, the ADE was determined after administration of prazosin, an alpha 1-antagonist. Only 2 of 6 controls and 3 of 6 heartworm-positive dogs had arrhythmias after a threefold increase of ADE. The mean ADE in the dogs that responded to treatment were 7.4 micrograms/kg and 7.2 micrograms/kg for heartworm-positive and -negative dogs, respectively. The finding of this study indicated that ADE in heartworm-infected dogs were lower than those in the control dogs, which makes the heartworm-infected dogs more vulnerable to arrhythmia during anesthesia. Atropine did not protect the dogs of either group. However, prazosin protected the dogs of both groups by significantly increasing the threshold of the ADE. On the basis of our findings, to reduce the risk of arrhythmia, we suggest that routine screening of dogs for heartworm infection be done before anesthetics are used.  相似文献   

9.
The arrhythmogenic dose of epinephrine (ADE) was determined in six dogs during halothane (1.35%) anesthesia before and after xylazine administration (1.1 mg/kg, i.v. bolus; 1.1 mg/kg/hr, i.v. infusion). The arrhythmogenic dose was determined by constant infusion of freshly mixed epinephrine (100 microgram/ml). The ADE was defined as the total dose of epinephrine which produced four or more intermittent or continuous premature ventricular contractions within a 15-sec period. Total dose was calculated as a function of infusion rate and time to arrhythmia. Following xylazine administration, ADE significantly decreased from 6.28 +/- 0.522 to 4.17 +/- 0.679 micrograms/kg. At the end of i.v. xylazine bolus administration, heart rate significantly decreased (115 +/- 4 to 99 +/- 4.9 b.p.m.), and mean arterial pressure significantly increased (83 +/- 4.0 to 122 +/- 3.4 mm Hg). Heart rate measured immediately prior to epinephrine-induced arrhythmia formation was significantly increased following xylazine administration (177 +/- 8 vs 78 +/- 3 b.p.m.). Mean arterial blood pressure was unchanged. Apparently, xylazine, a mixed alpha agonist, potentiated halothane-induced myocardial sensitization to ventricular arrhythmogenesis and was associated with a significant increase in heart rate, but not blood pressure, during subsequent epinephrine infusions.  相似文献   

10.
Alterations in the arrhythmogenic dose of epinephrine (ADE) were determined following administration of medetomidine hydrochloride (750 micrograms/M2) and a saline placebo, or medetomidine hydrochloride (750 micrograms/M2), followed by specific medetomidine reversal agent, atipamezole hydrochloride (50 micrograms/kg) 20 min later, in halothane-anesthetized dogs (n = 6). ADE determinations were made prior to the administration of either treatment, 20 min and 4 h following medetomidine/saline or medetomidine/atipamezole administration. Epinephrine was infused for 3 min at increasing dose rates (2.5 and 5.0 micrograms/kg/min) until the arrhythmia criterion (4 or more intermittent or continuous premature ventricular contractions) was reached. The interinfusion interval was 20 min. There were no significant differences in the amount of epinephrine required to reach the arrhythmia criterion following the administration of either treatment. In addition, the ADE at each determination was not different between treatment groups. In this study, the administration of medetomidine to halothane-anesthetized dogs did not alter their arrhythmogenic response to infused epinephrine.  相似文献   

11.
Baroreflex sensitivity (BS) was used to quantitatively assess the effects of halothane and isoflurane on the heart rate/arterial pressure relationship during steady-state (10 minutes) and dynamic pressure changes in adult horses. Arterial pressure was decreased in response to nitroglycerin or sodium nitroprusside and increased in response to phenylephrine HCl. Mean (+/- SEM) BS in awake horses was 28.9 +/- 2.6 and 13.2 +/- 2.0 ms/mm of Hg during steady-state decreases and increases in systolic arterial pressure (SAP), respectively. Halothane and isoflurane either significantly (P less than 0.05) decreased or eliminated BS during steady-state decreases in SAP, with no significant differences detected between anesthetic agents. During steady-state decreases in SAP, significant (P less than 0.05) correlation between R-R interval and arterial pressure was not observed for 6 of 10 and 4 of 11 halothane and isoflurane anesthesia periods, respectively. Halothane significantly (P less than 0.05) decreased BS during steady-state increases in SAP to 7.9 +/- 0.6 and 6.5 +/- 1.1 ms/mm of Hg during low and high minimal alveolar concentration (MAC) multiples, respectively. Isoflurane decreased BS during steady-state increases in SAP to 9.6 +/- 1.5 and 6.6 +/- 1.1 ms/mm of Hg during low and high MAC anesthesia, respectively, with high MAC of isoflurane decreasing BS significantly (P less than 0.05), compared with awake and low MAC values. Plasma catecholamine (epinephrine and norepinephrine) concentrations increased significantly (P less than 0.05), compared with baseline values during steady-state vasodilator infusions in halothane- and isoflurane-anesthetized horses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The pharmacokinetics of alfentanil were investigated in the horse. Four doses of alfentanil (4, 10, 20 and 40 micrograms/kg) were given to four horses at different times and their locomotor activity monitored. Doses of 20 and 40 micrograms/kg produced a significant increase in locomotor activity. The plasma concentrations of alfentanil were measured in six standing horses and the pharmacokinetics calculated. It was found that the decay curves were best described by a biexponential equation. The elimination half-life (t1/2 beta) was 21.65 +/- 3.99 min and the clearance (Cl) was 14.1 +/- 0.7 ml/kg/min. The same horses were anaesthetized with xylazine-ketamine and maintained with halothane in oxygen for the first experiment and isoflurane in oxygen for the second experiment. The pharmacokinetics were again calculated from measured plasma alfentanil concentrations. There were significant differences between the kinetics in the conscious and the anaesthetized animals but there were no significant differences in alfentanil kinetics between the two anaesthetic agents. The t1/2 beta for alfentanil under halothane and isoflurane anaesthesia were 55.95 +/- 20.77 and 68.03 +/- 23.22 min, respectively, and the Cl values were 14 +/- 1.7 and 13.6 +/- 1.32 ml/kg/min.  相似文献   

13.
Sixteen 3- to 5-year-old African elephants were anesthetized one or more times for a total of 27 diagnostic and surgical procedures. Xylazine (0.1 +/- 0.04 mg/kg of body weight, mean +/- SD) and ketamine (0.6 +/- 0.13 mg/kg) administered IM induced good chemical restraint in standing juvenile elephants during a 45-minute transport period before administration of general anesthesia. After IM or IV administration of etorphine (1.9 +/- 0.56 micrograms/kg), the mean time to lateral recumbency was 20 +/- 6.6 and 3 +/- 0.0 minutes, respectively. The mean heart rate, systolic blood pressure, and respiration rate during all procedures was 50 +/- 12 beats/min, 106 +/- 19 mm of Hg, and 10 +/- 3 breaths/min, respectively. Cardiac arrhythmias were detected during 2 procedures. One elephant with hypotension responded to a decrease in the concentration of halothane and IV infusion of dobutamine HCl. Alterations in systolic blood pressure, ear flapping, and trunk muscle tone were useful for monitoring depth of anesthesia. Results indicated that halothane in oxygen was effective for maintenance of surgical anesthesia in juvenile African elephants after induction with etorphine.  相似文献   

14.
Recent evidence has linked alpha-receptor and beta-receptor activations with ventricular arrhythmia genesis. In order to assess the relative contribution of specific adrenoceptors (alpha 1, alpha 2, beta 1) on ventricular arrhythmogenic activity during xylazine (1.1 mg X kg-1 X hr-1)-halothane (1.35%) anesthesia, the arrhythmogenic dose of epinephrine (ADE) was repeatedly determined before and after prazosin (alpha 1 antagonist; 0.1 mg X kg-1), metoprolol (beta 1 antagonist; 0.5 mg X kg-1), and yohimbine (alpha 2 antagonist; 0.125 mg X kg-1) administration in 6 dogs. The ADE was expressed as infusion rate and total dose. The ADE was defined as the dose which produced 4 or more intermittent premature ventricular contractions within 15 s during a 3-minute infusion period or within 1 minute from end of infusion. Control ADE was 2.69 +/- 0.372 (micrograms X kg-1 X min-1) and 4.17 +/- 0.544 (micrograms X kg X -1) for infusion rate and total dose, respectively. The ADE significantly increased after prazosin (P less than 0.005), metoprolol (P less than 0.005), and yohimbine (P less than 0.05) administration. The ADE values increased to 5.42 +/- 1.22 (rate) and 8.10 +/- 1.95 (dose) after alpha 2 blockade, but were significantly less than the alpha 1 and beta 1 blockade ADE values. In conclusion, although both alpha- and beta-adrenoceptor blockade depressed ventricular arrhythmia genesis in xylazine-halothane-anesthetized dogs, alpha 2 blockade, which was achieved with the recommended dose of yohimbine for reversal of anesthetic-induced CNS depression, was not as protective as alpha 1 (prazosin) or beta 1 (metoprolol) blockade.  相似文献   

15.
Eight healthy horses (337 to 643 kgs) were used to determine the effects of halothane and isoflurane (1.5 MAC) on cardiovascular and blood gas parameters over a 4 hour perio d, while in left lateral recumbency. Each animal was used twice (2 weeks apart) and the order in which the agents were used was randomized. End tidal CO2 was maintained at 45-55 mmHg using positive pressure ventilation. The following parameters were measured every 30 minutes; HR, ET CO2, ET anes. gas cone., SAP, CVP, PAP, and CO. Heparinized samples were also drawn for blood gas analysis from the right lateral metatarsal artery, right jugular vein, and the femoral veins in each rear limb. The 02 delivered to the tissues (TOD) was calculated using the following equation: {ie396-1} It was determined that more 02 was delivered to the tissues during isoflurane anesthesia (382m102/min/m2 + 21 SEM) than halothane anesthesia (280m102min/m2 + 11 SEM). Furthermore the 02 extraction ratio (OER) in the dependent limb was significantly higher during halothane anesthesia. The differences seen in the OER's are due to both anesthetic and positional effects. Serum biochemical changes also suggest differences in tissue damage related to differences in TOD and OER.  相似文献   

16.
The arrhythmogenic effects of anesthetic drugs are assessed using the arrhythmogenic dose of epinephrine (ADE) model. The purpose of this study was to determine the influence of cholinergic blockade (CB) produced by glycopyrrolate (G) on ADE in 1.5 minimum alveolar concentration (MAC) halothane (H)- and isoflurane (I)-anesthetized dogs. Eight dogs (weighing between 12.5 and 21.5 kg) were randomly assigned to four treatment groups (H, HG, I, and IG) and each treatment was replicated three times. Anesthesia was induced and maintained with H (1.31%, end-tidal [ET]) or I (1.95%, ET) in oxygen. Ventilation was controlled (carbon dioxide [PCO2] 35 to 40 mmHg, ET). G was administered 10 minutes before ADE determination at a dose of 22 μg/kg (11 μg/kg, intravenous [IV] and 11 μg/kg, intramuscular [IM]). The ADE was determined by IV infusion of epinephrine at sequentially increasing rates of 1.0, 2.5, and 5.0 μg/kg/min; and defined as the total dose of epinephrine producing at least four ectopic ventricular contractions (EVCs) within 15 seconds during a 3-minute infusion and up to 1 minute after the end of the infusion. Total dose was calculated as the product of infusion rate and time to arrhythmia. Data were analyzed using a randomized complete block analysis of variance. When significant (P < .05) F values were found a least significant difference test was used to compare group means. Values are reported as means ± standard error. The ADE (μg/kg) for H, HG, I, and IG were 1.53 ± 0.08, 3.37 ± 0.46, 1.61 ± 0.21, and > 15.00, respectively. Heart rates (HRs) (beats/min) and systolic pressures (mmHg) at the time of arrhythmia formation for H, HG, I, and IG were (60.3 ±4.0 and 142.0 ± 7.6), (213.0 ± 13.1 and 239.2 ± 7.1), (62.9 ± 4.5 and 151.9 ± 6.3), and (226.3 ± 6.1 and 323.5 ± 3.4), respectively. The H and I ADE were not different. The HG ADE was significantly less than the IG ADE. The H and I ADE were significantly less than the HG and IG ADE. We conclude the following from the results of this study of epinephrine infusion in halothane- and isoflurane-anesthetized dogs: (1) two distinct mechanisms are responsible for the development of arrhythmias, (2) CB produced by G significantly increases ADE but is associated with higher rate pressure products (RPP) and myocardial work, and (3) ADE methodology could be improved by determining ADE with and without CB.  相似文献   

17.
Effects and interaction of nifedipine (Ca channel blocker) and xylazine (mixed alpha agonist) during halothane anesthesia were examined in 6 dogs. After achievement of steady-state halothane (1.35%) anesthesia, blood pressure (BP) and heart rate (HR) were recorded in these dogs during 3-minute saline or nifedipine (20 micrograms/kg) infusion periods. Seven minutes after the end of saline or nifedipine infusion, xylazine (1.1 mg/kg of body weight) was infused over a 2-minute period. After saline pretreatment, xylazine administration increased diastolic BP (33.67 +/- 3.91 mm of Hg) and decreased HR. Nifedipine infusion induced a transient reduction in BP, accompanied by a more persistent increase in HR. Compared with saline pretreatment, nifedipine pretreatment significantly decreased the acute increase in diastolic BP (33.67 +/- 3.91 vs 14.00 +/- 2.94 mm of Hg) which occurred during xylazine injection. After saline and nifedipine infusions, xylazine administration decreased HR 30 +/- 15.02 and 36.5 +/- 10.36 beats/min, respectively. A pronounced sinus arrhythmia and/or 2nd-degree atrioventricular block developed in all dogs during xylazine injection after saline infusion. Arrhythmias were not observed in the dogs after nifedipine infusion. Nifedipine's Ca blocking action depressed xylazine-induced acute vasoconstriction and concomitant increase in diastolic BP. Because alpha 2-, but not alpha 1-adrenoceptor-mediated vasoconstriction is Ca-dependent, these results indicate that a portion of the acute pressor response induced by IV xylazine in halothane-anesthetized dogs may be alpha 2-mediated. Seemingly, nifedipine-induced hypotension and damping of xylazine-induced increases in BP attenuated xylazine's actions on cardiac rate and rhythm.  相似文献   

18.
Anesthesia was induced in 14 greyhounds with a mixture of diazepam or midazolam (0.28 mg/kg) and ketamine (5.5 mg/kg), and maintained with halothane. There were no significant differences in weight, age, or duration of anesthesia between the treatment groups. Time to intubation with diazepam-ketamine (4.07 +/- 1.43 min) was significantly longer than with midazolam-ketamine (2.73 +/- 0.84 min). Heart rate, respiratory rate, PaCO2, and arterial pH did not vary significantly during anesthesia in either treatment group. Arterial blood pressures, PaO2, halothane vaporizer setting, and body temperature changed significantly from baseline values in both treatment groups during anesthesia. Times to sternal recumbency and times to standing were not significantly different. These data suggest that both diazepam-ketamine and midazolam-ketamine are useful anesthetic combinations in greyhounds. In combination with ketamine, midazolam offers little advantage over diazepam.  相似文献   

19.
The cardiovascular effects during 2 hours of anesthesia with either a continuous propofol infusion or isoflurane were compared in the same six healthy dogs. Dogs were randomly assigned to be anesthetized with either propofol (5 mg/kg, IV administered over 30 seconds, immediately followed by a propofol infusion beginning at 0.4 mg/kg/min), or isoflurane (2.0% end-tidal concentration). The propofol infusion was adjusted to maintain a light plane of anesthesia. Dogs anesthetized with propofol had higher values for systemic arterial pressure due to higher systemic vascular resistance. Dogs anesthetized with isoflurane had higher values for heart rate and mean pulmonary artery pressure. Cardiac index was not different between the two groups. Apnea and cyanosis were observed during induction of anesthesia with propofol. At the end of anesthesia the mean time to extubation for dogs anesthetized with either propofol or isoflurane was 13.5 min and 12.7 min, respectively. A continuous infusion of propofol (0.44 mg/kg/min) provided a light plane of anesthesia. Ventilatory support during continuous propofol infusion is recommended.  相似文献   

20.
OBJECTIVE: To determine the cardiac anesthetic index (CAI) of isoflurane in green iguanas and whether butorphanol affected the CAI. DESIGN: Prospective randomized controlled trial. ANIMALS: 7 healthy mature iguanas. PROCEDURE: In 5 iguanas, CAI was determined after induction of anesthesia with isoflurane alone, and in 5 iguanas, CAI was determined after induction of anesthesia with isoflurane and IM administration of butorphanol (1 mg/kg [0.45 mg/lb]). Three iguanas underwent both treatments. Animals were equilibrated for 20 minutes at 1.5 times the minimum alveolar concentration (MAC) of isoflurane and observed for evidence of cardiovascular arrest. If there was no evidence of cardiovascular arrest, end-tidal isoflurane concentration was increased by 20%, and animals were allowed to equilibrate for another 20 minutes. This process was repeated until cardiovascular arrest occurred or vaporizer output could no longer be consistently increased. The CAI was calculated by dividing the highest end-tidal isoflurane concentration by the MAC. RESULTS: None of the iguanas developed cardiovascular arrest and all survived. Mean +/- SD highest end-tidal isoflurane concentration during anesthesia with isoflurane alone (9.2 +/- 0.60%) was not significantly different from mean concentration during anesthesia with isoflurane and butorphanol (9.0 +/- 0.43%). The CAI was > 4.32. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the CAI of isoflurane in green iguanas is > 4.32 and not affected by administration of butorphanol. Isoflurane appears to be a safe anesthetic in green iguanas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号